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Application of convolutional neural network  
for detecting concrete cracks

Tu T. Nguyen(1), Hiep H. Vu(2) and Kien T. Doan(3)

Abstract
Deep learning continues to growing in popularity and 

expanding for civil engineering applications thanks to easy 
access to massive sets of labeled data, increased computing 

power, and the availability of pre-trained models built 
by experts. In this paper, a Convolutional Neural Network 

(CNN) method is employed to classify the crack/non-
crack aerial images captured on the surface of concrete 

structures. The CNN model was trained and validated 
using the available experimental data of 4000 previously 

published images. The trained CNN model was then tested 
with 330 unseen images. It was shown that the proposed 

CNN model can classify the crack/non-crack images with an 
accuracy level of 93%.
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1. Introduction
Crack on concrete structures is a significant indication of possible 

reinforcement corrosion, spall development, or overload conditions. 
Thus, monitoring the cracks on the structure surface would provide 
important information to evaluate the safety level of the structure 
as well as to have an appropriate rehabilitation plan. Manual visual 
inspections using human labor are proven as an effective method 
to detect surface cracks in concrete, however, the method is time-
consuming, labor-intensive, and sometimes exposes risks to the 
inspectors. With the development of aerial vehicle (AV) devices and 
machine learning-based techniques, more and more automated AV-
based visual inspections are available at an affordable cost and high 
level of accuracy. The technique itself consists of two parts: (i) image 
data collection, and (ii) data processing. 

The process of collecting aerial image data has been conducted 
by many investigators [1-6]. For example, Jong et al. [1] used 
unmanned aerial vehicles (UAV) to capture the images from the 
lower part of slab desks in bridges. Chen et al. [3] employed UAV to 
take aerial images of different types of typical ground targets namely 
buildings, roads, mountains, and riverways to study the aftermath 
of an earthquake strike. Li and Zhao [5] obtained the image dataset 
using a smartphone from the surface of a pylon and anchor room of 
a suspension bridge. In a recent study, Zhou and Song [6] utilized the 
high-resolution, vehicle - mounted to collect aerial images from the 
concrete roadways. 

With regard to image data processing, various popular 
convolutional neural network systems such as VGG [7], GoogLeNet 
[8], and ResNet [9] have been proposed. In recent years, the 
applications of deep learning to address engineering issues have been 
widely used among researchers [10-15]. Related to the application of 
CNN, Zhang et al. [10] applied a deep learning technique for road 
crack detection using images captured from smartphones. Maeda et 
al. [11] developed a mobile phone application to detect road surface 
defects. The application of the CNN approach for defects detection 
was also found in a study by Tong et al. [12] with images from a 
ground-penetrating radar.

 In this paper, the CNN-based model was developed to identify 
crack/non-crack images collected on the surface of a concrete 
structure. The CNN model was adapted from the pre-trained, 
open-sourced model developed by Google and distributed through 
TensorFlow. Available experimental data was collected from the 
concrete roadways with a vehicle-mounted laser imaging system. The 
CNN-based model was developed with the PYTHON environment.

2. Methodology
This section presents brief description of the data collection 

process, as well as the method to pre-process and generate aerial 
image data, were presented. In addition, a predictive model called 
CNN was employed to detect the surface concrete cracks using the 
datasets mentioned in the previous sections. The structure of the 
CNN model, the title of layers, their roles in the system, and some 
basic steps to train the model were also briefly discussed. Detailed 
information is presented in the subsequent sections.
2.1. Data set and data augmentation 

Data used in this study were obtained from an available, published 
source [6]. Experimental data were collected from the concrete 
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roadways using a camera module is mounted 
2.13 m above the ground on a vehicle. The 
images were captured while the vehicle was 
running at a speed of less than 9.83m/s. 
Detailed data collecting processes can be 
found in [6]. The raw data obtained from the 
field were then pre-processed to remove 
the unwanted effects of surface variations, 
scanning noises, and non-crack patterns. 
The final data set were generated using the 
sliding window technique [16], classified and 
documented in the “crack” and “non-crack” 
folders. A total of 4000 images are generated 
for each type of image data. Figure 1 presents 
some images from the positive/crack and 
negative/non-crack groups loaded by the 
proposed CNN model.
2.2. Convolutional Neural Network 

The structure of a standard CNN model 
consists of an input layer, convolutional 
layers, pooling layers, and fully connected 
layers with an activation function to produce 
the output. The role of the convolutional layer 
is to apply the convolution to the raw input 
data and pass the results to the next layer. 
The pooling layer is extracted the dominant 
features from the input, usually using the 
maximum pooling or average pooling 
technique. The fully connected layers convert 
the two-dimensional features obtained from 
the previous layers into a one-dimensional 
vector and feed it into a softmax function to 
generate the outputs. Figure 3 illustrates a 
structure of a typical CNN model.

