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Abstract

In this paper, we first introduce the cones generated by semi-infinite systems. Then we use
approaches of the semi-infinite programming to obtain formulas of normal cones and tangent
cones to those cones. Thereby, we use obtained results in providing optimality conditions for
conic optimization problems. The obtained results in the paper are new and they are generalized
from some existing ones in the literature.
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Tém tit

Trong bai bao nay, trudc tién ching 161 gioi thiéu nhitng nén dwoc sinh boi nhitng hé nwa vo
han. Sau do, chiing toi sw dung cdch tiép cdn cho hé nira vé han dé thiét ldp cong thikc nén phap
tuyén va non tiép tuyen cho non moi nay. Cuéi ciing, chiing t6i sir dung cdc két qua dat dwoc dé
xdy dung diéu kién t01 wu cho bai todn t6i wu véi rang budc non. Cac két qua ciia trong bai bdo
nay la méi va la sw tong qudt ciia cac két qua da cé trong cdc tai liéu tham khao.

Twr khoa: Diéu kién toi uu, non phdp tuyén, non sinh boi hé nira vé han, non tiép tuyén.
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1. Introduction

The second-order cone programming
(SOCP) plays an important role in the
optimization theory and has interested many
authors (Alizadeh, F. and Goldfarb, D., 2003;
Bonnans, J.F. and Ramirez, H.C., 2005; Hang,
N.T.V. etal, 2020; Liu, Y.J. and Zhang, LW,
2008; Mordukhovich, B.S. et al, 2016,
Outrata, J.V. and Ramirez, H., 2011). The
second order cone in R™*! is defined by

K = {(x0, %) 2l x, 11},

where || x || is Eucliean norm in R".

(1.1)

The results on optimality conditions for
(SOCP) and stability analysis of the solution
set to (SOCP) were studied (see Alizadeh, F.
and Goldfarb, D., 2003; Bonnans, J.F. and
Ramirez, H.C., 2005; Hang, N.T.V. et al,
2020; Mordukhovich, B.S. er al, 2016;
Outrata, J.V. and Ramirez, H., 2011; and
references therein). Specifically, some results
on first/second order tangent cones and
optimality conditions for (SOCP) were studied
in detail by Bonnans, J.F. and Ramirez, H.C.
(2005). An important application of (SOCP) is
to solve the problem of finding a maximum
likelihood (ML) estimate of the parameter
vector x can be expressed as (cf. Boyd, S. and
Vandenberghe, L., 2004).

max [(x)

(1.2)
subject to x € C,

where x € C gives the prior information or
other constraints on the parameter vector x. In
this optimization problem, the vector x € R"
(which is the parameter in the probability
density) is the variable, and the vector y € R™
(which is the observed sample) is a problem
parameter. Common cases of the problem (1.2)
are given in the following forms:

(1) ML estimation for Gaussian noise densities:
1
max (— (%) log(2ma?) — S lAx—y II§), (1.3)

where m, o,y are given and A is the matrix
with rows a7, ..., a;,. Therefore the ML estimate
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of x is X € argmin,, || Ax — y Il3, the solution
of a least-squares approximation problem.

(11) ML estimation for Laplacian noise densities:

max (— (?) log (ﬁ) —é | Ax — y I|1), (1.4)

where a > 0 is given. In this case, the ML
estimate is X € argmin, || Ax —y |l;, the
solution of the [;-norm approximation problem.

Recently, many authors are interested in
generalization of the second-order cones,
namely, Glineur, F. and Terlaky, T. (2004);
Gotoh, J. and Uryasey, S. (2015); Vinel, A.
and Krokhmal, P. (2014a); Vinel, A. and
Krokhmal, P. (2014b); Xue, G. and Ye, Y.
(2000) considered p-order cones (p € [1, o0]),
Ferrerira, OP. and Németh S.Z. (2018);
Németh, S.Z. and Xie, L. (2018); Németh, S.Z.
et al. (2020); Sznajder, R. (2016) studied
extended second order cones while Chang,
Y.L. et al. (2013); Thinh, V.D. et al. (2020);
Zhou, J. and Chen, J.S. (2013); Zhou, J. and
Chen, J.S. (2015); Zhou, J. et al. (2015); Zhou,
J. and Chen, J.S. (2017); Zhou, J. et al. (2017)
are interested in circular cones. Some results
on the projector onto those cones were
presented. However, results on first/second
order tangent cones and normal cone as well as
first/second order optimality conditions for
optimization problems under the second order
cone/extended second order cones /circular
cones constraints have not been provided in
those papers.

