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Abstract

In this paper, we calculate the 7 -radical and 7 —radical of the Leavitt path algebras with

coefficients in a commutative semiring of some finite graphs. In particular, we calculate -
radical and ;j —radical of the Leavitt path algebras with coefficients in a field of acyclic graphs,

no-exit graphs and give applicable examples.
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CAC KIEU CAN JACOBSON CUA CAC PAI SO PUONG DI LEAVITT
VOI HE SO TRONG NUA VANH CO PON VI GIAO HOAN
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Tom tat
Trong bai viéet nay, chung toi tinh J—can va J —can cua dai so dwong di Leavitt voi hé so

trén mot niea vanh co don vi giao hoan cua mot so dang do thi hitu han. Trong truwong hop ddc
biét, chung t6i tinh J —can va J —can cua dai so dwong di Leavitt voi hé so trén mot truong cua

16p cdc do thi khéng chu trinh, 16p cdc do thi khdng cé 16i ré va cho cdc vi du dp dung.
Tir khéa: Do thi khong chu trinh, J —can cia nika vanh, J —can cua nvra vanh, dai 6 dwong
di Leavitt, @6 thi khong c6 16i ré.
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1. Introduction

Bourne (1951) defined the J —radical of a
hemiring based on left (right) semiregular ideals
and, subsequently, lizuka (1959) proved that
this radical can be determined via irreducible
semimodules. Katsov and Nam (2014) defined

the J —radical for hemirings using simple
semimodules and obtained some results on the
structure of additively idempotent hemirings
through this radical. Recently, Mai and Tuyen
(2017) have used the concepts of J —radical

and J —radical of hemiring to study the
structure of some hemirings. The concepts and
results related to J —radical and J —radical

of hemirings can be found in Bourne (1951),
lizuka (1959), Katsov and Nam (2014), Mai and
Tuyen (2017).

Given a (row-finite) directed graph E and
a field K, Abrams and Pino (2005) introduced
the Leavitt path algebra L, (E). These Leavitt
path algebras are a generalization of the
Leavitt algebras L, (Ln) of Leavitt (1962).
Tomforde (2011) presented a straightforward
generalization of the constructions of the
Leavitt path algebras L;(E) with coefficients
in a unita commutative ring R and studied
some fundamental properties of those algebras.
Katsov et al. (2017) continued to generalize
the Leavitt path algebras Li;(E) with
coefficients in a commutative semiring R and
studied some  fundamental  properties,
especially, they studied its ideal-simpleness
and congruence-simpleness. The concepts and
results relating to the Leavitt path algebras
L. (E) of the graph E with K is a field, unita
commutative ring or commutative semiring
can be found in Abrams and Pino (2005),
Tomforde (2011), Katsov et al. (2017),
Abrams (2015), Nam and Phuc (2019).

In this paper, we study the J — radical and
the J —radical for the Leavitt path algebras

L (E) of directed graphs E with coefficients

in a commutative semiring R. Specifically, we
calculate the J —radical and the J, —radical for

the Leavitt path algebras Li(E) with

coefficients in a commutative semiring R of
some finite directed graphs E. In particular, we
calculate the J —radical and the J —radical for

the Leavitt path algebras L.(E) with
coefficients in a field K of acyclic graphs, no-
exit graphs and applicable examples.

We will present the main results in
Section 4. In Sections 2 and 3, we will briefly
present the necessary preparation knowledge in
this article.

2. J —radical and J, — radical of semirings

In this section, we survey some concepts
and results from previous works (Golan, 1999;
lizuka, 1959; Katsov and Nam, 2014; Mai and
Tuyen, 2017) and use them in the main section
of this article. First, we recall the J —radical

and the J_ —radical concepts of hemirings.

A hemiring R is an algebra (R, +,.,0) such
that the following conditions are satisfied:

(@ (R,+,.,0) is a commutative monoid
with identity element O;

(b) (R,.) is asemigroup;

(c) Multiplication distributes over addition
on either side;

(d) r0=0=0r forall reR.

A hemiring R is called a semiring if its
multiplicative semigroup (R,.,1) is a monoid
with identity element 1.

Note that, if R is a ring then, it is also a
hemiring; otherwise, it is not true.

