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DEDICATED TO THE VICTIMS OF THE COVID-19 PANDEMIC

ABSTRACT: In this paper, we consider a mathematical model describing the COVID-19 pandemic
given by a system of ordinary differential equations. Using the Maple computer algebra system, we
study the stability of the equilibrium points of the mathematical model. Finally, some numerical
examples are given to illustrate the theoretical results.
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TINH ON PINH CUA MQT MO HINH TOAN HQC POI VOI COVID-19:
MOQT TIEP CAN TINH TOAN

TOM TAT: Trong bai béo nay, chiing t6i xét mot mo hinh toan hoc mé ta dai dich COVID-19 duoc
cho boi mot hé phuong trinh vi phan thuong. Str dung hé théng dai sé may tinh Maple, ching t6i nghién
ctru tinh 6n dinh cua cac diém can b?ing ctia md hinh toan hoc. Cubi cung, mot s6 vi du s duoc dua ra
dé minh hoa cho cac két qua 1y thuyét.

Tir khéa: 6n dinh, diém can bang khong dich bénh, diém can bang dai dich, tai nhiém, mé hinh COVID-19

1 Introduction

COVID-19 is the most recently
discovered infectious disease affecting
countries all around the world. SARS-
CoV-2, which is a member of the coronavirus
family, is the virus that spread the infection.
In response to Covid, mathematics has been
generally and efficiently used to model and
predict the pandemic, ... To describe the
COVID-19 pandemic, one can use ordinary
differential equations or partial differential
equations. By using mathematical techniques
such as statistics, stability analysis, combined
with numerical methods, researchers obtain
theoretical results. The results have yielded
qualitative and quantitative insights into the
COVID-19 pandemic.

Since its first appearance in the work
by Kermack — McKendrick [3] dealing
with the mathematical theory of epidemics,
the SIR model plays a very important role
in the study of the spread of an epidemic.
A SIR model is an epidemiological model
that computes the theoretical number of
people infected with a contagious illness in
a closed population over time. The name of
this class of models derives from the fact that
they involve coupled equations relating the
number of susceptible people S, number of
people infected I, and number of people who
have recovered R.

In the theory of ordinary differential

equations, Lyapunov stability theory wascome
out of Lyapunov, a Russian mathematician in
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1892, and came from his doctoral dissertation
[6]. Until now, the theory of Lyapunov
stability is still the main theoretical basis
of almost all phenomena in mechanics and
ecology. Then, if the COVID-19 pandemic
is described by an ordinary differential
equation, the Lyapunov stability theory will
be applied very successfully and profoundly
to understand the asymptotic behavior of
this model. We refer readers to the works
[4, 5, 7, 8, 10] and references therein for
more information on the matter. Along with
such a mathematical approach, studies on
mathematical modeling for COVID-19
using mathematical software have been
carried out. For example, the very recent
work Abreu [1] on this research direction can
be mentioned. By using the free and open-
source programming language Python and
the mathematical software SageMath, Abreu
[1] contributes a mathematical analysis of the
stability of the equilibrium points of epidemic
models and their fitting to real data.

Equitable access to safe and effective
vaccines is critical to ending the COVID-19
pandemic, so it is highly encouraging to see
so many vaccines provided and developed.
In this context, mathematical models for
COVID-19 were developed to study the
effects of vaccine treatment, see, e.g. [2, 5,
10]. It is important to emphasize that, Yavuz
et al. [10] does not consider the reinfection of
the recovered individuals and the vaccinated
individuals. But unfortunately, COVID-19 is
an epidemic with reinfection of the recovered
and the vaccinated individuals [9]. Therefore,
model (1) of Yavuz et al. [10] needs to be
modified to describe this phenomenon.

We propose a new mathematical model
based on model (1) in Yavuz et al. [10] by
adding the quantities &R and & R (see
disease transmission diagram in Figure
Ib and model (2) below) describing
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reinfection of the recovered individuals
and the vaccinated individuals. By using
the Maple computer algebra system, we
study the stability of the equilibrium points
of the mathematical epidemic model and
investigate some numerical examples. In the
numerical simulations, the parameter values
taken from the literature and estimated
are used to perform the solutions of the
proposed model. Our mathematical results
are contained in Theorem 3.1 and Theorem
3.2 on the stability of the equilibrium points
of the model (2). With the computational
approach, the results of the paper show that
Maple is a very powerful computer algebra
system in the study of ordinary differential
equations and stability theory. In particular, it
is extremely convenient to verify the stability
conditions of mathematical models.