In this paper, we first introduce new cones
which are generated by semi-infinite systems.
Then we will show that those cones are the
generalizations of p-order cones, extended
second order cones and circular cones.
Thereby, we use approachs of semi-infinite
programming to obtain exact formulas of
normal and tangent cones to those new cones
which will be applied on optimization
problems. Our obtained results in the paper are
new and they are generalized from some
existing ones in the literature.
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2. Preliminaries

Throughout the paper, we convention that
é = 0. The inner product in a finite-
dimensional space R",n €N :={1,2,...}, is
defined by (x,y) = xTy for all x,y € R™. In
(R™, lI-ll,), with p € [1, 0], BY(x) and S?(x)
are, respectively, the closed ball and the sphere
centered at x € R™ with radius >0,
e;=(0,..,1,..,0TeR (i=1,..,0) the
i-unit vector, e :== (1,...,1)T. In particular, we
set BP:= BY(0) and SP:=S5(0) for
simplicity. The symbols ¢l Q and bd Q stand
for the closure and boundary of a set ) ¢ R™,
respectively. Let x = (x¢, %),y = Vo, Vs)
€ R™*1 := R x R™. The scalar product of x
and y denote by x'y. The notation

X == (x, —x,) and the notation X = ﬁ while

xt={yeR™! | xTy=0}. Let CcR™
We use the following notations:

conv C := {Zi-‘zl)li ¢ci |1, €[01],c; e CkeE N},

k
cone C = {Z Aici | 4; =20,
i=1

¢; € convC, k € N} (cone® = {0}).

The notation C° (respectively, C*) the polar
cone (respectively, the positive dual cone) of C
which is defined by

C={yeR"|y"™x<0 Vx €}
(respectively, C*:{y e R" | yTx = 0 Vx € C}).

Let C be a convex subset in R™. The
normal cone and the tangent coneto C at X € C
are respectively defined by (cf. Mordukhovich,
B.S., 2005; Mordukhovich, B.S. and Nam
N.M., 2014)

N 2l {(xx—%)<0
Nq(%) = {x €eR Vx € C },
Jt, - 0T, u, > u }

— n
Te(x) = {u €R with x + t,u, € C,Vk

Let f: R™ - R be a convex function and
x € R™. The (convex) subdifferential of [ atx
is defined by

Of (%) =
{x* e R" | (x*,x — x) < f(x) — f(X) Vx € R"}.

Let |I-ll be a norm of R™. The dual norm
I-Il, of lI-Il is defined by

Il x Il.:= sup (x,y),
yES

where S .= {x e R" | |l x lI= 1}.
For any p € [1, o], it is well known that
11
A, =l h-+-=1.
-l =1l g wit > + .
We now recall some generalizations of the
second order cone as follows (cf. Sznajder, R,

2016; Vinel, A. and Krokhmal, P., 2014; Zhou,
J.etal., 2015).

Given p = 1, the p-order cone in R"*1 is

defined by
K = {x = (XO,XT) € Rx R™ | Xo >l Xy "2}, (23)

where |l x I, is p-norm in R". The circular
cone in R™*1 is given by
Ky = {x = (x,%,) ERXR™ | xptand >l x, ll;},(2.2)
with an angle 6 € (0, g) The extended second
order cone in R! X R® is defined by
K(,s)={xu) eR xRS|x =llulle}, (2.3)
where x >y means that x —y € R} for all
x,y € Rtand e == (1,1, ...,1) € R%.

