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Abstract

Synchronization is a ubiquitous feature in many natural systems and nonlinear science. This
paper studies the synchronization in a complete network consisting of n nodes. Each node is
connected to all other nodes by nonlinear coupling and represented by an ordinary differential
system of FitzZHugh-Nagumo type (FHN) which can be obtained by simplifying the famous
Hodgkin-Huxley model. From this complete network, a sufficient condition on the coupling
strength is identified to achieve the synchronization. The result shows that the networks with
bigger in-degrees of the nodes synchronize more easily. The paper also shows this theoretical
result numerically and see that there is a compromise.

Keywords: Coupling strength, complete network, FitzZHugh-Nagumo model, nonlinear
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Tém tat
Sw cong huong la mot tinh nang phé bién trong nhiéu hé thong tw nhién va khoa hoc phi
tuyén. Bai bdo nay nghién ciru ve sy cong huwong trong mang ludi day du bao gom n nut. Trong
dé, méi mit dwoe lién két véi tat ca cac nit khdc bang lién két phi tuyén tinh va méi nit sé dwoc
gidi thiéu bang mot hé phuwong trinh vi phan dang FitzHugh-Nagumo (FHN), ddy la mot mé hinh
don gian hoa ttr mé hinh noi tzeng Hodgkin-Huxley. Tir mang lwoi day di nay, ching toi tim diéu
kién dii cho dg manh lién két dé c6 dwoc sw cong hwong. Két qua cho thdy rang mang lwdi co cdc
mit ma lién két dau vao cang lon thi cong huwong cang dé. Bai bdo con dwa ra két qua kiém tra
phirong phdp 1y thuyét nay bang phwong phép sé va xét sy twong quan ciia hai phirong phap.

Tur khoa: Do manh lién két, mang luéi day du, mé hinh FitzHugh-Nagumo, lién két phi
tuyen, su cong huong.
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1. Introduction

Synchronization is a ubiquitous feature in
many natural systems and nonlinear science.
The word "synchronization" is of Greek origin,
with syn as “common” and chronous as “time”,
which means having the same behavior at the
same time. Therefore, the synchronization of
two dynamical systems usually means that one
system copies the movement of the other.
When the behaviors of many systems are
synchronized, these systems are called
synchronous. Studies by Aziz-Alaoui (2006)
and Corson (2009) suggested that a
phenomenon of synchronization may appear in
a network of many weakly coupled oscillators.
A Dbroad variety of applications have emerged
to increase the power of lasers, synchronize the
output of electric circuits, control oscillations
in chemical reactions or encode -electronic
messages  for  secure  communications
(Pikovsky et al., 2001; Aziz-Alaoui, 2006).

Synchronization has been extensively
studied in many fields and many natural
phenomena reflect the synchronization such as
the movement of birds forming the cloud, the
movement of fishes in the lake, the movement
of the parade, the reception and transmission of
a group of cells (Hodgkin and Huxley, 1952;
Murray, 2002; Izhikevich, 2005; Aziz-Alaoui,
2006; Ermentrout and Terman, 2009).
Therefore, the study of the synchronization in
the network of cells is very necessary. In order
to make the study easier, a complete network
of n neurons interconnected together with
non-linear coupling is investigated and the
sufficient condition on the coupling strength is
sought to achieve the synchronization. Each
neuron is represented by a dynamical system
named FitzHugh-Nagumo model. It was
introduced as a dimensional reduction of the
well-known Hodgkin-Huxley model (Hodgkin,
1952; Nagumo, 1962; Murray, 2002;
Izhikevich, 2007; Ermentrout, 2009; Keener,
2009). It is more analytically tractable and
maintains some biophysical meaning. The
model is constituted a common form of two

4

equations in the two variables uandv. The
first variable is the fast one called excitatory
representing the transmembrane voltage. The
second one is the slow recovery variable
describing the time dependence of several
physical quantities, such as electrical
conductivity of ion currents across the
membrane. The FitzHugh-Nagumo equations
(FHN) are given by:
du

—=f(u)-v
O

dv
—t:au—bv+c

1)

where a,b and c are constants (a and b
are positive), 0<e<1,t>0 and

f(u)=—u®+3u.

