SOLVING SOME ELEMENTARY GEOMETRICAL PROBLEMS BY EUCLIDEAN GEOMETRY'S METHODS

Nguyen Thi Thanh Loan ${ }^{1}$, Tran Le Nam ${ }^{2 *}$, and Phan Thi Hiep ${ }^{3}$
${ }^{1}$ Department of Mathematics, Hue University of Education
${ }^{2}$ Faculty of Mathematics - Informatics Teacher Education, Dong Thap University
${ }^{3}$ Faculty of Primary and Pre-School Education, Dong Thap University
*Corresponding author: tranlenam@dthu.edu.vn
\section*{Article history}
Received: 07/5/2022; Received in revised form:20/6/2022; Accepted: 14/7/2022

Abstract

The article introduces a method of exploiting the Euclidian geometry to find solutions for elementary geometry problems. By analyzing some special coordinates in the solution, we will detect some extra points or lines to help solve elementary problems.

Keywords: Coordinate method, finding solutions, the Euclidian geometry.

SỬ DỤNG HìNH HỌC Ơ-CLIT TÌM LỜI GIẢI HÌNH HỌC SƠ CÁP
 Nguyễn Thị Thanh Loan ${ }^{1}$, Trần Lê Nam ${ }^{2^{*}}$ và Phan Thị Hiệp ${ }^{3}$
 ${ }^{1}$ Khoa Toán học, Truờng Đại học Sur phạm Huế
 ${ }^{2}$ Khoa Sur phạm Toán - Tin, Truoòng Đại học Đồng Tháp
 ${ }^{3}$ Khoa Giáo dục Tiểu học - Mầm non, Truờng Đại học Đồng Tháp
 *Tác giả liên hệ: tranlenam@dthu.edu.vn

 Lịch sử bài viết

 Lịch sử bài viết
 Ngày nhận bài:07/5/2022; Ngày nhận chỉh sủa: 20/6/2022; Ngày duyệt đăng: 14/7/2022

Tóm tắt

Bài báo giới thiệu phương pháp sủ̉ dụng hình học O-clit để tìm lời giải các bài toán hình học sơ cấp. Bằng cách khảo sát các tọa độ đặc biệt, chúng ta phát hiện được các điểm hay đuờng phụ. Nhờ vào sụ phát hiẹn đó, các bài toán hinh học so cấp có thể tìm được lời giải.

Từ khóa: Hình học O-clit, phương pháp tọa độ, tìm lời giải.

1. Introduction

Difficult elementary geometry problems often have some hidden properties, lines, or points (Lê Quốc Hán et al., 2016). They are the keys to finding the solutions. Basing on accumulated experiences, teachers can use different advanced geometrical techniques to get the solution and easily get the keys to solving the primary solution for students.

This technique is covered in many advanced geometry books (Hsiung, 2005, Igor et al., 2013, Ya et al., 1982). However, books only give some suggestions for exploiting geometric properties with few illustrative examples. This article concretizes those orientations into a specific process which gives some illustrative examples and declares solutions to find many different solutions for elementary geometry problems. This technique can be combined with other techniques. From that, we can find many solutions to a geometry problem (Phạm Bảo, 2018, Top et al., 2020). Then, readers will understand the meaning of solving a problem through many methods, including the development of personal thinking.

The article also aims to guide a technique to exploit and find solutions for elementary problems. However, It is not a universal tool. Teachers need to flexibly, accumulate their experience, and combine many methods to find solutions and exploit problems. Hence, the quality of teaching has been improved.

2. Main contents

2.1. The process of finding solutions to elementary problems using the advanced geometry

After some experiments and discussions with high school teachers and students, we found the following process effective.

Step 1. Solving problems by using the coordinate method.

+ Choosing the coordinate system;
+ Transferring hypothesis and conclusion of the problem to the language of the coordinate geometry;
+ Using the facts of the Euclidean geometry to solve problems;
+ Conclusion of the problems.

Note: The conclusion by the coordinate geometry language is usually drafted, guiding the proof.

Step 2. Detecting hidden geometric properties based on calculation results.

Basing on the coordinates of the key points or vectors in solution by the coordinate method, we try to discover the parallel properties, collinear, perpendicular, ratio, and bisector angle. If the discovered properties are not enough to solve the problem, we need to find some extra points from the key points such as perpendicular projection, parallel projection, and midpoint.