A left R—semimodule M over a
commutative hemiring R is a commutative
monoid (M,+,0,,) together with a scalar
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multiplication (r,m)+— rm from RxM to M
which satisfies the identities: for all rr'c R
and m,m'e M :

@ r(m+m')=rm+rm';
®) (r+rYm=rm-+r'm;
© (rr"Ym = r(r'm);

(d) r0,, =0,, = Om.

If R is a semiring with identity element
10 and Im =m forall meM then M is
called unita left R —semimodule.

An R-—algebra A over a commutative
semiring R is a R—semimodule A with an
associative bilinear R — semimodule
multiplication “.” on A. An R—algebra A is

unital if (A,.) is actually a monoid with a
neutral element 1, € A, ie, al,=1l,a=a
for all a e A For example, every hemiring is
an N —algebra, where N is the commutative
semiring of non-negative integers.

Let R be a commutative semiring and
{xliel} be a set of independent, non-
commuting indeterminates. Then, R(x, |ie )
will denote the free R —algebra generated by
the indeterminates {X |i e}, whose elements
are polynomials in the non-commuting
variables {x |iel} with coefficients from R

that commute with each variable {x |i1}.

lizuka (1959) used a class of irreducible
left semimodule to characterize the J —radical
of hemirings. A nonzero cancellative left
semimodule M over a hemiring R is
irreducible if for an arbitrarily fixed pair of

elements w,u' € M with uw=u' and any
m € M, there exist a,a' € R such that

m-+au-+a'uv'=au'+a'wu.
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Theorem 2.1. [lizuka (1959), Theorem 8].
Let r be a hemiring. Then, J —radical of
hemiring R is
JR)={(0: M)| M €S},
where (0: M)={re R|rM =0} is a ideal of
R and & is the class of all irreducible left
R — semimodules.

When S =¢, J(R)=R by convention.
The hemiring R is said to be J —semisimple if
J(R) =0.

Katsov and Nam (2014) used a class of
simple left R —semimodules to define the ; —

radical of hemirings. A left R —semimodule
M is simple if the following conditions
are satisfied:

@ RM =0

by M
subsemimodules;

has only two trivial

(c) M has only two trivial congruences.

Let R be a hemiring, subtractive ideal
J(R)=n{(0: M)| M €S'} is called J —radical
of hemiring R, where ' is a class of all
simple left R-semimodules.

When Q'=¢, J(R)=R by convention.
The hemiring R is said to be J —semisimple if
J(R)=0.

Remark 2.2. If R is a hemiring and is
not a ring, then generally J(Rr) = J (R) and if R

is a ring then J(rR)=J (R), it is called the

Jacobson radical in ring theory. In particular,
if K isafieldthen Jj(K)=J (K)=0.

s

Theorem 2.3. [Katsov and Nam (2014),
Corollary 5.11]. For all matrix hemirings
M (R),n >1, over a hemiring R, the following

n

equations hold:
(@) J(M, (R) = M, (J(R));

n
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(b) J,(M,(R)) = M, (J (R)).

s

Theorem 2.4. [Mai and Tuyen (2017),
Corollary 1]. Let R be a hemiring and R, R,

be its subhemirings. If R=R @R, then
JR)=J(R)@I(R,) and J,(R)=J,(R) @I, (R,).

3. The Leavitt path algebras

In this section, we survey some concepts
and results from previous works (Abrams &
Pino, 2005; Katsov et al., 2017; Abrams,
2015), and use them in the main section of this
article. First, we recall the Leavitt path
algebras having coefficients in an arbitrary
commutative semiring.

A (directed) E=(E%E.s,1)

consists of two disjoint sets E° and E'-
vertices and edges, respectively - and two

maps r,s:E' - E°. If ecE', then s(e) and

graph

r(e) are called the source and range of e,
respectively. The graph E is finite if
|E°| <+ and |E*|<+0. A vertex veE® for
which s™(v) is empty is called a sink; and a
vertex veE® is regular if 0<|s™(v)| <. In
this article, we consider only finite graphs.

A path p=ee,..e, ina graph E is a
sequence of edges e,e,,...e, € E' such that
r(e)=s(e,) for i=12,..,n-1. In this case,
we say that the path p starts at the vertex
s(p)=s(e,) and ends at the vertex
r(e,)=r(p), and has length |p|=n. We
consider the vertices in E° to be paths of
length 0. If s(p)=r(p), then p is a closed
path based at v=s(p)=r(p). If c=¢€ge,...e, is

a closed path of positive length and all vertices
s(e,),s(e,),....s(e,) are distinct, then the path ¢

is called a cycle. An edge f is an exit for a

path p=ee,..e, if s(f)=s(e) but f =g
for some 1<i<n.

