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Abstract
	 A new formulation to calculate the 

shakedown limit load of Kirchhoff plates under 
stochastic conditions of strength is developed. Direct 

structural reliability design by chance constrained 
programming is based on the prescribed failure 
probabilities, which is an effective approach of 

stochastic programming if it can be formulated as an 
equivalent deterministic optimization problem.

We restrict uncertainty to strength, the loading is still 
deterministic. A new formulation is derived in case of 
random strength with lognormal distribution. Upper 

bound and lower bound shakedown load factors are 
calculated simultaneously by a dual algorithm.
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1. Introduction
Plates are very important structural elements, that are widely used in 

civil and mechanical engineering. The common examples of plates are 
slabs in civil engineering structures, bearing plate under columns, many 
parts of mechanical components. In this paper, we consider bending of 
such plates subjected to lateral loads. The bending stiffness of a plate 
depends on the cube of its thickness. The classical theory divides plates 
into following groups: thin plates with small deflection, thin plates with 
large deflections, and thick plates. 

The thin plate assumptions on which A.E.H. Love based his plate 
theory were proposed by Gustav R. Kirchhoff [1]. Consequently, thin 
plates with small deflections theory are called Kirchhoff-Love plate or 
Kirchhoff plate for short. This theory is suitable for plates with length of 
span at least 10 times the thickness. Many engineering problems lie in 
the above category and satisfactory results are obtained by the classical 
thin plates theory.

Limit analysis of plates in bending has been studied analytically and 
numerically [8]–[16]. Due to limitations of analytical methods, alternative 
numerical approaches such as finite element methods (FEM), meshfree 
methods or isogeometric analysis (IGA) have been developed.

Limit and shakedown analysis state problems as a mathematical 
programming. If the strength of a plate is a random variable, we may 
consider the problems as a stochastic programming problem. Many 
models of stochastic programming have been proposed such as 
approximate polyhedral dynamic programming [16-18], measurement-
based optimization [19], worst-case and distributional robustness 
analysis [20], Cost horizons and certainty equivalence [21] and chance 
constrained optimization (CCOPT) [22]. In this paper the CCOPT 
approach is used to treat the problem of shakedown analysis of plate 
under uncertainty condition of strength. If the thickness deterministic 
and the yield stress is distributed normally or lognormaly a deterministic 
equivalent formulation can be derived which allows a most effective 
numerical solution for prescribed reliability of the structure.

2. Static approach with chance constrained programming 
Consider a convex polyhedral load domain D and a special loading 

path consisting of all load vertices ˆ ( 1,..., )kP k m=  of L . The total moment 
m(x,t) at a point ∈Ωx  of the considered plate at time t is decomposed 
into an elastic reference moment mE(x,t) and a residual moment ρ(x,t). 
Here, mE(x,t) denotes the fictitious moment that would appear in a purely 
elastic reference structure EP  under the same loading conditions as 
the original structure, and ρ(x,t) represents a residual moment field that 
is induced by the evolution of plastic strains

( , ) ( , ) ( , )Et t tm x m x ρ x= + 							     
(2.1)

According to Melan’s static shakedown theorem the structure will 
shakedown, if there exists a time-independent residual moment field 
( )ρ x  such that the yield condition is satisfied for any loading path at 

any time t   and in any point x of the plate. Based on this lower bound 
theorem, for a plate made up of elastic perfectly plastic material, the 
maximum enlarging of the load domain allowing still for shakedown, 
characterized by load factor −α  that can be obtained by solving the 
following optimization problem (in FEM form)
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in which Bi is the deformation matrix, wi is integration 

weight at Gauss point i and NG denotes the total number of 
Gauss points of the structure.

Let us now consider the situation that the plastic moment 
of the plate is not given but must be modelled m0=m0(ω) 
a random variable on a certain probability space. Under 
uncertainty, the inequalities in (2.2) are not always satisfied, 
the probability of the ith yield condition is required to be 
satisfied is greater than some reliability level ψi. Problem 
(2.2) becomes a chance constraint stochastic program:
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  2.3)
Let the plastic moment mi(ω) be distributed normally 

with mean μi and standard deviation σi, in short  
( ) 2( , )i i im ω µ σ  . Based on the methodology of chance 

constrained programming, problem (2.3) can be converted 
into a equivalent deterministic program as shown in [10,11]:
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where 1( )iκ ψ−= Φ  is the inverse normal cumulative 

distribution function (normal quantile function) of the plastic 
moment at Gauss point i.