The system (1) is considered as a neural
model and from this, a network of n coupled
systems (1) based on FHN type is constructed
as follows:

su, = f(u)-v _h(ui,uj)
v, =au, —bv, +c (2)
Lj=L..,ni=]j

where (u;,v;),i=12,...,nis defined by (1).

The function h is the coupling function
that determines the type of connection between
neurons u; and u;. Connections between

neurons are essentially of two types: chemical
connection and electical connection, where
chemical connection is more abundant than
electrical one. If the connections are made by
chemical synapse, the coupling is non-linear
and given by the function:

h(u,v,) =y, _Vsyn)gsynzcijr(uj)’
-1

i=12,..n.

The Iy
coupling strength. The coefficients c; are the
elements of the connectivity  matrix

@)

parameter represents  the
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C, =(Cy)pn» defined by: ¢; =1 if u; and u,
are coupled, c¢;=0 if u and u;are not
coupled, where i, j=1,2,...,n,i # |.

The function T
threshold function:

is a non-linear

C(u)) = L , 1=12,...,n.
1+exp(-A(u; —6,,))
The parameters have the following

physiological meanings:

* V,, is the reversal potential and must be
larger than u,, for all i=12,..n,t>0 since
synapses are supposed excitatory.

e 4. is the threshold reached by every

syn

action potential for a neuron.

* 1 is a positive number (Belykh et al.,
2005; Corson, 2009). The bigger A is, the
better we approach the Heaviside function.

In recent years, there are a lot of studies
on the synchronization (Ambrosio and Aziz-
Alaoui, 2012; Ambrosio and Aziz-Alaoui,
2013; Corson, 2009); however, they are just
studied for the linear coupling, while the

connections between neurons made by
chemical synapse is major in neural
networks. It means that the coupling is

nonlinear. Therefore, it is really useful to
conduct research on this problem. In other
words, we are interested in the rapid
chemical excitatory synapses, so the
parameters are fixed as follows throughout
this paper, based on previous reports (Belykh
et al., 2005; Corson, 2009).

A=10,V,, =2, 6,, =—0,25.

syn
2. Synchronization of a complete network

In this paper, the synchronization is
investigated in a complete network, i.e. each
node connects to all other nodes of the
network (Ambrosio and Aziz-Alaoui, 2012;
Ambrosio and Aziz-Alaoui, 2013). For
example, Figure 1 shows the complete

graphs from 3 to 10 nodes. Each node
represents a neuron modeled by a dynamical
system of FHN type and each edge represents
a synaptic connection modeled by a
nonlinear coupling function. A network of n
"neurons™ (1) bi-directionally coupled by the
chemical synapses, based on FHN, is given
as follows:

n . _V
eu, = f(u)-v, - z 9, (U syn)
i LHexp(=A(u, - 6,,))
Vi =au —bv;+c (4)

i=12,...n,

where a,b and ¢ are constants (a and b are
positive), 0<e<1,t>0 and f(u)=-u®+3u,
g, Is the coupling strength between u; and u; .

Definition 1 (Aziz-Alaoui, 2006). Let
S, =(u;,v,), i=12,..,n and S=(S,S,,...,S,)
be a network. We say that S is synchronous if
lim

t—+o0

u; — =0 and lim

t—-+o0

v, —v|=0,

L j=12,..,n.
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Figure 1. Complete graphs from 3 to 10 nodes.
In this study, each node represents a neuron
modeled by a dynamical system of FHN type

and each edge represents a synaptic connection

modeled by a nonlinear coupling function

Theorem 1. Let
N =inf {u,(t),i=12,..,n,t>0}

and suppose that
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M| 1+exp(—A(N -
. [ 1+exp(-=A( woﬂ -
n-1
3 £k
where M = sup wak‘l, Bis a

ueB,xeR =1 kl
compact interval including u and f®(u) is

the kth derivative of f with respect to u. Then
the network (4) synchronizes in the sense of
Definition 1.