This paper is organized as follows: In
the next section, Section 2, we recall that
the settings, biological assumptions, and
mathematical model of Yavuz et al [10]
and present our mathematical model for
COVID-19, model (2). Section 3 contains
the main results of this paper. In Section
4, we discuss the importance of numerical
results for the model we have constructed by
considering the vaccination strategies.

2 Formulation of the Mathematical Models

We start with the work Yavuz et al.
[10]. Consider the dynamic flow diagram
of the COVID-19 given in Figure la and
the biological assumptions of the model are
as follows: (1) Vaccinated individuals are
selected, either from those who have not been
exposed, or who have not been immunized.
(2) Vaccines may not completely protect
vaccinated individuals. The model then uses
the assumption that vaccinated individuals
become infected by exposure to the virus.



Figure 1: Dynamic flow diagram of the COVID-19 model

Parameter Interpretation Value
A Recruitment rate of COVID-19 viruses 50

a Rate of transition from susceptible (S) to exposed individuals (E) 0.002
m Proportion of vaccinated susceptible individuals (V) 0.5

f Rate at which exposed people (E) become infected (Y) 0.008
p Disease exposure rate for vaccinated individuals (V) 0.08
z The recovery rate of infected individuals (Y) 0.012
H Natural death rate 0.009
c Recovery rate of exposed individuals (E) 0.05
o Disease-related mortality 0.25

Table 2: Parameters used for the COV 19 model

Yavuz et al. [10] have described the COVID-19 disease by a system of nonlinear
ordinary differential equations with the parameters given in the Table 2

S=A—(aE+m+ u)S,

E=aSE+ pVE—(fY +c+ p)E,
Y=fEY—(z+u+o)Y, (1)
V=mS—(pE+pu)V,

R=zY+cE - puR.

In this context, the structure of the model (SEIVR) consists of the following
compartments: As usual, S(7),E(¢),Y(¢),V(t), and R(z) represent for individuals
susceptible, individuals exposed to the disease, infected individuals, vaccinated
individuals, and recovered individuals, respectively. (There is a subtle reason we have
to denote infected individuals by Y instead of [ as is common in epidemiological
models because the letter / is the imaginary unit in Maple.)

In model (1), parameters are given in Table 2. Detailed descriptions of these
parameters can be found in Yavuz et al. [10, Section 2]. All these parameters are
assumed to be positive real numbers.
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It 1s worth discussing that the model (1), does not consider reinfection. With the
diagram of the disease is shown in Figure 1b , this paper proposes a mathematical
model that describes the reinfection as follows:

S=A—(aE+m+ u)S+ER,
E=aSE+pVE—-(fY +c+ p)E,
Y= fEY —(z+ pu+0)Y, (2)
V =mS —(pE+ )V +&,R,

R=zY +cE—uR—(&+&)R.

In this model (1), the reinfection is described by terms <% and <X in the

first and fourth equation, and (& +S)R in the fifth equation of the model (2).

3  Stability Analysis of the Mathematical Model
The purpose of this section is to provide a condition for the equilibrium points of
the model (2) to be asymptotic stability.
First of all, positivity of the solutions, existence and uniqueness theorems for the
model (2) can be done in a same way as in Masandawa et al. [7, Theorems 1 and 3].

The model (2) takes the form of ordinary differential equation X (f)=F(X) in

Euclidean space ] ° with the setting

s FX)] [A=(@E+m+m)S+&

E F,(X) aSE + pVE—(fY +c+ n)E
X=Y |,F(X)=|FKX) |=|fEY -(z+pu+o)Y

14 F,(X) mS —(pE + p)V +&,R

R F(X) Y +cE—-uR-(§+&,)R

To find all equilibrium points of the mathematical model (2) , we solve the system of
nonlinear equations /(X)) =0. The Maple code as follows:

restart:

eql := 0 = Lambda - (E*alpha + m + mu)*S + xi[1]*R;
eq2 := 0 = alpha*S*E + p*V*E - (Y*f + ¢ + mu)*E;
eq3 = 0 = f*E*Y - (z + mu + sigma)*Y;

egd4 := 0 = m*S - (E*p + mu)*V + xi[2]*R;

eq5 :=0=2z*Y + c*E - mu*R - (xi[1] + xi[2])*R;
solve({eql, eq2, eq3, eq4, eq5}, {S, E, Y, V, R});