It is obviously that ¥, Ky and K (l,s)
are, respectively, the solution set of the
following semi-infinite systems

x = (x9,x,) ERXR"
(-1,a)T(x0,x,) <0 Va€eBP
with
1 1

—t+-=1,
P q

x = (x9,x,) ERXR"
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(-1,a)"(x0,x,) <0 Va € B%(0)

. 1
with r =— and
tan@

z=(x,u) € R xRS,
(—e,a)T(x,u) <0 VaeB?i=1,..,L

Inspired by above representations, we
consider the following semi-infinite system

(x,u) € R x RS,
(—e, )" (x,u) <0 Va € B(r,lI-l),
withi =1, ..,1, (2.4)

where v >0, B(, II-l) = {x| l x I<r} and
[I-]l is a norm of RS,

The solution set to the system (2.4)
denoted by S7(ll-Il) is a convex cone (see
Lemma 2.1) and thus it is called the cone
generated by the semi-infinite system (2.4).
We get

STAD = {(x,u) € Rt x R%|(—e;,a) T (x,u) <0,
Vva € B(r, -, i =1,..,1} (2.5)

The semi-infinite system (2.4) is a special
case of the semi-infinite system (Chuong, T.D.
and Jeyakumar V., 2016). In that paper, the
authors used the approaches of semi-infinite
propgramming to obtain some results on the
error bound of semi-infinite systems. We will
see in the next section that the system (2.4)
admits a global error bound at any boundary
point. This result is important to obtain the
formulas of normal cone and tangent cone to
STQID.

The following lemma shows that the cone

generated by the semi-infinite system (2.4) is a
closed convex cone.

Lemma 2.1. Letr > 0,1,s € N and |||l is
a norm in R®. Then the set S] (II:l) given by
(2.5) is a closed convex cone in Rt x RS,

Proof. We first show that S/ (ll-ll) is a
cone. Indeed, with x, = 0 € R, u, = 0 € RS,
we get (xg, Ug) € S/ (lI-Il). Take (x, w) € S/ (lI-II)
and 4 > 0. We put

20

B Ik ={x e R*| l x IS 1}
For any a € B(r, |I-II), we gain
(—e, @) T (A(x,u)) = A(—e, @) (x,u) <0,
i=1,..,1L
It implies that A(x,u) € S/ (l-l) and thus
S (1) is a cone.

Moreover, since B(r, II-ll) is closed and
convex, the mapping ¢:R! xRS > R"
defined by ¢@(x,u) = (—e,a) (x,u) is
continuous and convex. So, 8/ (II-Il) is a closed
convex set. O

From (1.1), (2.1), (2.2), (2.3) and (2.5), we
have the following remark.

Remark 2.2. (i) S{(lI‘ll,) is the second
order cone in RS*1,

(i) ST (lI-ll,) is the circular cone in RS*!
. 1 T
with the angle 6 := arctan; € (0, E)'
(iii) 87 (II-l,,) is the p-order cone in R¥*™.
(iv) SE(lIIIL) is the extended second order
cone in R! X RS,

Example 2.3. Some special cases of the
cone generated by semi-infinite system (2.4).

bdSH(ll - 1)

Figure 1. The boundary of g -order cone

bd SH(|| - Il2)
& = ||zl

Figure 2. The boundary of second order cone
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bdSi(l - [l1)

Figure 3. The boundary of «-order cone

bd S{(| - [lee)

& = |z,

Figure 4. The boundary of 1-order cone

3. Global error bound of cones generated
by semi-infinite systems

Let [I-]l be a norm of R®. Consider the
system (2.4). For each (x,u) € R! X R®, we

, - _oT T
put  @;(x,u) ae%l(a,)ﬁ-ll){ e;x+a'u} for
each i =1,..,1 and ¢(x,u):= 'mlaxz(p"(x' w).

i=1..,

The index active set and the active set of (x, u)
are, respectively, denoted by

[, u) ={i €{1,... 3| p:i(x,u) = p(x, w)},
Uxu) = {(~e, a) € RS X B(r, 1) | i
€l(x,u),—e/x+a’
= p(x,w)}.
It is obvious that

piw)=—x;+rillul, Vi=1,..,1

and
p(x,u) = —,n}in xi+rilull,
i=1,..,

I(x,u)
:{argmini{xl-| ie{1,..,1}} if(x,u) #0, G.1)

{1,..,1} if(x,u) =0,
U(x,u) =

if (x,u) # 0, 3.2)

{{(—ei, (e ﬁ)) i€ I(xw)

{(—e;,a) | i €I(x,u),a €B, I} if(x,u) =0.