A graph E is acyclic if it has no cycles.
A graph E is said to be a no-exit graph if no
cycle in E has an exit.

Remark 3.1. If Eis a finite acyclic
graph, then it is a no-exit graph, and the
converse is not true in general.

Definition 3.2 [Katsov et al. (2017),
Definition 2.1]. Let E=(E° E',s,r) be a graph
and R be a commutative semiring. The Leavitt
path algebra L.(E) of the graph E with

coefficients in R is the R—algebra presented
by the set of generators E° UE" U(E')" —where

E' >(E"),er—e’, is a bijection with
E°, E',(E")" pairwise disjoint, satisfying the
following relations:

1 w=o, W (o0
symbol) for all v,we E°;

is the Kronecker

(2) s(e)e=e=er(e) and r(e)e" =e" =e"s(e)
forall e E';

(3) e'f=5,,r(e) forall e, f eE;

4 v= ) e whenever veE® is
eesH(v)

a regular.

The following are two structural theorems
of the Leavitt path algebras over any field K
of acyclic graphs, no-exit graphs and
applicable examples.

Theorem 3.3 [Abrams (2015), Theorem
9]. Let E be a finite acyclic graph and K any
field. Let W,...,W, denote the sinks of E (at
least one sink must exist in any finite acyclic
graph). For each W,, let n; denote the number
of elements of path in E having range vertex
W, (this includes W; itself, as a path of length
0). Then
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L (E) = M, (K).

Example 3.4. Let K be a field and E a
finite acyclic graph has form

’ e
vy
¢ <0, — 0,

Figure 1
E has two sinks {V;,V,}, Vv, has two paths
{v,,e} having range vertex v, and Vv, has two
paths {v,, f} having range vertex v,. From
Theorem 3.3, we have

L (E) =M, (K)®M,(K).

Theorem 3.5 [Nam and Phuc (2019),
Corollary 2.12]. Let K be a field, E a finite
no-exit graph, {c,,....¢;} the set of cycles, and
{v,,... v } the set of sinks. Then

L ()= (@M, 1K) @ (&M, o (KTxx D),

m;+1

where for each 1<i<k, m, is the number of
path ending in the sink v;, for each 1< j<I,
n, is the number of path ending in a fixed
(although arbitrary) vertex of the cycle c,
which do not contain the cycle itself and
K[x,x*] Laurent polynomials algebra over
field K.

Example 3.6. Let K be a field and E a
finite no-exit graph has form

=0

¥l — = ey

Figure 2
E has only one cycle &,, no sink and one path

e, other cycle €, having range vertex V,.
From Theorem 3.5 deduced

L (E) = M, (K[x, x]).

Remark 3.7. From Remark 3.1, Theorem
3.3 isa corollary of Theorem 3.5.
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4. Main results

In this section, we calculate the J —
radical and the J —radical for the Leavitt path

algebras L;(E) with coefficients in a

commutative semiring R of some finite
directed graphs E. In particular, we calculate

the J —radical and the Js—radical for the

Leavitt path algebras L, (E) with coefficients

in a field K of acyclic graphs, no-exit graphs
and applicable examples.

Proposition 4.1. Let R be a commutative
semiring and E =(E°,E',s,r) a graph has form

o' ) e

Figure 3
i.e., E°={v} and E' ={e}. Then

J(L (E)) = J(R[X,x']) va

Js(Le (E)) = I, (RIX, x']),
where R[x,x'] is a Laurent polynomials
algebra over semiring R.

Proof. It is well known that
L.(E)=R(v.ee’) is a Leavitt path algebra
generated by set {v,e,e’} and Laurent
polynomials algebra R[x,x] generated by
set {X, X '}. Consider the map

f 1Ly (E) = R[x,x ]

determined by f(v)=1, f(e)=x and
f(e")=x". Then, it is easy to check that f is
an algebraic isomorphism, i.e.,

L (E) = R[x, x'],
the proof is completed. m

Proposition 4.2. Let R be a commutative
semiring and E = (E°,E%,s,r) a graph has form
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Figure 4
ie, E°={v} and E'={e,...e} with n>1.
Then

J(Le(E)) = J(L;,(R)) and
J5(Le (B)) = I, (L, (R)),

where L, (R) is a Leavitt algrbra type (1n).