The output solve gives the two biological meaningful equilibrium points, disease-free-

quilibrium point y° :(SO,EO,YO,VO,RO):[ A g0, Am ,o] given by
m+p o p(m+p)
S[0] := Lamda/(m+mu); E[0] :=0; Y[0] :=0;
V[0] := Lamda*m/(mu*(m+mul)); R[0] := 0;

and the endemic equilibrium X'=(S,E,Y,,V;,R,), where

S[1] := simplify((Lambda*fA2*mu”2 + Lambda*fA2*mu*xi[1] + Lambda*fA2*mu*xi[2] +
Lambda*f*mur2*p + Lambda*f*mu*p*sigma + Lambda*f*mu*p*z +
Lambda*f*mu*p*xi[1] + Lambda*f*mu*p*xi[2] + Lambda*f*p*sigma*xi[1] +
Lambda*f*p*sigma*xi[2] + Lambda*f*p*z*xi[1] + c*f*mur2*xi[1] +
c*fE*mu*sigma*xi[1] + c*mur2*p*xi[1] + 2*c*mu*p*sigma*xi[1] +
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c*mu*p*z*xi[1] + c*p*sigmar2*xi[1] + c*p*sigma*z*xi[1] -

f*munr2*z*xi[1] - mu~r2*p*z*xi[1] - mu*p*sigma*z*xi[1] - mu*p*z~2*xi[1])/
(alpha*f*mu”3 + alpha*f*mu”2*sigma + alpha*f*mu22*z + alpha*f*mu/2*xi[1] +
alpha*f*mun2*xi[2] + alpha*f*mu*sigma*xi[1] + alpha*f*mu*sigma*xi[2] +
alpha*f*mu*z*xi[2] + alpha*mu”3*p + 2*alpha*mu”~2*p*sigma + 2*alpha*mu”2*p*z +
alpha*mu”2*p*xi[1] + alpha*mur2*p*xi[2] + alpha*mu*p*sigmanr2 + 2*alpha*mu*p*sigma*z +
2*alpha*mu*p*sigma*xi[1] +2*alpha*mu*p*sigma*xi[2] + alpha*mu*p*z/A2 +
alpha*mu*p*z*xi[1] + alpha*mu*p*z*xi[2] + alpha*p*sigma”2*xi[1] + alpha*p*sigman2*xi[2] -

alpha*f*mu*z*xi[2] + alpha*mu”3*p + 2*alpha*mu”2*p*sigma + 2*alpha*mur2*p*z +
alpha*mun2*p*xi[1] + alpha*mu?2*p*xi[2] + alpha*mu*p*sigmar2 +

2*alpha*mu*p*sigma*z + 2*alpha*mu*p*sigma*xi[1] +2*alpha*mu*p*sigma*xi[2] +
alpha*mu*p*zA2 + alpha*mu*p*z*xi[1] + alpha*mu*p*z*xi[2] + alpha*p*sigmar2*xi[1] +
alpha*p*sigmar2*xi[2] +

alpha*p*sigma*z*xi[1] + alpha*p*sigma*z*xi[2] + fA2*m*mu”2 + fA2*m*mu*xi[1] +
FA2*¥m*mu*xi[2] + FA2*muA3 + fA2*mun2*xi[1] + FA2*¥muAr2*xi[2] + F*m*mur2*p +
f*m*mu*p*sigma + ¥ m*mu*p*z + F* m*mu*p*xi[1] + f*m*mu*p*xi[2] + f*m*p*sigma*xi[1] +
f*m*p*sigma*xi[2] + f*mu”3*p + f*mu”2*p*sigma + f*munr2*p*z + f*munr2*p*xi[1] +
F*mur2*p*xi[2] +f*mu*p*sigma*xi[1] + f*mu*p*sigma*xi[2] + f*mu*p*z*xi[1]));

E[1] := (z + mu + sigma)/f;