Remark 1. The existence of B was proved
in Ambrosio et al. (2018). Since the variables
u(t), v(t) of FHN are bounded (Ambrosio,

2009), N =inf {u,(t),i=12,...,n,t >0} exists.
Proof. Let

O(t) = %{Zn:(ag(ui —u,)? + (v, —vl)z)}.

By deriving the function ®(t) with
respect to t, we have:

% - i[ag(ui —uy) (U —
n (v =)V V)]
Z[a(u u)(f(u)-v -

d, (U _Vsyn)
ke 1+ exp(=A(u, -

4 9, (U —Vy,)
= 1+exp(-A(u, — Syn))

(V Vl)(a(u )_b(Vi _Vl)):|
Z[a(u 1) f (u ) f(ul) -

- gn(ui _Vsyn)
Kikei L+ EXp(=A(u, —

s g (u _Vsyn)
Zl

Uy,) +

—fu)+v, +

M:

syn ))

>

syn ))

M»] b(v, ~v,)? ]

uy) (F(u) = f () -

1+exp(=A(u, —

[a(ui -

. Gn (Ui —Uy)
klz=t|1+exp( j'(u syn))

: 1

g, (ul _Vsyn) (Z

= 1+exp(—A(u, — Syn))

n 1 2
k—%:;:il‘FeXp(_ﬁ(uk syn))} Pl ]

<3 [a ) (1)~ ) -

: gn(ui - )
ke L+ exp(=A(u, -

syn ))

1
1+ eXp(—ﬂ(Ui - syn ))

L j b(v, —vl)z}
1+ eXp(—ﬂ,(Ul syn ))

Since we are interested in the rapid
chemical excitatory synapses,
U, <V, Vt=20=u, -V, <0,vt>0.

syn?

Note that :
- If u, > u,, then

+0, (ul _Vsyn)L

u,—u,>0=g,U,—u), - Syn) <0,

and
1 1
1+ exp(_ﬁ“(ui syn )) 1+ eXp( ﬂ“(u syn ))
Thus
0, (U, —U) (U —V,.) .
n\™i 1 1 syn 1+ exp(—/l(ui Syn ))

1
1+ eXp(—ﬂ(Ul syn ))

- If u; <u, then
Ui—Ul<0:>gn(Ui—Ul)(U syn)>O
and
1 1
1+ exp(_ﬂ“(ui syn )) l+ eXp( ﬂ“(u syn ))
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Thus

0, (U, — u,)(u, —vsyn)( L

1+exp(—A(u, —

syn ))

1
1+ eXp(—/fi(Ul syn ))J

It means that in any cases, there is always
the inequality:

0, (U, — uy)(u, —vsyn)( L

1+exp(—A(u, —

syn ))

! <0
1+ eXp(—ﬂ(Ul syn )) .
Therefore,

dqd)t(t) <Z{a(u —u,)? (f (U1)+Z

i=2

(Ul)

(U -u)*

k%uexp( AU, - esyn»] b‘“‘“]

a(u, —u,)’ 9n
k lk¢| l+ eXp( ﬂ“(uk gsyn))

b(v; —v,)* |-
M| 1+exp(—A(N —
Since g, > [ +exp(-A( sy”))] , then
n-1
\ g
M _ n
k_lgsti 1+ exp(—l(uk syn ))
_ (n_l)gn
1+ exp(—l(N syn ))

Finally, there is always another constant
£ >0, such that

do(t)
dt

< —fD(t) = d(t) < D(0)e™”
where
(n _l)gn

2
p= [ L+exp( “HN—-0,)) M}’Zb}

Thus, there is the synchronization if the
coupling strength is verified (5).

