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ABSTRACT. The predator-prey model is an essential tool in mathematical ecology and specifically
for our understanding of interacting populations in the natural environment. We consider a predator-
prey model with variable carrying capacity and cross-diffusion. First, we recall some recent results on
the existence and regularity of inertial manifolds for nonautonomous evolution equations involving
sectorial operators. We then apply the inertial manifold theory to study the finite-dimensional asymptotic

behavior of the above-mentioned predator-prey model.
Keywords. admissible space, asymptotic behavior, inertial manifold, predator-prey model, spectral gap condition

DANG PIEU TIEM CAN HU'U HAN CHIEU
CUA MOT MO HINH THU-MOI VOI KHUECH TAN

TOM TAT: M6 hinh thi-mdi 1a mét cong cu thiét yéu trong sinh thai toan hoc va déc biét quan trong
cho su hiéu biét ciia chiing ta vé cac quan thé twrong tac trong méi truong ty nhién. Ching toi xét mot
mo hinh thu-mdi véi sitc chira méi tredong sdng bién thién va khuéch tan chéo. Trude hét, ching toi
nhic lai mot s két qua gan day vé sy ton tai va tinh chinh quy cuia da tap quan tinh d6i véi phuong
trinh tién hoa khong 6tonom chira toan tir quat. Sau d6, ching t6i ap dung 1y thuyét da tap quén tinh
vao nghién ctru dang di¢u tiém can hitu han chiéu ctia mé hinh thi-moi noi trén.

Tir khéa. khong gian chip nhin dugc, déng diéu tiém can, da tap quan tinh, m hinh thi-mdi, diéu kién k& hé phd

1. INTRODUCTION

Prey-predator dynamic is an essential tool in mathematical ecology, specifically for our
understanding of interacting populations in the natural environment. This relationship will
continue to be one of the dominant themes in both ecology and mathematical ecology due to its
universal existence and importance.

The investigation of the asymptotic behavior of solutions to infinite-dimensional dynamical
systems generated by evolutionary partial differential equations in large time is one of the central
problems of dynamical systems. An important tool for such investigation is the concept of
inertial manifolds introduced in 1985 by C. Foias, G.R. Sell & R. Temam [3] (see also [4]) when
they studied the asymptotic behavior of solutions to Navier-Stokes equations. An inertial
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manifold for an evolution equation is a (Lipschitz) finite-dimensional manifold which is
positively invariant and exponentially attracts all other solutions of the equation. This fact
permits to invoke the reduction principle to study the asymptotic behavior of the solutions to
evolution equations in infinite-dimensional spaces by comparing with that of the induced
equations in spaces of finite-dimension. Inertial manifolds for evolution equations have been
systematically studied in many works, see [5, 8, 10, 11, 12, 13] and the literature cited therein.

We consider the following predator-prey model (the detailed treatments of this equation will be
performed in Section 3)

a_u_DlAu:ru[]—KL]—quv, t>s, O<x<nrm

ot ®) (11
%—DzAv:—dv+cuv, t>s, O<x<rz

With the change of variables u=U +u, v=V +V, where (&,V) is a stationary solution of the

system, we can write the above system in the form

X(1) + Ax(2) = [ (1, x(2)),

U y DA-vr 0 2r—vq —uq
X = , A=~ - _ —_ |
14 0 D,A—d cv cu

3 2ruU +rU? 3
f@,x)= K(?)
cuy

We will prove that, the linear operator —4 is a sectorial operator having a sufficiently large gap
between two spectral parts.

where

qUV

Recently, the existence of inertial manifolds for mild solutions to evolution equations involving
a sectorial operator was proved by the work [10]. The purpose of this paper is to apply results
[10, 11] to describe the finite-dimensional asymptotic behavior of a predator-prey model with
cross-diffusion.

2. INERTIAL MANIFOLDS FOR EVOLUTION EQUATIONS REVISITED
2.1 Preliminaries
We start by the definition of sectorial operators.

Definition 2.1. A closed, linear and densely defined operator S:X o D(S)— X in Banach

space X is called a sectorial operator (of (U,w) -type) if there exist real numbers

a)eR,ae(O,%j and M >1 such that

(w)=4zeC:larg(z—w) <o-+£,z;ta) c p(S);
o 2

[R(4,8)| < M orall e D (). (2.1)
|- |

100 TRUONG PAI HQC HAI PHONG



To prove the existence of an inertial manifold, we suppose the following assumption.