Y[1] := simplify((Lambda*alpha*fA2*mu”2 + Lambda*alpha*fA2*mu*xi[1] +
Lambda*alpha*fA2*mu*xi[2] + Lambda*alpha*f*mu”2*p + Lambda*alpha*f*mu*p*sigma +
Lambda*alpha*f*mu*p*z + Lambda*alpha*f*mu*p*xi[1] + Lambda*alpha*f*mu*p*xi[2] +
Lambda*alpha*f*p*sigma*xi[1] + Lambda*alpha*f*p*sigma*xi[2] + Lambda*alpha*f*p*z*xi[1] +
Lambda*alpha*f*p*z*xi[2] + Lambda*fA"2*m*mu*p + Lambda*fA2*m*p*xi[1] +
Lambda*fA2*m*p*xi[2] - alpha*c*f*mu”3 - alpha*c*f*mu”2*sigma - alpha*c*f*mun2*z -
alpha*c*f*mu”r2*xi[2] - alpha*c*f*mu*sigma*xi[2] - alpha*c*f*mu*z*xi[2] - alpha*c*mu”3*p -
2*alpha*c*mu”r2*p*sigma - 2*alpha*c*mu”2*p*z - alpha*c*mu*p*sigma’2 -
2*alpha*c*mu*p*sigma*z - alpha*c*mu*p*z72 - alpha*f*mu”4 - alpha*f*mu”3*sigma -
alpha*f*mur3*z - alpha*f*mu”3*xi[1] - alpha*f*mu”3*xi[2] - alpha*f*mur2*sigma*xi[1] -
alpha*f*mu”2*sigma*xi[2] - alpha*f*mur2*z*xi[1] - alpha*f*mu”2*z*xi[2] -alpha*mu”r4*p -
2*alpha*mu”3*p*sigma - 2*alpha*mu”3*p*z - alpha*mu”3*p*xi[1] - alpha*mu”3*p*xi[2] -
alpha*mu”2*p*sigma’2 - 2*alpha*mu”2*p*sigma*z - 2*alpha*mu”2*p*sigma*xi[1] -
2*alpha*mu”r2*p*sigma*xi[2] - alpha*munr2*p*zr2 -
2*alpha*mun2*p*z*xi[1] - 2*alpha*mu”2*p*z*xi[2] -
alpha*mu*p*sigmanr2*xi[1] - alpha*mu*p*sigma”2*xi[2] - 2*alpha*mu*p*sigma*z*xi[1] -
2*alpha*mu*p*sigma*z*xi[2] - alpha*mu*p*zA2*xi[1] - alpha*mu*p*zA2*xi[2] - c*fA2*m*mu”r2 -
c*A2*¥m*mu*xi[1] - c*fA2*m*mu*xi[2] - c*fA2*¥*mur3 -
c*fA2*mur2*xi[1] -
c*fA2¥*mun2*xi[2] - c*F*m*munr2*p - c*F*m*mu*p*sigma - c*f*m*mu*p*z -
c*f*muAr3*p - c*fF*mur2*p*sigma - c*F*mur2*p*z -c*FFmur2*p*xi[1] -
c*f*mu*p*sigma*xi[1] -
c*f*mu*p*z*xi[1] - fFA2*m*mun3 - fA2*m*munr2*xi[1] - fA2*m*mur2*xi[2] -
fA2¥mund - fA2*mun3*xi[1] - fA2*munr3*xi[2] - F*m*muAr3*p -
f*m*mur2*p*sigma - f*m*mur2*p*z -

X m*mur2*p*xi[1] - F*m*mur2*p*xi[2] - F*m*mu*p*sigma*xi[1] - F*m*mu*p*sigma*xi[2] -

¥ m*mu*p*z*xi[1] - f*m*mu*p*z*xi[2] - F*murd*p - f*mur3*p*sigma - f*munr3*p*z - F*mur3*p*xi[1] -
f*mur3*p*xi[2] - f*mur2*p*sigma*xi[1] -

f*munr2*p*sigma*xi[2] - fFrmur2*p*z*xi[1] - F*mur2*p*z*xi[2])/(f*(alpha*f*mur3 +
alpha*f*munr2*sigma + alpha*f*mu~2*z + alpha*f*mu”r2*xi[1] +