Step 3. Proposed elementary solutions.
From discovered geometric properties in Step 2, we arrange the properties in the sketch to solve the problem.

Step 4. Solving the geometry problems using elementary properties.

Using the geometric properties at the high school to calculate and prove the properties outlined in Step 3, we solve the problems.

2.2. Example

2.2.1. The problem

Given the square $A B C D . M$ is the midpoint of the side $B C, N$ is the point on the side $C D$ such that $C N=2 N D$. The segment $A N$ and the segment $B D$ intersect each other at H. Prove that triangle $\triangle A H M$ is an isosceles right triangle.
2.2.2. Solving the problem by the advanced geometry (Figure 1)

Figure 1

Using the basic knowledge of advanced geometry, teachers will solve the problem easily. This solution will guide some elementary solutions, suitable for high school students.

Let $A(0,0), B(12,0)$ and $D(0.12)$.
Then, $M(12,6), N(4,12)$.
The two lines $(B D)$ and ($A N$) have the equations, respectively

$$
\begin{aligned}
& (B D): x+y-12=0, \\
& (A N): 3 x-y=0 .
\end{aligned}
$$

It implies that, $(B D) \cap(A N)=H(3,9)$.
From that, $\overrightarrow{A H}=(3,9), \overrightarrow{M H}=(-9,3)$,
Therefore, $|\overrightarrow{A H}|=|\overrightarrow{M H}|=\sqrt{3^{2}+9^{2}}=3 \sqrt{10}$.
Moreover, $\overrightarrow{A H} \cdot \overrightarrow{M H}=3 .(-9)+9.3=0$.
Therefore, $A H=M H$ and $A H \perp M H$.
So, $\triangle A H M$ is an isosceles right triangle.
2.2.3. Discovering the first elementary solution

Suppose points P and R are the orthographic projections of H to $A D$ and $A B$, respectively.

From the coordinates of the point H, we get:

$$
P H=A R=3=\frac{A B}{4}, A P=9=\frac{3 A B}{4} .
$$

Suppose line $(P H)$ and line $(B C)$ intersect at the point Q then its coordinates is $(12,9)$.

Therefore, Q is the midpoint of $C M$.

Figure 2
It then follows that $\triangle H A R=\triangle H M Q$, and the problem is proven.

From the above analysis, the key property to solve the problem that is $P H=\frac{A B}{4}$.

Through the above analysis, the problem can be solved according to the following step.

- Prove that $\frac{P H}{A B}=\frac{1}{4}$;
- Prove that $P H=Q M$ and $H Q=H R$;
- Prove that $A H=M H$ and $A H \perp M H$.

The elementary solution 1
We have

$$
\frac{D H}{H B}=\frac{D N}{A B}=\frac{1}{3} .
$$

It implies that

$$
\frac{P H}{A B}=\frac{D H}{D B}=\frac{D H}{D H+H B}=\frac{1}{4} .
$$

Since $\triangle P D H$ is an isosceles right triangle at P, it gets

$$
C Q=D P=P H=\frac{1}{4} A B=\frac{1}{2} C M .
$$

Figure 3
Therefore,

$$
\begin{aligned}
& A M=A R=\frac{A B}{4} \\
& H R=M B+Q M=\frac{3 A B}{4}, \\
& H Q=P Q-P H=\frac{3 A B}{4}=H R .
\end{aligned}
$$

It derives that $\triangle H A R=\triangle H M Q$ (s-a-s).
Considering $\triangle H A M$, we have:

$$
\begin{aligned}
& H A= H M, \\
& \begin{aligned}
\overline{A H M} & =\widehat{P H Q}-(\widehat{P H A}+\widehat{M H Q}) \\
& =\widehat{P H Q}-(\widehat{P H A}+\widehat{H A P}) \\
& =180^{\circ}-90^{\circ}=90^{\circ} .
\end{aligned}
\end{aligned}
$$

So, $\triangle A H M$ is an isosceles right triangle at H.

Moreover, from the point coordinates H, the reader can discover a number of other congruent triangles. For example

$$
\triangle H A R=\triangle H A L=\triangle H M Q=\triangle H Q C .
$$

These results can lead to other elementary solutions.
2.2.4. Discovering the second elementary solution

We have $\overrightarrow{D H}=(3,-3)$ and $\overrightarrow{D B}=(12,-12)$. It derives that $B D=4 D H$.