3. Numerical simulations

This research focuses on the minimal values
of coupling strength g, to observe a phenomenon
of synchronization between n subsystems
modeling the function of neuron network.

In the following, the paper shows the
numerical results obtained by integrating the
system (4) where n=2, f (u) =-u®+3u, with
the following parameter values:
a=1b=0.00Lc=0;6=0.521=10;V,,, =2;

6, =-0.25. The integration of system is

syn
realized by using C++ and the results are
represented by Gnuplot.

Figure 2 illustrates the synchronization of
the complete network of 2 neurons. The
simulations show that the system synchronizes
from the value g, =1.4. In the figures (a), (b),

(¢), (d), we represent the phase portrait
(u,u,). It is observed (figure (d)) that for

means the

that

g,=14,u ~u,,it
synchronization occurs.
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Figure 2. Synchronization of a complete network
of two nonlinearly coupled neurons in the phase

portrait (u1 uz). The synchronization occurs for
g, =1.4. Before synchronization, for g, =0.0001,

the figure (a) represents the temporal dynamic
of u, with respect to u,; the figure (b) represents

the temporal dynamic of u, with respect to u,
for g, =0.01; the figure (c) represents the
temporal dynamic of u, with respect to u, for
g, =0.5. Figure (d), for g, =1.4, the
synchronization occurs since u, ~ u,
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From the above result, in the case of two
nonlinearly coupled neurons, for the coupling
strength over or equal to g,=14 these

neurons have a synchronous behavior (Figure
2d). By doing similarly for the complete
networks of nonlinearly identical coupled
neurons, the values of coupling strength
according to the number of neurons n are
reported in Table 1.

Table 1. The minimal coupling strength
necessary to observe the synchronization of n
nonlinearly coupled neurons

n 2 3 4 5
d, 1.4 0.933 0.7 0.56
n 6 7 8 9 10
J, 0.467 0.4 0.35 0.311 0.28
n 11 12 13 14 15
d, 0.255 0.233 0.215 0.2 0.187
n 16 17 18 19 20
d, 0.175 0.165 0.156 0.147 0.14
n 21 22 23 24 25
d, 0.133  0.127 0.122 0.117 0.112
n 26 27 28 29 30
d, 0.108 0.104 0.1 0.097 0.093
n 31 32 33 34 35
d, 0.09 0.088 0.085 0.082 0.08
n 36 37 38 39 40
J, 0.079  0.076 0.074 0.072 0.07

Following these numerical experiments, it
IS easy to see that the coupling strength
required for observing the synchronization of n
neurons depends on the number of neurons.
Indeed, the blue points in Figure 3 represent
the coupling strength of synchronization
according to the number of neurons in
complete network from Table 1, and we can
find a function depending on the number of
neurons represented by the red curve given by
the following equation:

29,
=22 6
g, =% (6)
where n is the number of neurons in the
network and g, is the coupling strength

necessary to get the synchronization of 2
coupled complete network. Therefore, the
coupling strength necessary to obtain the
synchronization in the complete network
decreases while the number of neurons
increases following the law (6).

14—+

Coupling strength
R B e =

]
(%]

U 1 1 1
0 10 20 30 40

Il

Figure 3. The evolution of the coupling strength
for which the synchronization of neurons takes
place according to the number nonlinearly
coupled neurons in complete network and it

29,
n-1

follows the law ¢, =

4. Conclusion

This study gave the sufficient condition on
the coupling strength to achieve the
synchronization in a complete network of n
coupled dynamical systems of Fitzhugh-Nagumo
type. Theorem 1 shows that the bigger the value
of n is, the smaller theg,is. Numerically, it

displays that the synchronization is stable when
the coupling strength exceeded to certain
threshold and depends on the number of
"neurons™ in graphs. The bigger the number of
"neurons™ is, the easier the phenomenon of
synchronization will be obtained. Then, a
compromise between the theoretical and
numerical results can be reached. In addition, it is
necessary to conduct further studies on the
different synchronization regimes in free
networks coupled by chemical synapse.
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