alpha*f*mun2*xi[2] + alpha*f*mu*sigma*xi[1] + alpha*f*mu*sigma*xi[2] +

alpha*f*mu*z*xi[2] + alpha*mu”3*p +

2*alpha*mun2*p*sigma + 2*alpha*mu”2*p*z +

alpha*mur2*p*xi[1] + alpha*mu”2*p*xi[2] + alpha*mu*p*sigman2 +

2*alpha*mu*p*sigma*z + 2*alpha*mu*p*sigma*xi[1] + 2*alpha*mu*p*sigma*xi[2] +
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alpha*mu*p*z~2 +  alpha*mu*p*z*xi[1] +

alpha*mu*p*z*xi[2] + alpha*p*sigmar2*xi[1] + alpha*p*sigman2*xi[2] +

alpha*p*sigma*z*xi[1] +

alpha*p*sigma*z*xi[2] + fA2*m*mur2 + fA2*m*mu*xi[1] + fA2*¥*m*mu*xi[2] + fA2*mu”3 +
fA2¥muA2*xi[1] + fA2*munr2*xi[2] + F*m*mur2*p + F*m*mu*p*sigma + f*m*mu*p*z + F*m*mu*p*xi[1] +
f*m*mu*p*xi[2] +

f*m*p*sigma*xi[1] + f*m*p*sigma*xi[2] + f*mur3*p + f*mur2*p*sigma + f*mur2*p*z +
f*mur2*p*xi[1] + f*mur2*p*xi[2] + fF*mu*p*sigma*xi[1] +

f*mu*p*sigma*xi[2] + f*mu*p*z*xi[1])));

V[1] := simplify((Lambda*alpha*f*z*xi[2] + Lambda*fA2*m*mu + Lambda*fA2*m*xi[1] +
Lambda*fA2*m*xi[2] + alpha*c*mu”2*xi[2] + 2*alpha*c*mu*sigma*xi[2] + alpha*c*mu*z*xi[2] +
alpha*c*sigma’2*xi[2] + alpha*c*sigma*z*xi[2] - alpha*mu”2*z*xi[2] - alpha*mu*sigma*z*xi[2] -
alpha*mu*zA2*xi[2] + c*f*m*mu*xi[1] + c*F*m*mu*xi[2] + c*f*m*sigma*xi[1] +
c*f*m*sigma*xi[2] + c*FF*mur2*xi[2] + c*F*mu*sigma*xi[2] - f*m*mu*z*xi[1] - F*m*mu*z*xi[2] -
f*munr2*z*xi[2])/(alpha*f*mu”3 + alpha*f*mu”2*sigma + alpha*f*mu”2*z + alpha*f*mun2*xi[1]
+alpha*f*mur2*xi[2] + alpha*f*mu*sigma*xi[1] + alpha*f*mu*sigma*xi[2] + alpha*f*mu*z*xi[2]
+alpha*mun3*p + 2*alpha*mu”2*p*sigma + 2*alpha*mu”2*p*z + alpha*mu”2*p*xi[1] +
alpha*mun2*p*xi[2] + alpha*mu*p*sigma”2 + 2*alpha*mu*p*sigma*z +
2*alpha*mu*p*sigma*xi[1] + 2*alpha*mu*p*sigma*xi[2] + alpha*mu*p*z/2 +
alpha*mu*p*z*xi[1] + alpha*mu*p*z*xi[2] + alpha*p*sigmar2*xi[1] + alpha*p*sigmar2*xi[2] +
alpha*p*sigma*z*xi[1] + alpha*p*sigma*z*xi[2] + fA2*m*muA2 + fA2*m*mu*xi[1] +
FA2*m*mu*xi[2] + FA2*mun3 + FA2¥muA2*xi[1] + FA2*¥muAr2*xi[2] + F*m*mur2*p +
f*m*mu*p*sigma + F*rm*mu*p*z + F*m*mu*p*xi[1] + f*m*mu*p*xi[2] + f*m*p*sigma*xi[1] +
f*m*p*sigma*xi[2] + f*mu”r3*p + fF*mur2*p*sigma + f*mur2*p*z + fF*mur2*p*xi[1] +
F*mur2*p*xi[2] + fF*mu*p*sigma*xi[1] + f*mu*p*sigma*xi[2] + f*mu*p*z*xi[1]));