,x)T.

Definition 3.1. Let [l be a norm of
R®. Consider the system (2.4). Then

for each (x,u) € R! x RS with x = (x4, ...

(1) We said that the system (2.4) admits a
global error bound at (x,u) € S/ (Ill) if there
exists T > 0 such that

d((x,w), S (I < Tle(x, u)]4
V(x,u) € R x RS.
(i1) We said that the system (2.4) admits a

local error bound at (x,u) € S (ll-ll) if there
exist T > 0 and § > 0 such that

d((x,w), S (I < Tlo(x, u)]4
V(x,u) € Bs(x, i).
Note that, in this definition
[a]; = max{a;0},Va € R.

It is clear that if the system (2.4) admits a
global error bound at (x,u) € S/ (ll-ll), then it
also (2.4) admits a local error bound at (X, ).
The following theorem gives us that the system
(2.4) admits a global error bound at any
(x, @) € bd ST (I-).

Therem 3.2. Let (%, %) € S (lI-ll). The
system (2.4) always admits a global error
bound at any (&, ) € bd S7 (ll-I).

Proof. We can assume that x = (X, ..., X;)
and 4 = (U, ..., uy). If (x,u) € S/ (lIll) then
(3.1) trivially holds. Thus we only need to
consider the case of (x,u) € S/ (ll-I). Without
any loss of generality, we can assume that
Xq, e, X, <7l ulland X 4q, o0 27 L u i
We put ¥ = (%, ...,%;) with X; =r |l ull for
all i=1,..,1; and X;=x; for all i=
li,+1, ., 1. Then ¥ € §/ (lI-l) and

d((x,w), SE(IFD

<l x—Xl,

Ly
> orew) < Tgxw
i=1

= Vhlp@w]s.
Hence, the system (2.4) admits a global error
bound at (X, &). O
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By combining Theorem 3.2 and Corollary
3.9 (Chuong, T.D. and Jeyakumar V., 2016),
we obtain formulas of normal cone and tangent
cone to 87 (II1) as follows.

Theorem 3.3. (Formulas of normal cone
and tangent cone) For any (ik,u) € S; (ll-ll),
we gel

U (CADR(RD)]
{0}

= {cone {(‘ei' (u]:u‘ "1;_"))

(A

if (%,7) € int 7 (II-1D,

i€l(x, u)} if (x, %) € bd 57 (II- D\{0},
if (ov,u) =0,
and

T((x, @), ST 1))

R x RS if (x, %) € intS7 (I,
- [{(_ei,( t ”—))| ie I(x,u)}o if (£, 0) € bd 57 (ID\(0},
Full Fwll
SEAED

if (%,7) = 0.

Proof. We will first prove the formula of
normal cone. We consider the following
three cases.

Case 1. (x,1) € intS] (lI-Il). By the definition
of normal cone to a convex set, we get

N((x @), s/ (I-D) = {0}
Case 2. (x,u) € bd S/ (II-I)\{0}. In this case,
we get
I(x,u) = argmin;{x;| i € {1, ...,[}} and

Uuq Ug .
U(x,u) = {(—ei' (m ,m)) | i €l(x, u)}.
By Corollary 3.9 (Chuong, T.D. and
Jeyakumar V., 2016), we get
N((x @), STID)

= conelU(x,u)

_ e (1 Y N\ |
= cone {( e, (“ TR ">> iel(x, u)}.