Assumption A. Let A be a closed linear operator on a Banach space X such that —A is a
Vs

sectorial operator of (o,®)-type with 0 < o < B and @ < 0. We suppose that the spectrum

o(—A) of —A can be decomposed as follows:
o(-4A)=o0,(-A)vo,.(-A)cC_
with @, < @, < <0 where
o, =sup{Red:1eoc,(-A)},w. =inf{Red:Leoc.(-4)}, 22)

and o,(—A)is compact.
ASSUMPTION A allows us to choose real numbers x and g such that
o, <Kk<u<wm,<0 (2.3)
We recall the Riesz projection (or spectral projection) P corresponding to o.(—A), defined by
P= ﬁ .[F R(A,—A)dA, where [” is a closed regular curve contained in p(—A),

surroundingo,.(—A4) and positively oriented. Denoting by (eitA)ZZO the analytic semigroup
generated by —A4. We now recall some properties, called dichotomy estimates, of the analytic

semigroup (¢ )50 .

Proposition 2.2 (see Nguyen — Bui [9]). Let P be the Riesz projection and choose k < u <0
being the real numbers as in (2.3). For 8 >0, the following dichotomy estimates hold true:

e P |< Me ™" for all teR, (2.4)

HA‘geftAPHS M,e ! for all teR, (2:5)

e (1= P)| < me forall 120, (2.6)

[a%e (1= P)| < e 0e forall t>0. (2.7)
We end the
Proposition 2.3. Let O be a sectorial operator on a Banach space X with a discrete spectrum
described as

0>A4 =24, =..., eachwith finite multiplicity and l}im A =—© (2.8)
—00

and let H be bounded linear operator on X such that norm ||H || is small enough. Then, the

operator O+H is a sectorial operator satisfying the ASSUMPTION A.

Besides the assumptions on the linear operator 4, we need the ¢ -Lipschitz property of the

nonlinear term f* in the following definition.
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Definition 2.4. Let £ be an admissible Banach function space on R and let ¢ € E' be positive
function. Put X, := D(4°) for O € [0,1). Then, a function f:Rx.X, — X is said to be ¢ -
Lipschitz if f satisfies

||f(t,x)|| < go(t)(l + HAexH) ) for a.eit € R and for all x € X, (2.9)

||f(t,x1) - f(t,x, )|| < (/)(t)HAH (x, — xz)H for a.eit € R and for all x;,x, € X,. (2.10)

Moreover, we need the following assumption on the function ¢ .

Assumption B. Let E be an admissible Banach function space on R and let ¢ € E be positive

function. We consider positive function ¢ € E such that

20
1+6 146

¢ p0*
R(p,0) :=sup t 1Wa’z‘ <o ,where 0<@<1. (2.11)
teR - —

(t-7) 2
We assume further that the nonlinear mapping u ‘> f (Z ,u) is of class C L

2.2 Inertial Manifolds for Evolution Equations

Consider the evolution equations
J'c(t)+Ax(t):f(t,x(t)), t>s, 212
x(s) =X, .

where —A is a sectorial operator on the Banach space X with a gap in its spectrum, and

f: RxX,— X is a nonlinear operator for X, := D(Ag)being the domain of the fractional

power A for 0 <0<1.

To prove the existence of inertial manifolds for parabolic evolution equations, instead of (2.12)we
consider the integral equation

u(t) =e Oy (s) + L’e*“f“ FEu(E)dE for aet>s.  (2.13)

By a solution of equation (2.13) we mean a strongly measurable function u (t) defined on an interval
J with the values in X that satisfies (2.13) for #, s € J . We note that the solution u to equation
(2.13) is called a mild solution of equation (2.12).

We suppose that A4 satisfies ASSUMPTION A and consider the Riesz projection P . We recall here
that an inertial manifold for equation (2.13) is a collection of Lipschitz manifold. M = (M / )zeR in

X (each M, is the graph of a Lipschitz mapping @, : PX — QX ) which is positively invariant, and
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which has the asymptotic completeness property, i.e., for any solution u(+)of (2.13) and any fixed
s € R, there is a positive constant A such that

disty, (u(2).M,)<He 7" fort>s, (214
where y >0, and dist x, denotes the Hausdorff semi-distance generated by the norm in X .