R[1] := simplify((Lambda*alpha*fA2*mu*z + Lambda*alpha*f*mu*p*z +
Lambda*alpha*f*p*sigma*z + Lambda*alpha*f*p*zA2 + Lambda*fA2*m*p*z + alpha*c*f*mu~3
+ 2*alpha*c*f*mu”r2*sigma + alpha*c*f*mu/r2*z + alpha*c*f*mu*sigmar2 +
alpha*c*f*mu*sigma*z + alpha*c*mu”3*p + 3*alpha*c*mu”2*p*sigma + 2*alpha*c*mur2*p*z
+ 3*alpha*c*mu*p*sigman2 + 4*alpha*c*mu*p*sigma*z + alpha*c*mu*p*z72 +
alpha*c*p*sigma”3 + 2*alpha*c*p*sigma’r2*z + alpha*c*p*sigma*zA2 - alpha*f*mun3*z -
alpha*f*munr2*sigma*z - alpha*f*mun2*zA2 - alpha*mu?3*p*z - 2*alpha*mur2*p*sigma*z -
2*alpha*mu”2*p*z72 - alpha*mu*p*sigmar2*z - 2*alpha*mu*p*sigma*z~2 - alpha*mu*p*z/3 +
c*fA2¥*m*mur2 + c*fA2*m*mu*sigma + c*fA2*mu”3 + c*fA2*mur2*sigma + c*F*m*mur2*p +
2*c*f*m*mu*p*sigma + c*f*m*mu*p*z + c*f*m*p*sigmar2 + c*f*m*p*sigma*z + c*f*mur3*p
+ 2*c*f*mur2*p*sigma + c*f*munr2*p*z + c*FF*mu*p*sigmar2 + c*f*mu*p*sigma*z -
fA2¥m*mun2*z - fA2*mun3*z - F* m*mur2*p*z - F*m*mu*p*sigma*z - F*m*mu*p*z/2 -
f*muAr3*p*z - f*mur2*p*sigma*z - fF*rmur2*p*z22)/(f*(alpha*f*mu”3 + alpha*f*mu/2*sigma +
alpha*f*mun2*z + alpha*f*mu”2*xi[1] + alpha*f*mu”2*xi[2] + alpha*f*mu*sigma*xi[1] +
alpha*f*mu*sigma*xi[2] + alpha*f*mu*z*xi[2] + alpha*mu”3*p + 2*alpha*mu”2*p*sigma +
2*alpha*mu”2*p*z + alpha*mu”r2*p*xi[1] +alpha*mu”2*p*xi[2] + alpha*mu*p*sigmar2 +
2*alpha*mu*p*sigma*z + 2*alpha*mu*p*sigma*xi[1] + 2*alpha*mu*p*sigma*xi[2] +
alpha*mu*p*zA2 + alpha*mu*p*z*xi[1] + alpha*mu*p*z*xi[2] + alpha*p*sigma”2*xi[1] +
alpha*p*sigmar2*xi[2] + alpha*p*sigma*z*xi[1] + alpha*p*sigma*z*xi[2] +fA2*m*mu”2 +
fA2*m*mu*xi[1] + fA2*¥*m*mu*xi[2] + fA2*¥mun3 + fA2¥mur2*xi[1] + fA2*¥muAr2*xi[2] +
FFm*mur2*p + F* m*mu*p*sigma + F*m*mu*p*z + F*m*mu*p*xi[1] + f*m*mu*p*xi[2] +
f*m*p*sigma*xi[1] + f*m*p*sigma*xi[2] + f*mur3*p + f*mur2*p*sigma + f*mur2*p*z +
fF*mur2*p*xi[1] + f*munr2*p*xi[2] + f*mu*p*sigma*xi[1] + f*mu*p*sigma*xi[2] +
*mu*p*z*xi[1])));

3.1 Stability of the Disease-Free-Equilibrium Point
The main result of this subsection is to state the asymptotic stability of the

disease-free-equilibrium point X' = (S, E,, Yy, V. Ry) =[ A ,0,0, Am ,Oj as
m+ u(m+ )
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follows:
Theorem 3.1. Consider the mathematical model (2). The disease-free-equilibrium

point X'is asymptotically stable if k <1and is unstable if x >1, where

A(au+mp)