Therefore, $A R=\frac{1}{4} A B=\frac{3}{4} R B=\frac{3}{4} B Q=Q M$.
From the above analysis, teachers can directly solve the problem in the following way.

We have:

$$
\frac{D H}{H B}=\frac{D N}{A B}=\frac{1}{3} .
$$

It implies that

$$
\frac{A R}{A B}=\frac{D H}{D B}=\frac{D H}{D H+H B}=\frac{1}{4} .
$$

Since $\triangle Q H B$ is an isosceles right triangle at Q, so

$$
B Q=H Q=B R=\frac{3 A B}{4}=\frac{3 C B}{4} .
$$

Therefore,

$$
\begin{aligned}
Q M & =\frac{3 C B}{4}-M B \\
& =\frac{3 C B}{4}-\frac{C B}{2}=\frac{C B}{4}=\frac{3 A B}{4} .
\end{aligned}
$$

It implies that $\triangle H A R=\triangle H M Q$ (s-a-s).
Otherwise, considering $\triangle H A M$, we have:

$$
\begin{aligned}
H A & =H M, \\
\widehat{A H M} & =\widehat{A H R}+\widehat{R H M} \\
& =\widehat{M H Q}+\widehat{R H M}=\widehat{R H Q}=90^{\circ} .
\end{aligned}
$$

So, $\triangle A H M$ is an isosceles right triangle at H.
2.2.5. Discovering the third elementary solution (Figure 4)

In exploiting extra points from existing points and lines, we can detect the intersection P of two lines $(C D)$ and (HM) with coordinates $(-6,12)$. From there, the point H is the midpoint of $P M$. Moreover,

$$
\overrightarrow{A P}=(-6,12), \overrightarrow{A M}=(12,6) . \quad \text { Therefore }
$$

$\widehat{A P M}=90^{\circ}$ and $A H$ is the perpendicular bisector of the segment $P M$.

On the other hand, from $\overrightarrow{P D}=(6,0)$ we get $P D=B M=6$.

From there $\triangle A B M=\triangle A D P$.
These results are enough to prove the problem.

Figure 4
Third elementary solution orientation
Through the above analysis, the problem can be solved according to the following sketch.

- Let P be the intersection of two lines (CD) and $(H M)$, prove that $P D=M B$ and $\triangle A B M=\triangle$ ADP;
- Proving that $\triangle P A M$ square is balanced at A;
- Proving that $(A H)$ is a bisector of $\widehat{P A M}$.

Third elementary solution

Let P be the intersection of two lines ($C D$) and (HM). By the Menelaus' theorem to $\triangle B C D$ for 3 collinear points P, H and M, we have

$$
\begin{aligned}
& \frac{P D}{P C} \cdot \frac{M C}{M B} \cdot \frac{H B}{H D}=1, \\
\Rightarrow & \frac{P D}{P C}=\frac{H D}{H B}=\frac{D N}{A B}=\frac{1}{3} .
\end{aligned}
$$

We get

$$
P D=\frac{1}{3} P C=\frac{1}{3}(P D+D C) .
$$

It implies that $P D=\frac{1}{2} D C=\frac{1}{2} C B=B M$.
Therefore, $\triangle A B M=\triangle A D P$ (c.g.c).
We have

$$
\begin{aligned}
A P & =A M, \\
\overline{P A M} & =\widehat{P A D}+\widehat{D A M} \\
& =\widehat{M A B}+\widehat{D A M}
\end{aligned}
$$

$$
=\widehat{D A B}=90^{\circ} .
$$

From that, we get $\triangle P A M$ is a right triangle at A.
On the other hand, assuming a square of the length $6 a, a>0$. Then,

$$
\begin{gathered}
P D=B M=C M=3 a \\
C N=2 \cdot D N=4 a
\end{gathered}
$$

Applying the Pythagorean theorem to Δ $N M C$, we get:
$M N=\sqrt{(3 a)^{2}+(4 a)^{2}}=5 a=P D+D N=P N$.
So, $\triangle A D N=\triangle A M N$.
Therefore, $A H$ is the bisector of the angle $\widehat{P A M}$.
Since $\triangle A P M$ is an isosceles right triangle at A, so

$$
A H \perp P M, P H=\frac{1}{2} P M=H M .
$$

Therefore, $\triangle H A M$ is an isosceles right triangle.
By experimenting and discussing with teachers on forums, some more elementary solutions were collected
2.2.6. Discovering the fourth elementary solution by using the Thales' theorem

Figure 5
Let E be a point on the line segment $C B$ such that $C E=D N$. Let I be the intersection point of line ($A N$) and line ($D E$).