Assume that equation (2.13) has an inertial manifold. We now rewrite the solution in the form

u(t) = p(t) + q(l), where p(t) € Pu(t), and q(t) € Qu (t), where Q:=1—P. Then
evolution equation (2.12) can be rewritten as a system of differential equations

p () +Ap(t) = Pf(t, p(t) +q(2)),
q'(t)+Aq(t) = Of (¢, p(t) +q(2)), (2.15)
D, =g, =Q0u,.

=p,=Pu, ¢q

Thanks to the positively invariant property of inertial manifolds, the condition (p,,q,) €M
implies that (p(#),q(¢)) € M,, for ¢ > s . Therefore, the solution lying in M, can be found in two

stages: at first we solve the problem

p()+Ap(@) = Pf (¢, p(t) + @, (p(1)), Pl

=p. (216

and then we take u(¢) = p(t)+®,(p(?)). Thus, the qualitative behavior of solutions lying in inertial

manifolds is completely determined by the properties of ordinary differential equation(2.16) in the
finite-dimensional space PX. The ordinary differential equation (2.16) is said to be inertial form of
evolution equation (2.12).

We summarize results Nguyen — Bui [10, Theorem 3.5] and Nguyen — Bui — Do [11, Theorem 2.9]
on the existence and regularity of inertial manifolds as follows. This result is a key mathematical
tool to study the asymptotic behavior of predator-prey models, which is the main goal of this paper:

Theorem 2.5. Let the linear operator A satisfy ASSUMPTION A and ¢ belongs to some
admissible space E. Let f be ¢ -Lipschitz satisfy ASSUMPTON B. If

MkM; N
—22 k<l. 2.17
where
1-0

NN, +M N, -0 ~attl) |

——12|A ¢, +NR(p,0) l-e 0 if0<@<l,
k={ 1= (1 o) (2.18)

M"Al "w if=0.

1—

TAP CHI KHOA HQC, S6 50, thang 01 nim 2022 103



and o = ﬂ—_K, then equation (2.13) has a C'-smooth interial manifold.

Proof. See Nguyen — Bui [10, Theorem 3.5] and Nguyen — Bui—Do [11, Theorem 2.9].

Remark 2.1.

1. For 0 <@ <1, the condition (2.17) is fulfilled if (1) the difference x—x is sufficiently

t
large; (2) the norm ||Al(p||m =Sup, j @(7)dr is sufficiently small. On the other hand, if

-1
6 =0, then for the fulfillment of the condition (2.17) we need only the fact that the norm
||A1(p||wis sufficiently small.

2. If the nonlinear term /" is locally ¢ -Lipschitz, i.e., f is ¢ -Lipschitz in some ball B, (in
X,) centered at 0 with radius p for some constant p >0, we can use the cut-off procedures
as follows. Let 9(.) be an infinitely differentiable function on [0,00) such that J(s)=1 for
0<s<1,%s)=0 for s>2,0<9(s)<1 and [$'(s)|<2 for se€[0,00). We define the
cut-off mapping

|

S, (tu) = 3{—Jf(t,u) for allu e D(A%). (2.19)
P

We have (see [10, Lemma 3.7]), if f(¢,u)is locally ¢ -Lipschitz in a ball B, then

2
S, (tu) is [M (p] — Lipschitz.
P

We then consider the following abstract Cauchy problem
dx(t)

+Ax(t)= f (t,x(1)), t>s,
"2 A0 = £, () >s 220
x(s)=x,, seR,
~ ~ 2
where f, (¢, ) defined as in (2.19). Since f,(z,.) is ¢— Lipschitz for q):zw(p,
P

we can apply Theorem 2.5 to obtain that, if conditions in Remark 2.1—(1) hold for (; then there

exists an inertial manifold of for mild solutions to equation (2.19).