= : 4)
u(m+ p)(c+ p)
Proof.- We need to compute the Jacobian determinant of the mapping F at the disease-

free-equilibrium point X' = (S,,Ey» Y,,V,, R,) . The Maple code to generate eigenvalues

of the Jacobian matrix Jy at X' is given below

restart;

with(VectorCalculus);

with(LinearAlgebra):

F1 := Lambda - (E*alpha + m + mu)*S + xi[1]*R;

F2 := alpha*S*E + p*V*E - (Y*f + c + mu)*E;

F3 := f*E*Y - (z + mu + sigma)*Y;

F4 := m*S - (E*p + mu)*V +

xi[2]*R;

F5 := z*Y + c*E - mu*R - (xi[1] + xi[2])*R;

J[O] := Jacobian([F1, F2, F3, F4, F5], [S, E, Y, V, R]
= [S[O], E[O], Y[O], VI[O], RI[O]]);

Eigenvalues(J[0]);

The Maple command Eigenvalues returns the eigenvalues
d Aap+Amp —cmpy —cp’ —mp’® — 1’ of the
wu(m+ 1)

—H,—p—& =&, —H—0 =z, —m—p an

Jacobian matrix J,. We have
Ao+ Amp —cmp—cp® —mu’ — 1

pu(m+ )
Therefore, since the parameters ¢ and u are positive, stability of the disease-free-

=(k=D(c+p).

equilibrium point )_(Oz( A ,0,0, Am ,OJ depends on the sign of x-1. In
m+ p H(m+ p)

other words, the proof is complete.
We can verify the condition of Theorem 3.1 with Maple command

Lambda := 50; alpha := 0.002; m := 0.5; f := 0.008; p := 0.08; z := 0.012;
mu := 0.009; c := 0.05; sigma := 0.25; xi[1] := 1/(6*30); xi[2] := 1/(12*30);
kappa := Lambda*(alpha*mu + m*p)/((m + mu)*(c + mu));

is(1 < kappa);

The is routine returns true or false. In this case, the result is true. This means, the

disease-free-equilibrium point X' is unstable.
3.2 Stability of the Endemic Equilibrium Point
For the stability of the endemic equilibrium point, we have characteristic
polynomial of the Jacobian matrix J,at the endemic equilibrium point
}] = (SI,EU},I’ K:Rl) haS form
0 =a’ +alt +a, > +a, A’ +ad+a;,  (5)
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The Maple command coef+ returns the coefficients of the characteristic polynomial:
J[1] := Jacobian([F1, F2, F3, F4, F5], [S, E, Y, V, R]
= [S[1], E[1], Y[1], VI1], R[1]1]);
P := CharacteristicPolynomial(J[1], lambda);
Theorem 3.2. Consider the mathematical model (2). If the constants a,,a,,a,,a,,a,,d;

satisfythe following conditions

a, >0, a; >0, (6)
K =aa,—a, >0, (7)
K, =a’a, —(a,a, +ag)a, +a," <0, )
K, =a a, +(~a,a,a, +a,(a; —2a,))a, —a,a,a; +aia, +a; <0, ©)]

then the endemic equilibrium point}l of the model (2) is asymptotically stable.

Proof. We have characteristic polynomial of the Jacobi matrix J, at

F:(SI,EI,YI,V],RI) 1s O(A)as described m (5) with q,=1. The Routh-Hurwitz
stability criterion for Q(1) is the following system of inequalities

_a12a4 + (02(13 + as )al _a32 > O (1 0)

a

3
a,>0, a;>0, a,——>0,

a a,a, —a,

2 .2 2 2 2
aya; +(—a,a,a, +as(a; —2a,))a, —a,aa, +aja, +a;

>0. (11

ala, +(-a,a, —ag)a, +a;
Thus, if conditions (6)-(9) are satisfied then Routh-Hurwitz stability criterion is
satisfied. Therefore, the endemic equilibrium point X = (S,E.Y,V,,R)1s
asymptotically stable, finishing the proof.
With the data in Table 2, the conditions (6)-(9) in Theorem 3.2 can be checked

with the following Maple command

kappal[l] := a[1]*a[2] - a[3];

kappal2] := a[1]*2*a[4] - (a[2]*a[3] + a[5])*a[1] + a[3]72;

kappal[3] := a[1]*2*a[4]~2 + (-a[2]*a[3]*a[4] + a[5]*(a[2]”2 - 2*a[4]))*a[1]
- a[2]*a[3]*a[5] + a[3]*2*a[4] + a[5]"2;

