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S0 SANH DIEU KHIEN TRUQT CUGN CHIEU VA DIEU KHIEN TRUQT BAC NHAT

TRONG THEO DOI DO TRUQT BANH XE

DOI: https://doi.org/10.57001/huih5804.2023.055

ABSTRACT

The wheel slip controller serves as the cornerstone of the anti-lock braking
system (ABS). The friction between the road and tire, according to research, is a
nonlinear function of wheel slip. Therefore, it is necessary to investigate and test a
nonlinear robust wheel slip controller. The nominal model in this study is a quarter-
car model. In this research, a backstepping sliding mode controller (BSMC) and a first
order sliding mode controller (FOSMC) are the 2 types of controller methods that are
suggested and compared. The extended state observer (ESO) is used with the design
of the BSMC in order to estimate the total uncertainty. A simulation software is then
used to verify the viability of the suggested controllers.

Keywords: Wheel slip control, sliding mode control, backstepping control,
extended state observer.

TOMTAT

Diéu khién do trugt cia banh xe la nén tang cho hé théng chéng bd phanh
(ABS). Cac nghién cu da chi ra rang, hé sd ma st giita mat dudng va Iop xe, la
mot ham phi tuyén cla do trugt. Do d6, nghién c(fu va thir nghiém vé mgt bo
diéu khién phi tuyén manh mé la rdt can thiét. Mo hinh duoc st dung trong
nghién ctiu nay la mé hinh mt phan tu xe. Bd diéu khién trugt cudn chiéu va bo
diéu khién trugt bac nhét la hai loai bd diéu khién dugc dua ra va so sanh trong
bai nghién ctu nay. Bo quan st trang thdi mé rong (ESO) dugc st dung cling véi
b diéu khién trugt cuén chiéu dé udc luong tong thanh phan bat dinh cla hé
théng. Mot phan mém mé phdng dugc thuc hién dé xac minh tinh kha thi cla
nhitng b diéu khién dugc dé xudt.

Tir khéa: Diéu khién do trugt, diéu khién budc I, diéu khién trugt, bo quan
sdt trang thdi mé réng.
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1. INTRODUCTION

The anti-lock braking system is one of the most
essential components in modern vehicles for enhancing
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the safety of the driver and passengers (ABS) [1]. To satisfy
the demand, numerous onboard ABS have been
developed. For instance, the Electronic Stability Controller
(ESC), which uses the active breaking system to increase
lateral stability, has been used [2]; the automatic
emergency braking (AEB) system can direct brake torque or
desired wheel slip to avoid accidents and reduce casualties
at the same time [3]. In particular, the current trend in
wheel slip control is a shift from simple wheel locking
avoidance to continuous wheel slip tracking control [4].

Recent years have seen a significant amount of research
on this topic. The implementations for wheel slip control
fall into two categories: a rule-based strategy based on the
wheel slip ratio and direct torque control techniques based
on the vehicle or wheel model [5]. Challa et al. suggested a
combined 3-phase rule-based Slip and Wheel Acceleration
Threshold Algorithm for Anti-lock Braking in HCRVs, and
gives a method for determining the specific threshold
values that make up the rule-based ABS algorithm [6].
Pasillas-Lépine et al. introduced a novel class of anti-lock
brake algorithms (that make use of wheel deceleration
logic-based  switchings) and a  straightforward
mathematical foundation that describes their operation [7].
Jing et al. introduced a switching control strategy built on
the Lyapunov approach in the Filippov framework, which
effectively takes into consideration the discontinuous
dynamics of hydraulic actuators [8].

The model-based wheel slip control strategy has fewer
tuning thresholds than the rule-based approach
described in the preceding paragraph and may be able to
achieve continuous tracking control for wheel slip. In
Solyom et al., a gain-scheduled controller that controls
tire-slip is proposed along with a design model, and the
proposed controller outperformed several other
examined methods in terms of deceleration [9]. A second-
order sliding-mode traction force controller for cars has
been proposed by Amodeo et al., and simulation results
have shown that the proposed control system might be
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effective [10]. Mirzaei and Mirzaeinejad constructed the
quarter-vehicle model using the Dugoff tire model as the
nominal model and proposed an ideal predictive
approach to develop a nonlinear robust wheel slip
controller [11]. The study of a model-based wheel slip
control system combined with gain scheduling is the
contribution of Johansen et al.. The model is linearized
about the nominal wheel slip and the vehicle speed is
considered as a slowly time-varying parameter [12].
However, the impact of external disturbances was not
discussed in any of the research studies mentioned above;
only the influence of model uncertainty on system
performance was examined. Designing a model-based
wheel slip controller that includes model uncertainties
and external disturbances is needed.