Case 3. (x,u) = 0. In this case, we get
I(x,u) ={1, ..., 1}

and

U(,u) = {(—ei, a) |i€l(x,u),aceB(r, II-II)}.
It implies that

N((x @), S71D)

= cone{(—e; a) | i € I(x,u),a € B(r, II-I)}.
Taking (y,v) € N((x,@), S/ (II-)), there exist
i€{l,..,1}, aeB(, ) and a >0 such that
(y,v) = a(—e; a). For any b € B(1/7,II.), we
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have |l b Il,= max.cg (b, c) S% and thus
IbTa| < |lall.ll b I, <1. Therefore,
(—ei’ b)T(—y, —v) = a(—ei_ b)T(el-, — a)
=a(-1-bTa) <0
which implies that (—y, —v) € S/"(Il-Il.).
The formula of T(()?, ﬁ),Slr(II-ll)) is
implied from the formula of

N((x, @), 8] (II-)) and the fact that

T((% @), (1)) = (N(E @), S (1) ). 0

Remark 3.4. If S/(ll-Il) is the second
order cone or the circular cone then the results
in Theorem 3.3 reduce to those ones in
Bonnans, J.F. and Ramirez H.C. (2005); Thinh,
V.D. et al. (2020).

4. Applications

Let (R™%|||.[|l) and (R™,II-ll) be finite
dimension spaces, and let A:R"™ - R™ be a
continuous linear mapping. We first consider
the following problem which gives us the
solution sets of problems (1.3) (if II-Il is IIll;)
and (1.4) Gt II-1l is 1I-1l1).

min || Ax —y |,
X

4.1)
where y € R™ is given.

Theorem 4.1. Consider the problem (4.1).
Let X be an optimal solution of (4.1). Then
A*(Ax —y) = 0.

Proof. Denote by Z := Ax — y. By using
Theorem 2.51 and Theorem 4.14
(Mordukhovich, B.S. and Nam N.M., 2014),

we get
Oeo,lAX—yll=A"0llzl
={A'v|veadlzZl}.

It implies from Example 2.38 (Mordukhovich, B.S.
and Nam N.M., 2014) that

ifz=0,

B
6IIZII={{ E } if7=%0
Izl

Thus A*(AX — y) = 0.
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Hence, the proof is completed. O

In what follows, we consider the

following optimization problem.
“4.2)
vi=1,..,1,

min f(x)
subject to || g(x) II< hy(x),

where f:R™ —=R is continuously differentiable,
hi:R" > R,g:R" - R® forall i =1,..,1 are
twice continuously differentiable.

We put
hy(x)
h(x) = ( )
hy(x)
and
_ (h(x)
6(x) = (g(x)>'
Then the problem (4.2) can be rewritten by
min f(x) 4.3)

subject to G(x) € S}(lI-ID).

To provide the optimality conditions for
(4.3) (and thus (4.2)), we need the following
qualification condition.

Definition 4.2. Let F: R™ 3 R™. We say
that F is metrically subregular at (x,y) € gphF
if there exist r, 7 > 0 such that

d(x, F71(¥)) < wd(y,F (%)),
Vx € B,.(X).

Theorem 4.3. Let X be the locally
solution to the problem (4.3). Assume that the
multifunction F:R™ 3 R! X R® defined by
F(x) == G(x) — 8} (lI-Il) is metrically subregular
at (x,0). Then
Vh(x)
Vg(x)
Proof. We denote by

C:={xeR"Gx)eSLTLII}

By using Corollary 4.15 (Mordukhovich, B.S.
and Nam N.M., 2014), we get

~VF @) € (go ) NG RENTSEAM). @4.4)

0 € VF() + N(Z, ©).

Since F(x) is metrically subregular at (i, 0),
we get from Proposition 4.2 (Mohammadi, A.
et al., 2020), that

N(%,C) = VG(X)TN(G(X), S
which gives us that
0 € Vf(X) + VG(X)TN(G(X), SEUI-ID).

Thus, we obtain (4.4) and hence the proof
is completed. O

5. Conclusion and discussion

In this paper, we have first presented the
cone generated by semi-infinite systems which
is a generalization of the second order cone,
extended second order cones, and circular
cones. Then, we have provided exact formula
for the normal and tangent cones to this cone.
Thereby, we have provided first order
necessary conditions for local optimal
solutions to mathematical programs.

For possible developments, we are
planning to employ the obtained results to
calculate the second order tangent cone of the
cone generated by semi-infinite systems.
Moreover, inspired by (Thinh, V.D. et al,
2020), necessary and sufficient conditions for
optimal solutions of cone generated by
semi-infinite systems complementarity
programs would be established by using the
current approach.
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