We have:

$$
\frac{N H}{H A}=\frac{D H}{H B}=\frac{D N}{A B}=\frac{1}{3} .
$$

It is inferred that

$$
\frac{A H}{A N}=\frac{A H}{A H+H N}=\frac{3}{4} .
$$

On the other hand, we have

$$
\frac{B M}{B E}=\frac{B C}{2}: \frac{2 B C}{3}=\frac{3}{4} .
$$

Therefore,

$$
\frac{H M}{D E}=\frac{3}{4} .
$$

Since $\triangle A D N=\triangle D C E$, we get $\triangle H A M$ is a right triangle.

So $\triangle H A M$ is an isosceles right triangle.
2.2.7. Discovering the fifth elementary solution using properties of orthocenter and parallelogram

Let O be the midpoint of $B D$ and E the midpoint of $A O$, using the above results, we get $E H$ the midsegment of $\triangle D A O$. It follows that E is the orthocenter of $\triangle H A B$.

From there $B E \perp A H$.
On the other hand, the quadrilateral $H E B M$ has sides $H E$ and $M B$ that are parallel and equal (parallel and equal to $A D$).

It implies that
$H M \| E B$ and $H M=E B$.
Therefore, $H M \perp A H$. and
It implies that

$$
A H=E B=H M .
$$

So $\triangle H A M$ is an isosceles right triangle.

Figure 6
2.2.8. Discovering the sixth elementary solution using properties of the incircle

Let E be the midpoint of $A D$, using the above results, we get $E H$ to be a midsegment of $\triangle D A O$. It infers that five points A, B, M, H and E are
concyclic. They lie on a common circle with a diameter $A M$.

It derives that $\widehat{A H M}=90^{\circ}$ and

$$
\widehat{H M A}=\widehat{H B A}=45^{\circ} .
$$

Therefore, $\triangle H A M$ is right at H.

Figure 7

3. Conclusion

The article has proposed a technique for applying the Euclidan geometry in teaching. That is attaching the coordinate system to the geometry problem, solving the problem by the coordinate method, and exploiting the coordi-nates in the solution to find the key points and auxiliary lines. Thereby, the solution for the original problem can be discorved.

At the same time, the article also shows that this method can be combined with other methods. In particular, if we accumulate many elementary results, and apply the classical theorems, the solution can be profound.

This article mainly focuses on the technique of finding elementary solutions by using the Euclidean geometry results. In the process of teaching, teachers should combine the technique with mathematical softwares, encourage students to observe figures at multiple perspectives to detect hidden properties in the problem. Moreover, teachers should encourage students to draw accurate shapes, use rulers and compasses to predict geometric properties in the problem. Accordingly, students will find more solutions, better exploit the problem, and develop geometric thinking.

References

Hsiung, L. (2005). Geometric Linear Algebra. World Scentific.
Igor, R. S., and Alexey O. R. (2013). Linear Algebra and Geometry. Springer.
Lê Quốc Hán, Đinh Quang Minh và Lê Thị Ngọc Thúy. (2016). Nhũng con đuờng sáng tạo trong giải toán hình học, Hà Nội: NXB Giáo dục.
Phạm Bảo. (2018). Năm cách giải cho một bài toán hình học. Tạp chí Toán học và Tuổi trẻ, 8, 8-12.
Riyadi, S., and Siswanto R. (2021). Analysis of students' problem-solving ability in solving geometry problem. Journal of Physics, 1918, 1-12. doi:10.1088/1742-6596/1918/4/042075.

Toh, P. C., Ho W. K., Leong, Y. H., Tay, E. G., and Tong, C. L. (2020). Four solutions of a geometry problem. The Mathematician Educator, 1(2), 75-82.
Ya. S. B., and Smliga. M.N. (1982). Fundamental of linear algebra and analytic geometry, Mir Pub. Moscow.