Proof. It is well known that
L.(E)=R(V.e,..€,.€...;) is a Leavitt path

algebra generated by set {v,el,...,en,ej ..... e;}
L (R) = R{X, s Xy, Yar-oss i )

XYy, =06; and %xiyizl for 1<i,j<n, is a

and

Leavitt algebra type (1,n). Consider the map
fr:(E) > L,.(R)

Determined by f(v)=1, f(g)=x and
f(e) =y, for each 1<i<n. Then, it is easy to
check that f is an algebraic isomorphism, i.e.,
L. (E) =L, ,(R), the proof is completed. m

Proposition 4.3. Let R be a commutative
semiring and E =(E° E*,s,r) agraph has form

\ €] . €2 €n—1 )
.L'] .LZ e s .Uu—l —_— .L'n

Figure 5

ie., E°={v,.,v,} and E'={e,..,e,_,} with
n>2. Then

(L (E)=M,((R) Va J,(Lg(E) =M, (I, (R)).

where M _(R) is a matrix algebra over
semiring R.
Proof. It IS well-known that

Le(B) =R(VyeisV, 81,0008y 1,6, €y ) IS @

Leavitt path algebra generated by set
SV VA S PO g - e

M,(R)=R(E, ; |1<i,j<n),
is a matrix algebra generated by set
{E;li<i,j<n}, where E are the standard
elementary matrices in the matrix semiring
M, (R). Consider the map
f:L,(E)>M,(R)

determined by f(v)=E,, f(e)=E and
f(e))=E,,, for each 1<i<n. Then, it is easy to
check that f is an algebraic isomorphism, i.e.,
L. (E)=M, (R). Thence inferred
J(L(EN=IM,(R) and I (L (E))=J,(M,(R)).
From Theorem 2.3, the proof is completed. o

i+l

Proposition 4.4. Let R be a commutative
semiring and E =(E° E*,s,r) agraph has form

o2 o'
e
I!. =
U |

Figure 6

.u.‘

ie., E°={vw,...,w _} and E'={e,...e ,} with
n>2. Then J(L(E)) =M, (J(R)) and
J.(L,(E))=M, (J,(R)), where M_(R) is a matrix
algebra over semiring R.

Proof. It is  well-known that
LR(E)zR<v,w1,...,wn71,e1,...,enfl,ef,...,e:71> is
a Leavitt path algebra generated by set

{v,vvl,...,wnfl,el,...,enfl,ef,...,e:fl}. Consider
the map

f:L(E) > M, (R)
determined by f(V)=E,, fW)=E, ..,
fe)=E, and f(g)=E, for each

1<i<n-1. Then, it is easy to check that f is
an algebraic isomorphism, i.e., Ly(E)=M,(R).
Thence it infers
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J(L(E) =I(M,(R)) and J,(Lg(E)) = J,(M, (R)).
From Theorem 2.3, the proof is completed. ©

Corollary 4.5. Let R be a commutative
semiring and E = (E° E',s,r) a graph has form
Figure 5 or Figure 6. Then

(@) If R=N then J(L,(E))=J,(L,(E))=0,
where N is the commutative semiring of non-
negative integers.

(b) If R be a unita commutative ring, then
J(Ly(E)) =J, (L, (E)) =M (J(R)), where J(R) is
a Jacobson radical of ring R.

o0 If K is a
J(L (B)) = J, (L« (E)) = 0.

Proof. (a) According to Lemma 5.10 of
Katsov and Nam (2014), J(N) = J,(N) =0.

field, then

(b) Since R isaring, J(R)=J,(R).
(c) Since K is a field,
J(K)=J,(K)=0.

From Proposition 4.3 or Proposition 4.4,
the proof is completed. O

Theorem 4.6. LetK be an any field, E a
finite no-exit graph, {c,,...,¢,} the set of cycles,
and {v,,...,v, } the set of sinks. Then

(8) (L (E)=8M, JO(KIx X D),

() 3.(L () = &M, .3, (KDxx D)

where for each 1< j<I, n; is the number of

path ending in a fixed (although arbitrary)
vertex of the cycle ¢; which do not contain the

cycle itself and K[x,x™*] Laurent polynomial
algebra over field K.