Let the plastic moment ( )im ω  be distributed lognormally. 
This means that [ ]ln ( )im ω  is distributed normally with mean 
μi and standard deviation σi, in short ( ) 2ln ( , )i i im ω µ σ    
. The stochastic program (2.3) can be relaxed into an 
equivalent deterministic optimization problem after some 
transformations [2,3]:
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3. Kinematic approach with chance constrained 
programming 

An upper bound to the shakedown limit of plates can be 
obtained using the kinematic shakedown theorem. In this 
investigation, we use von Mises yield criterion.The plastic 
dissipation power of the plate domain Ω can be written in 
form of curvature vector χ 

 ( ) dint 0
TD m 


χ χ Qχ   

	                                                    (3.1)
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m0 is the plastic limit moment per unit length of a plate 

section.
We introduce here an admissible cycle of a plastic 

curvature field pχ . At each load vertex, the plastic curvature 
rate may not necessarily be compatible at each instant during 
the time cycle, but the plastic curvature accumulation over 
the cycle is required to be kinematically compatible such that       
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Based on the above statements and the mathematical 
programming theory, an upper bound of the shakedown load 
factor can be found by solving the following convex nonlinear 
programming:
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If the yield stress of the material is random, then the 
plastic moment is an uncertain quantity and the objective 
function of (3.5) is a stochastic variable. Firstly, we must 
properly define the minimum of a random function. This can 
be done in such a way that one looks for a minimum lower 
bound   of the objective function under the constraint that the 
probability of violation of that bound is prescribed in [22]
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Problem (3.6) is a stochastic program, it can be converted 
into an equivalent deterministic program by using a chance 
constrained program technique [10,11]. 
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In case of a lognormal distribution of strength, the 
stochastic problem (3.6) can be converted into the equivalent 
deterministic program (3.8) by using the duality property:
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4. A dual algorithm for shakedown analysis of Kirchhoff 
plate

For the sake of simplicity, we set some new notations:
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T E
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T  Q Q I Q Q Q  			   (4.2)

By substituting (4.1) into (3.8) one obtains a simplified 
version for the upper bound of the shakedown limit load 
(primal problem)
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Using a penalty method to eliminate the first constraint in 
(4.3) leads to the penalty function
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where c is a penalty parameter such that c>>1. The 
corresponding Lagrange function of (4.4) is
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By employing Newton method to solve the Karush-Kuhn-

Tucker (KKT) conditions of the Lagrange function (4.5), we 
have the incremental vectors of nodal variables u , curvature 
rate ikk  and βi as follows :
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The vectors d ,d ,d .ik iq k β  and dα are actually Newton 
directions, which assure that a suitable step along them will 
lead to a decrease of the objective function of the primal 
problem (3.8) and to an increase of the objective function 
of the objective function of the dual problem (2.5). Based on 
(4.6 - 4.7) we can update the vectors of , , ik iq k β  and α. The 
dual algorithm for limit and shakedown analysis is presented 
in detail in [2-6].

5. Numerical examples 
We investigate a L-shape plate subjected to uniform 

pressure. Length L=10m, plate thickness t=0,1m, the mean 
value of yield stress E(σi) = 250MPa and the standard deviation 
σ = 0.1E(σ0) .The reliability level is assumed ψ = 0.9999. Let 

Figure 1: L-shape plate loaded by a uniform 
pressure

Figure 2: Convergence of limit load factors

Table 1:  Limit load factor in comparison for case of 

simple supported plate  0
2

m
qL

 
 
 

Author Lower 
bound

Upper 
bound

Le et al.   [7] -- 6.219
Tran et al.[15] 6.044 6.173 deterministic

6.022 6.190
Present 3.785 3.882 normal

4.135 4.242 lognormal 
(xem tiếp trang 22)
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reduction at the age of 3 and 7 days is significantly lower than 
that of the 28 days. 

Therefore, air-entraining admixture should be used at 
the minimum content, depending on the purpose of strength 
and bulk density as well as the ease of construction of fresh 

concrete. In this study, the most reasonable AD content is at 
0.02% by weight of the binder.

And it is worth noting that the method as presented can 
be used to evaluate the relative stratification reduction effect 
of AD for lightweight concrete mixes./.
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us calculate limit load fators. This example is investigated in 
[5-6] for case of normal distribution of strength. 

In this analysis, the plate is modelled by 768 DKQ 
(discrete kirchhoff quadrilateral ) elements. Figure 2 shows 

the convergence of the upper bound and lower bounds 
for simple supported case. Table 1 shows the results in 
comparison with Le [7] and Tran [15]./.
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