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ABSTRACT:

We consider the initial boundary value problem for 2D g-Navier-Stokes equations in bounded
domains with homogeneous Dirichlet boundary conditions. We prove some important properties

of solutions to the problem including the backward uniqueness property, the squeezing property.
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MOT SO TiNH CHAT CUA NGHIEM
POI VOI PHUONG TRINH g-NAVIER-STOKES HAI CHIEU
TOM TAT:
Chung ta xét bai toan gia tri bién ban dau cho phuong trinh g-Navier-Stokes 2 chiéu trong mién
gidi han véi dieu kién bién Dirichlet thuan nhat. Chung t6i chirng minh mét so6 tinh chat quan
trong cua nghiém bao gdm tinh chat duy nhat lui, tinh chat ép.

Tur khoa: g -Navier-Stokes; nghiém manh; tinh chét duy nhét [ui; tinh chét ép.

1. INTRODUCTION

Let Q be a bounded domain in R* with smooth boundary I' . We consider the
following two-dimensional (2D) non-autonomous g -Navier-Stokes equations:

%—VAu+(u-V)u+Vp=f(X,t) in (0,7)x€,

V- (gu) =0 in (0,7)xQ, (1_1)
u =0 on (0,7)xT,
u(x,0) =u,(x), x €,

where u =u(x,t)=(u,,u,) is the unknown velocity vector, p = p(x,t) is the

unknown pressure, v > 0 is the kinematic viscosity coefficient, u, is the initial velocity.
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The g -Navier-Stokes equations is a variation of the standard Navier-Stokes
equations. More precisely, when g = const we get the usual Navier-Stokes equations.

The 2D g -Navier-Stokes equations arise in a natural way when we study the stan-
dard 3D problem in thin domains. We refer the reader to [8] for a derivation of the 2D g

-Navier-Stokes equations from the 3D Navier-Stokes equations and a relationship
between them. As mentioned in [7], good properties of the 2D g -Navier-Stokes

equations can lead to an initiate of the study of the Navier-Stokes equations on the thin
three dimensional domain Qg =Qx(0,2).

In the last few years, the existence of both weak and strong solutions to 2D g -
Navier-Stokes equations has been studied in [2,3]. The existence of time-periodic
solutions to g -Navier-Stokes equations was studied recently in [4]. Moreover, the long-

time behavior of solutions in terms of existence of global/uniform/pullback attractors has
been studied extensively in both autonomous and non-autonomous cases, see e.g.
[1, 5,6,7, 8] and references therein. However, to the best of our knowledge, little seems to

be known about other properties of solutions to the 2D g -Navier-Stokes equations. This
is a motivation of the present paper.

The aim of this paper is to study some important properties of solutions to g -Navier-
Stokes equations such as the backward uniqueness property, the squeezing property. To
do this, we assume that the function g satisfies the following hypothesis:

(G) geW"(Q) such that

172

O<m,<g(x)<M, forallx =(x,x,) €Q, and |Vg| <mA'",
where 4 >0 is the first eigenvalue of the g -Stokes operator in Q (i.e., the operator
A defined in Section 2).

The paper is organized as follows. In Section 2, for convenience of the reader, we

recall some auxiliary results on function spaces and inequalities for the nonlinear terms
related to the g -Navier-Stokes equations. Section 3 proves a backward unique-ness result.

In Section 4, we prove the squeezing property for the solutions on the global attractor.

2. PRELIMINARIES
Let L'(Q,g)=(L'(Qg))° and H)(Q,g)=(H)(Q,g))’ be endowed,

respectively, with the inner products (u,V)g = I uvgdx,u,v e I (Q, g), and
Q

2
((u,v))g = J'ZVuj.ijgdx,u = (ul,uz),v = (vl,vz) € HOl (Q,g),

Q J=1
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and norms |u ['= (w,u),, [|u I’= ((u,u)), . Thanks to assumption (G), the norms
|.| and ||.|| are equivalent to the usual ones in (L*(Q2))’ and in (H}(Q))*.

Let
V={ue(C(Q):V-(gu)=0}.

Denote by H, the closure of V) in L'(Q,g), and by V, the closure of V in
Hy(Q, )1t follows that V, c H, =H, CV,, where the injections are dense and
continuous. We will use [|.||, for the norm in ¥}, and (.,.) for duality pairing between
V, and Vg'

We now define the trilinear form b by
b(u,v,w) = Z:ljgu —w ,gdx,
i X,

whenever the integrals make sense. It is easy to check that if u,v,w € Vg , then

b(u,v,w) =—-b(u,w,v).