Proof. From Theorem 3.5, we have
L (BE)= (i@leiﬂ(K)) ®(§§1Mn,.+1(K[X, x1),

where {c,,...,c,} the set of cycles, and {v,,...,v,.}
the set of sinks for each 1<i<k, m; is of path
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ending in the sink v,, for each 1<j<I, n, is

the number of path ending in a fixed (although
arbitrary) vertex of the cycle ¢; which do not

contain the cycle itself.
From Theorem 2.4, we have

I (E = @IM,, L (KNS (S IM, (KIx x D)),

3. (L (E) = (83, (M, s (K))& (& 3,(M, L (KIx D)),
From Theorem 2.3, we have

L (E) =@M, KNS @M, ,(O(KIx D))

3.4 (E) = @M 1. (KD @ (@M, (. (KIx X D)),

From K is a field and Remark 2.2, we have
J(K)=J,(K) =0, the proof is completed. O

Example 4.7. (a) Let K be fieldand E a
graph has form Figure 3. Since graph E in
Figure 3 is no-exit, there exists only one cycle
e, no sink and not path other cycle e having
ending in vertex v. From Theorem 4.6, we

have J(L,(E))=J(K[x x']) and
J, (L (E)) = I, (KX, x']).

This result is also the result in Proposition
4.1 when the commutative semiring R is a field.

(b) Let K be a field and E a graph has
form Figure 4. Since graph E in Figure 4 is no-
exit, there is n cycles €; foreach 1< j<n, no
sink and for each 1<j<n, has n-1 paths
other cycle e; having ending vertex Vv in cycle

g From Theorem 4.6, we have

I(L (E) =M, (J(K[x,x"]) ®...&M, (J(K[x,x])),
3, (L (B)) =M, (3, (K[x, x 1) ©...& M, (J,(K[x, x ),
the directed sum of the right hand side has n
terms. This result is also the result in

Proposition 4.2 when the commutative
semiring R is a field, because

L. (K) =M, (K[x,x ) @..&M, (K[X,x]).

(c) Let K be a field and E be a no-exit
graph has form Figure 2. From Theorem 4.6,
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we have J(L(E)=M,(J(K[x,x']) and
s (L (B)) = M, (3, (KX, x 1))

Corollary 4.8. Let K be a any field, E a
finite no-cycle graph and {v,..,v.} the set of
sinks. Then

J(L (E)) = 3, (L (E)) =0.

Proof. It immediately follows from

Theorem 4.6. i

Remark 4.9. We can use Theorem 3.3 to
proof Corollary 4.8. Especially, from Theorem
3.3 we have

L (E) =@M, (K)
where {w,,..,w,} the set of sinks for each

1<i<t, n; isthe number of path ending in the

sink W, (this includes W, itself, as a path of
length 0).

Fom Theorem 2.4, we have

J(Lc (E) =§J(Mni(l<)). JS(LK(E))=§JS(MW (K)).
Fom Theorem 2.3, we have

L (E) =OM, (3(K)), I, (L (B)) = ©M, (3,(K))
From Corollary 2.2, J(K)=J,(K)=0. We

have J(L, (E)) =J, (L. (E)) =0.

Example 4.10. (a) Let K be a field and
E a graph has form Figure 5 or Figure 6.
Since Figure 5 or Figure 6 graphs is acyclic,
follow Corollary 4.8 J(L. (E))=J,(L.(E))=0.

This is also the result in Corollary 4.5 (c).

(b) Let K be is a field and E a acyclic
graph has form in Example 3.4. From
Corollary 4.8,

J(L¢ (E)) = I, (L (E)) =0.
5. Conclusion

We have calculated the J —radical and
the J —radical for the Leavitt path algebras

L, (E) with coefficients in a commutative

semiring R of some finite graphs E
(Proposition 4.1, Proposition 4.2, Proposition
4.3, Proposition 4.4). In particular, we have

also calculated the J —radical and the J, -

radical for the Leavitt path algebras L, (E)

with coefficients in a field K of acyclic graphs
(Corollary 4.8), no-exit graphs (Theorem 4.6)
and applicable examples (Example 4.7 and
Example 4.10).

In the future, we will expand two
structural theorems (Theorem 3.3 and Theorem
3.5) of the Leavitt path algebras over
commutative semirings of acyclic graphs and
no-exit graphs.
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