3. FINITE-DIMENSIONAL ASYMPTOTIC BEHAVIOR OF A PREDATOR-PREY
MODEL WITH CROSS-DIFFUSION

In this section, we will study the predator-prey population model with cross-diffusion which is described
by the following partial differential equations of parabolic type (see, e.g., J.D. Murray [6, 7])
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a—u—DlAu:ru(l—L]—quv, t>s, O<x<um,

ot K(1)
ov
E—DzAv:—dv+cuv t>s, O0<x<m,
ou(t,0) _ ou(t,r) —o, (>, G.1)
ot ot
u(s,x)=u(x) O<x<m,
v(s,x) =v,(x) O<x<m,

where u =u(t,x)and v=v(¢,x) are the prey and predator populations (depending on time- variable ¢
and space-variable x), respectively; the positive constants D, and D, are diffusion coefficients;
the positive-valued functions » is the birth rate of the prey, ¢ is the death rate of prey by
predator, and c is the growth rate of the predator in presence of the prey; whereas d isthe death rate
of the predator in absence of the prey, lastly the positive function K(¢) represents the carrying

capacity of the environment. The terminology “diffusion” in this context represents the occurrence of
displacements of the predator (to catch the prey) and of the prey (to run away from the predator).
Hereafter, the notion A denotes for Laplace operator with relevant Neumann boundary conditions.

Let (1;,\_/) be a stationary solution of the system, e.g., u=0 and v is a solution to the eigenvalue

. d .
problem relative to Laplace-Neumann operator Av=—v. We can change to new variables by
2

putting u:U+z:, v=V+v. We arrive at

— _2 f— —

o[Uu] [DA 0 J[U+u B WA L) S e S
+ K(1)

alv]| | 0 DA|y+y

cU+u)V +v)—dV +v)

_ _ - 2
_[[pa-r 0 7 [2r—vg —ug)|[UT. —2”’IU<—+trU—qUV
B 0 D,A—d v cu LIV @)

cuy

The above system can be rewritten in an operator form as % + Ax(t) = f(¢,x(¢)), where

U DA-r 0 2r—vg  —ugq
X = , A=- — _ 1,

_2rL7U+rU2 3
f(t,x)= K(1)
cUv

quUV
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In this problem we can choose the power 8 =0. We define operators L, as
L(#)=Dg"—r forall g D(L)={peC’[0,7]:¢'(0)=¢'(x) =0}.
It can be seen that (see K.J. Engel & R. Nagel [2, 4.8 Example]) L, for i=1,2, is sectorial
operator and L, generates an analytic semigroup (e’L" )tzo. Moreover, the spectrum of L, is
consisted of eingenvalues given by
o(L)= {—r,—Dll2 -r,=-D,2* —71,....,.—Dpn’ —r,...},
o(L,)={-d,-D,V’ ~d,-D,2* ~d....,~D,n’ ~d...}.

Note that o(L;) = (—0,0). Therefore, the linear operator

L 0
L= { 0' . } on the domain D(L):=D(L,)xD(L,) =X = C[0, 7] xC[0,7]
2

i, 0

is the generator of an analytic semigroup [e . J . Furthermore, L has spectrum of the
e
120
form
o(L)= {—r,—Dll2 —r,=D, 2> =7,...—Dn* = 1,...
~d,-D," ~d,~D,2’ ~d,...,-Dyi’ —d, ... (3.2)

Next, we put

20— =
B::|: r—vq qu|

cv cu
Then, the operator B is a linear bounded operator on X. We consider —4=L+B with
D(A) =D(L). Now, the predator-prey model (3.1) can be rewritten as the following abstract

Cauchy problem

%+Ax(t)=f(t>x(t))’t>s’ (3:3)

x(s)=x,seR

To investigate the existence of an admissibly inertial manifold for the predator-prey model with
coss-diffusion, we need to show that the linear operator is a sectorial operator satisfies the
ASSUMPTION A and the nonlinear term is ¢ -Lipschitz.

Firstly, thanks to the Proposition 2.3 we obtain that the linear operator —4 =L + B is a sectorial
operator and satisfies the ASSUMPTION A (by the choice of L=0, B=H, and X
=C[0,7]xC[0,7]).