The CNN model used in this study has 
one node in the input layer and two nodes 
(i.e., crack or non-crack) in the output layer. 
To train the CNN model, the cracks and non-
cracks images were loaded from the two 
separate folders and preprocessed to reduce 
the size of the pictures to 180 by 180 pixels 
before feeding to the proposed CNN model. 
In this study, about 90% of the entire inputs 
were used to train and validate the model, 
and 10% of the database was used for testing 
the accuracy of the trained CNN model. 

3. Results and discussion
As previously mentioned, the trained 

CNN model was used to classify the crack 
and non-crack images in the test set. The 
following section present the prediction 
capabilities of the proposed model for the 330 
unseen images in the testing dataset were 
presented. The performance of models would 
be evaluated through various performance 
metrics including Accuracy, Precision, Recall, 
and F1−score. The confusion matrix and AR 
indicator would also be briefly discussed. 
3.1. Model performance metrics

Accuracy refers to the ratio of the number 
of correctly predicted crack and non-crack 
images to the total number of input images. 

Figure 1: Inputs from different groups loaded with CNN model

Figure 2: An example of image argumentation
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Precision can be understood as the number of correctly 
predicted crack images divided by the number of crack images 
predicted by the classifier. The recall is the percentage of 
the number of correctly predicted crack images to the total 
number of cracked images. F1−score is the harmonic mean 
of precision and recall. Accuracy, Precision, Recall, and F1−

score can be calculated through equations (1a-1d) using true-
positive (TP), true negative (TN), false-positive (FP), and 
false-negative (FN), as illustrated in Figure 4.

TP TNAccuracy  
TP FP TN FN

+
=

+ + +     (1a)

TPPrecision  
TP FP

=
+      (1b)

TPRecall  
TP FN

=
+      (1c)
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Precision  Recall−

×
= ×

+    (1d)
An alternative way to present the performance results is 

using a confusion matrix. The columns of a confusion matrix 
represent the true value, and the rows show the predicted 
values assigned by the predictive model. The element aij (i is 
the row, and j is the column) indicates that the model assigned 
the value as i while the true value as in the database is I. The 
elements in the diagonal of the confusion matrix (aii in the 
light green cells) are the components correctly classified by 
the model. Additionally, an accuracy rate (AR) indicator (i.e., 
the percentage of predicted images that accurately matched 
the actual one) is also calculated for each group in the entire 
test set.

3.2. Model performance evaluation
A total of 330 images (i.e., 165 

crack images and 165 non-crack 
images) in the training dataset were 
employed to test the trained CNN 
model. Performance results of the 
CNN model for the testing dataset are 
listed in Table 1. As can be seen, the 
trained CNN model can classify the 
crack/non-crack images at a high level 
of accuracy with an F1−score   value 
of 93.0%. It is worth noting that high 
accuracy, precision, and recall values 
indicate a high positive detection rate, 
low false-positive rate, and low false-
negative rate, respectively. 

Table 1: Statistic on the performance metrics of CNN 
model

Accuracy 
(%)

Precision 
(%) Recall (%) F1-score (%)

93.0 98.8 88.6 93.4

Table 2: Confusion matrix for testing performance of 
CNN model

 Actual

Prediction Crack Non-crack Sum

Crack 163 21 184
Non-crack 2 144 146

Sum 165 165 330

AR (%) 98.8 87.3 93.0

The performance of the CNN model in terms of a 
confusion matrix for the testing dataset is presented in 
Table 2. It is interesting to note is that CNN showed a high 
level of accuracy in classifying the crack images with an 
AR value of 98.8%. The model, however, produced some 
misclassification for the non-crack group. To be specific, 
misidentified 21 non-crack images as crack ones.

4. Conclusions and recommendations
In this paper, a novel method using the Deep Learning 

approach to detect cracks on concrete surface is presented 
and discussed. The CNN model was developed using the 
available aerial images obtained from past publications. The 
trained CNN models were then utilized to categorize 330 
images in the testing dataset. In terms of model performance, 

Figure 3: Architecture of CNN model 

Figure 4: The schematic diagram for the performance metrics
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the CNN model demonstrated a high precision in detecting 
concrete cracks. In future studies, the proposed CNN 
application is recommended to integrate with a computer 

and a camera system mounted on a vehicle to test the crack 
recognition capability of the software for the concrete road in 
Vietnam./.
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due to increased water content is inevitable. For the reason, 
it is important to develop design and quality control methods 
for weak rock embankments that take into account the 

reduction in strength due to water absorption and retention 
in order to improve durability and long-term performance./.
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