Hence

b(u,v,v)=0,vVu,veV,.
Set
AV, > V] by (Au,v) =((u,v)),,
BV, xV, >V,
by (B(u,v),w) =b(u,v,w) and put Bu = B(u,u).
Denote D(A)={ueV,: Aue H,},then D(A)= H(Q,g)N V, and

Au = —PgAu,Vu e D(A),

where P, is the ortho-projector from L(Q,g) onto H o

Using the H 0 1der inequality and the Ladyzhenskaya inequality (when n =2)
lul.<clu | Vu |, Yue H)(Q),

and the interpolation inequalities, as in [9] one can prove the following result.
Lemma 2.1. If n=2, then

172 172 172

e lul?[lul vl wl?wl™, Yu,v,weV,,

c2 |1/l |]/2||u ||1/2||V||1/2| AV |1/2| Wl: vu € Vg:VED(A)’WGHga (2 1)
sl Au || v|[|w], YueD(A),veV,,weH,,

e, lulllvillwl? Aw|”?, YueH_veV, weD(A),

| b(u,v,w)| <

and
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| Bu,v) | +| Bryw) [Scsllulll[v][™] Av]’, VueV,;ve D(A). (2:2)
where 6 € (0,1); ¢,,i =1,...,5, are appropriate constants.
For every u,v e D(A), then

| B(u,v) |< c6{| Aulivll (2.3)
lulll Av].

Lemma 2.2. [3] Let u € L’(0, T;V,) , then the function Cu defined by

((Cu(t),v)g = ((E.Vju,vJ = b[E,u,VJ,VV ev,,
g \ g

belongs to L’ (0,T; H . ), and therefore also belongs to L’(0,T; V,). Moreover,

cu() < Y& 1wyl for ae. £ (0.7,

0

and

\Y

| Cu(?)|.< | g1|;§ Alu(t)||, fora.e. t €(0,7).

myA,

Since
—l(V.gV)u =—Au— (E.V)u,
8 g

we have

(—Au,v), =((u,v)), + ((E.V)u,v)g = (Au,v), + ((E.V)u,v)g,Vu,v ev,.
g g

We recall the definition of strong solutions to problem (1 . 1)

Definition 2.1. 4 function u is called a strong solution to problem (1.1) on the
interval (0,T) if

ueC([0,TL:V,) "L (0,T;D(A)), du/ dt € (0,T;H,),

%u(t) v Au(t) +vCu(t) + Bu(t),u(t)) = f(t) in H,, fora.e. t (0,T),

u(0)=u,.

Theorem 2.1. [2] For any T >0, u, €V,, and [ € LZ(O,T;Hg) given, problem
(1.1) has a unique strong solution u on (0,T) . Moreover, the strong solutions depend

continuously on the initial data in V., .
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We recall here some a priori estimates of strong solutions frequently used later.
3. BACKWARD UNIQUENESS PROPERTY

Let u, v solve respectively the g -Navier-Stokes equations

du
—+vAu+vCu+ B(u,u)= f,
i () =7 (3.1)

u=u,.

dv
—+vAv+vCv+B(v,v)=f,
s e)=f (3.2)

V=y,.

Two solutions u, vare called a backward uniqueness property if u(#,) =v(t,) then
u(t) =v(t) forall time ¢ <¢,.
Lema 3.1. [9] If a function we L*(0,T;V)NL*(0,T; D(A)) satisfy
d
Wy dw = h(t,w(t)),t € (0,T),
dt
where h is function from (0,T)xV into H such that | h(t,w(?))|< k(¢) || w(?)||,
for ae, te(0,T),k e L’(0,T),and w(T)=0 then w(t)=0,0<t<T.
Theorem 3.1. Under the assumptions of Theorem (2.1) , then the strong solutions
of & -Navier-Stokes have a backward uniqueness property
Proof. Denote w=u—v, we have

% +vAw=-B(u,u)+ B(v,v) —vCw

=—-Bu,w)—B(w,v)—vCw.
Using (2.2) and Lemma 2.2, we obtain
| A(t, (D)) == =B(u, w) = B(w,v) —vCw|

\Y
s{cs e |179) Au|? +e, V][] Av]? +v'mi'w] .

0
Applying Lemma 3.1 with

\Y
KOy =y ] Au [ e, | v[[] Av [ +v 1YL

m,

we have the proof.

4. SQUEEZING PROPERTY
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We write P for the orthogonal projection onto the finite-dimensional subspace, and QO
for the projection onto its orthogonal complement. Then by [l 2] , we can define a continuous

semigroup S(#) of g -Navier-Stokes equations and it has global attractor in V/, .