Secondly, denote by B, the ball centered at O with radius p in the space X . We next verify that
. : - : . U@

the nonlinear term is a ¢ -Lipschitz function for some function ¢ . For x(¢) = v eX

=C[0,7]xC[0,7], we have
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2rU)+r[UOT qUV]

|f (6.x(0))|= { K(1)
U(t)
40

cU(V (t)
2rul+7
S{‘Z‘Tpﬂwc)pJ{H ] (34)

Taking x,(¢) = [gl((tt))}xz(t) = {%gﬂ e X =C[0,7]xC[0,7], wehave

2ru[U, () - U (0)] + r[Uz(t)z - Ul(ty]
17 (6x) - Fex)|= |~ X0 — qU,(0V;()) = U, (0)V;(t)

cU, (N () = U, (), (9)

[ rf+rp U0 [U,@)
_{—K(t) +(q+c)p][ [Vl(t)}_{l/;(t)} J (3.5
From (3.4) and (3.5) we estimate
‘21’;‘ +rp ‘Zr;‘ +2rp B ‘21/&‘ +2rp
ax W-i—(q-l—c)p,w-f- q P —W-F(Q‘FC)ID.
Put
B ‘2r;‘+2rp forall te R 36
go(t)—W+(q+c)p orallteR, (3.6)

We infer that the function f(¢,x) is ¢-Lipschitz where the function ¢(.) is defined by (3.6).

Apply Remark 2.1 — (2) we have the function
f,(t,x)= S(MJf(t,x) forallteRR,
P

is ¢ -Lipschitz (note that, we chosen R = p), here

207 +5p+2

o(t) = o(1)

_2p* +5p+2 [2ru+2rp
p K(1)

+(q+c)p]

(2p+5+ 2p*‘)(\2r5\+ 2rp)
K()

+(2p2+5p+2)(q+c). (3.7
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Obviously, in the real environment of nature, the carrying capacity of the environment K should
depend on time, e.g., in the spring there should be more edibles for the preys than in the winter.
Therefore, we consider the carrying capacity of the environment as a function of time. We refer
the reader to M.K.A. Al-Moqbali ef a/. [1] for more detailed treatment on the population models
with variable carrying capacity. In this paper we consider carrying capacity with logistic growth,
that is carrying capacity satisfies

dK K
E-/B’K(I—Fj, (3.8)

where fand K are positive constants. To prove the existence of an inertial manifold, we
assume that

K(t)= forall teR.

_K
1+ be ™

Hence

(2p+5+2p’1)(‘2rﬁ‘+zpr)
e
(2p+5+2p™")([2ru|+2p7)
=
+(2p+5+2p}2(‘2ru‘+2pi’)+(2pz+5p+2)(q+c) (3.9)

o(t) = (1+be_ﬁM)+(2p2+5,0+2)(q+c)

oAl

Put
(20+5+ 2,0_')(‘2}’1_4‘ + 2pr)
e
(2p+5+2p™ (\2&\ + Zpr)
2 — K*
Then (3.9) becomes
p)=he""+h, forallteR (3.10)

h =

+(2,o2 +5p+2)(q+c)

Now we can consider the following cut-off evolution equation in which the nonlinear term

f,(t,x) is @-Lipschitz for ¢ asin (3.10),

() +Ax(0) = f,(,x(1)), t>s,
x(s)=x,, seR. (3.11)

We have that ¢ € M since

Ao :supj o(7) rSﬁJrhz. (3.12)
o R B
te: -1

Applying Theorem 2.5 we conclude that if gap x— « is sufficiently large and the norm “A1(PH is

sufficiently small, then there exists a C!-smooth inertial manifold for the problem (3.11). Finally,
for the predator-prey model under consideration, this inertial manifold is finite dimension.
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4

CONCLUSIONS

This paper has applied the theory of inertial manifolds to study the finite-dimensional asymptotic
behavior of a predator-prey model with cross-diffusion. The paper lists recently published results
on the existence and regularity of inertial manifolds for nonautonomous evolution equations.
Then, using appropriate linear operators and function spaces, the predator-prey model is
rewritten as an evolution equation in a Banach space. The existence of the inertial manifold and
the inertial form allows to conclude about the finite-dimensional asymptotic behavior of the
ecological model under consideration. Future work will study finite-dimensional asymptotic
behavior of a predator-prey model with finite delay.
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