is(O < a[1]); is(0O < al[5]);
is(0 < kappal[l]); is(kappal[2] < 0); is(kappa[3] < 0);
Maple returns all results as true. That is, point X s asymptotically stable.
4 Numerical Examples
We now discuss some numerical results for the model we have constructed by
consideringthe vaccination strategies and the reinfection. For this simulation we have
taken few parameter values from Yavuz et al. [10] (and the references therein) as
given in Table 2.
Now, the initial values used are S(0) =500,E£(0) =20,Y(0) =10,/(0) =0 and
R(0) =0. Figure 2a depicts the behaviors and densities of mathematical model (2)
with the data given in Table 2.
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The change of the parameter «. Parameter «is rate of transition from
susceptible individ-uals to exposed individuals. We consider Figure 2b with

a :=%><0.002. Whena 1s reduced by 5 times we get the maximum point of the curve

E(t)(blue) describing the number of exposed individuals decreasing from about 340
(at t=1.5) to 280 (at r~1.8). At the same time, the maximum point of the curve Y(¢)
(orange) representing the infected individual decreases from 400 (at 7~3) to about
350 (at 1 ~3.5).

[—R—7V — v — £—3| [—r—v — v — £—75]
(a) Stability of model (2) (b) « :éxo.ooz
o /'\\ /N
350 \/ N
X X 5:; Y \\ ——
) 0 I\ T —
o | I\
oo\ 7\
r. e EEN
[—R=—7V — v — E—3] [_R_V_Yt_ £E—35]
(c) Stability of model (2) (d) @ =5%0.002

Figure 2: Dynamical behavior of the COVID-19 pandemic with the change of «

Figure 2d considers the value of a to be increased by 5 times, a =5x0.002. For
a =5x0.002, we have a peak of the curve E(¢) (blue) describing the number of exposed
individuals increasing from about 340 (at 7z ~1.5) to about 460 (atz~0.9). At the same
time, the peak of the curve Y(¢) (orange) representing the infected individual increases
from 400 (at r~3) to about 440 (at 7~2.2). Thus, the number of susceptible
individuals and infected individuals will fluctuate proportionally to the transmission
rateo .
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The change of the parameters p and m . Figure 3b consider the values of p and m
to be decreased 5 times, p=%><0.08 and m:%xo.s. Figure 3b shows the peak of the

curve V(¢) (black) describing the number of vaccinated individuals increasing from about
50 (atz~0.4)to 140 (atz~9.8). At the same time, the number of susceptible individuals
1s approximately doubled. In addition, the peak of the curve E(r)(blue) representing the
exposed individual decreased from about 340 (at z~1.5) to about 270 (at +~2.7). The
curve Y(¢)in this case is similar to Figure 2b [and the peak of the curve Y(r) (orange)
depicts the number of infected individuals decreasing from 400 to about 350 (at ¢~3.5

! Figure 3d considers the values of p and m to be increased 5 times, p=5x0.08 and
m=5x0.5. When the parameters p and m increase, observing the figure we see an
unexpected phenomenon occurs. The graph of the number of susceptible people and the
number of vaccinated people decreased by about 4 times. The number of people
exposed and the number of infected people both increased. At the same time, the curves
S(t)(red) and 7 (¢) (black) both descend very close to the horizontal axis, which means
that the number of susceptible individuals and the number of vaccinated individuals both
die.

It is clearly seen that, when increasing the parameters p and m , it not only affects the
number of individuals vaccinated against but also greatly affects other compartments.

Xt Xit Jﬁll: //
1 / \
! 7/ \
50 < 501 A2 \
S— T ——= EE=—= =
0 1 2 3 4 5 6 78 9 10 o1 2 3 4 5 6 7 8 9 10
[—r—vr }r—‘E—S‘ \—RI—V I't—‘E—S\ 1
(a) Stability of model (2) (b) ngxo.os and ngxo.s

Xit) 250

50
0
50
— _
a ; T T T T T T |
0

—r—7 Y(_ EG_;‘ : ’ B ) [—r—v Yt—‘E—S‘
(c) Stability of model (2) (d) p=5%0.08 and m =5x%0.5
Figure 3: Dynamical behavior of the COVID-19 pandemic with the change of p
and m
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