Definition 4.1. Write S =S(1). Then the squeezing property holds if, for each
0< 0 <1, there exists a finite rank orthogonal projection P(O), with orthogonal
complement Q(0), such that for every u,v € A either

| O(Su—Sv) |<| P(Su—Sv) | (4.1)
or, if not, then
| Su—Svi<o|u—v| (4.2)
Theorem 4.1. If f € H, then the squeezing property holds for the 2D g — Navier-
Stokes equations.

Proof. The equation for the difference w(t) = u(t) —v(¢) is

%+VAW+ vCw+ B(u,w)+ B(w,v) =0, (4.3)

and we will write
p=Ew, q=0w, w=p+q.
First, we take the inner product of (4.3) with p, using

b(u,w,p)=b(u,p+q,p)=>b(u,q, p),

we have

1d|pf
2 |d];| +v I pIF +v(Cw, p), = =b(u,q, p) —b(w,v, p).

Using the bounds on b in Lemma 2.1 and the existence of an absorbing setin H,V,
and D(A), we can obtain

1d|pl’
> dr +vipIP +v(Cw,p), =2=C(ul”[ Au "Il plI=wll p v Av[?)

>C(lq| A" | pl+]w[ A7 | p]),

where A =/ . Using Lemma 2.2, we obtain

1d 2 \Y
LAIPE | pipz—cl g1 47 p1+] 1408 ke [ 202 )
2 dt m

0

>-CA” | pl(ql+Ip)),
so that
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d
p41P]

i >—|pl(VA| p[+CA" (g 1+]p )

>-A"7 | p|(A"? | p|+Clq|+C| p]).

(4.4)

Now take the inner product of (4.3) with ¢ , we have

1dlqf
2 dt

+v || q ||2 +V(CWaQ)g = _b(uap')Q)_b(W:v')Q)
<Clplllgll+Clwllqll-

Using Lemma 2.2, we obatain

d|ql

il <clpligl+ cov¥8 1 wnqi<ciqlapi+q).
2 4t m,

so that

Iql

lg1—— <lgll(=A" |q|+C|p|+C]lq).

Provided that the expressionin the parentheses is negative,
1/2
(A7 =CO)lq>Clpl,

then we have

d

1L <22 g1 g1eCpl+ClaD, (45)

We now choose n large enough that
VA" —C >2C. (4.6)
Now, either ( 4. l) holds, and so there is nothing to prove, or it does not, in which case
| Ow(l) [>| Pw(1)]. (4.7)

In this case, using (4.6) , we have

(V/ll/z —-CO)|Ow(t)|>2C | Pw(t) |, (4.8)

holds for #=1. Since w(¢) is continuous into H, then (4.8) holds in a

. : L 1
neighbourhood of # =1. We consider two possibilities: If (4.8) holds for all ¢ € [E’l]’

then we have, by (4.6) ,

1
(Vlln_C)|q|—C|p|>5(Vll/2—C)|C]|>C|q|a
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1
for te[z,l], and so (4.5) becomes

d
Zlglk-AC|lq],
dt\cl\ lq|

which gives

g j<e ™| q[lj .

Since (4.7) holds, this implies that

(1)< 26 ) (1]|<2‘5“| (1)
w(l) < 2e —|I£2e wl =11,
9 2 2

. S . 1
and using the Lipschitz property of strong solutions, | W(E) I< L( J | w(0) |, we have

1
2

| w(l)[< 2L Gjeim | w(0)].

This gives (4.2) , provided that A=A is chosen large enough. If (4.8) does not

1 _ :
hold on all of # €[—,1], then it holds on ¢ €[¢,,1], with
2

(v, 1z C)|Ow(t,) |F2C | Pw(t,)|. (4.9)
In this case we take

Vllu |q| j

(1) =@ (p).q®))=(pl+lq Dexf’(m

From (4.4), (4.5) holds, we have

dd
—<0; Vtelt,1].
7 [7,,1]

Thus @(1) < D(%,). However, at t =1 we have (4.8) , so that
O(1) 2| (1) e,

and at ¢ =, the equality (4.9) hold, which gives

2C( p(t,) |+l g(t) )= (VA" +C) (2, |

and so
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A +C
2C

q)(to) — |C](t0) | eZvﬂ”Z/(v/ll/2+C)'

It follows that
_a2ic Ve " +C &
2C

and using once more the Lipschitz property of strong solutions, we obtain

lqDI<e [q9(%) 1,

12
e VAT +C

lqD|<e e’L(1)[w(0)].

Since | p(1) |<| g(1)|, it certainly follows that

/2
_w?;c Vll + C

(W) [<e e’L(1)[ w(0)].

This gives (4.2) , provided that 4 = A is chosen large enough, and the theorem is proved.
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