Due to the backstepping method’s straightforward
and adaptable design process as well as its efficiency
in applying control to nonlinear systems, it has
been studied [13-15]. The backstepping strategy
is vulnerable to aggregated uncertainty, though. To
deal with lumped uncertainty, the sliding mode control
method is expanded to include the
backstepping method.

In our article, Zhang and Li [4] serves as the starting
point. Following that article, we offer a similar BSMC with
the same dynamic model's parameters. However, we
employ the ESO in place of the radial basis function neural
network (RBFNN) to estimate the lumped uncertainty. The
weakness in Zhang and Li's work is that the proposed
controller uses a derivative form of both the torque brake
and the wheel slip, even though using a derivative form in
a controller is strongly discouraged. Our paper's
contribution is two different types of controllers to address
the weaknesses mentioned.

In this paper, a BSMC combined with the ESO is
introduced to design a wheel slip controller based on a
quarter-car model. ESO is used to estimate the state
variables and the total uncertainty of the model without
the need for the derivative form of the wheel slip.
Moreover, we provided another control method for
comparison: a simple FOSMC, which also does not need
both the derivative form of the torque brake and the wheel
slip. Finally, simulations are used to compare the
performance of both controllers.

The remaining sections are arranged as follows: In the
second part, the dynamic model is considered; in the third
part, the controller design is proposed with two small parts:
BSMC and FOSMG; in the fourth part, results of simulations
using Matlab/Simulink are presented; and the conclusion of
the work is presented in the Conclusion.

2. THE DYNAMIC MODEL

Figure 1 illustrates the wheel slip controller design
using a basic yet efficient quarter-vehicle mode.
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Figure 1. The quarter-vehicle model

The dynamic equations for the quarter-car model is:

Jw=rF -T,
mv =-F,

(1)

where J is the wheel inertia, w is the angular veclocity of
the wheel, r is the wheel radius, F, is the longitudinal tire-
road contact force, T, is the brake torque, m is mass of the
quarter-car and v is the vehicle’s longitudinal speed.

The wheel slip is

V—wr
A:

v
The derivation of equation (2) is:
A= l[a — MV —aor]

v 3)

The relationship between the wheel slip and the tire-
road friction coefficient is explained by the tire model
developed by Burckhardt [16]:

M) =4 (1-e™*) -\, @
where §,9,,9 are the coefficients of a specific road’s
condition.

F, can be rewritten as F, = F,u(A), with F, is the vertical
force at the tire-road contact point.

Through transformation, we can achieve:
x, =f(x,,x,)+Gu (5)

X, =X,u=T,,
£, %,) = =1/ V[=2F00) / m)x, +((1=%) /0 +(F* / )Fa0x)] s
G=r/Jv.

Assume that both model uncertainties and external
disturbances are present in the model uncertainty,
equation (5) can be expressed as [4]:

X, =(f(x;, %)+ Af)+(G+AG)u+d
=f(x,,X,)+Gu+D,

where X, = A\

(6)

where Af and AG are the model uncertainties, d is the
external disturbances and D, = Af+AGu+d is the total

uncertainty while we assume [D, | <L.
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From the dynamic equations of the quarter-car model,
we can get the state equation for the model of the wheel
slip dynamics, which is used to develop the BSMC [4]:

{x1 =X, -

X, =f(x;,%,)+Gu+D,

Subtitue w and v from equation (1) into equation (3):

i1 [(1 TR FRM) T, r}
v m J
i (®)
1 {0_1) Fu) 1 qum}LTb
v m J Jv

Select X =Au=T,, and with the same reasoning

about lumped uncertainty, a first order equation for the
wheel slip can be obtained, which is used to develop the
FOSMC:

x; =F(x;)+Gu+D, 9)
where F(x;) = (1/V)[(x; ~(E,A(X}) /M) — (PFu(x;) /)],
G =r/Jvand D, is the lumped uncertainty while we assume
ID;|<D.
3. CONTROLLER DESIGN

3.1. Backstepping Sliding mode controller with ESO

Based on the standard ESO design, from (7), set x; = D,,
then x, =D, .The original system can then be turned to:

X, =X,
X, =X; +Gu+f(x,X,) (10)
x; =D,

The ESO is designed as:

k, _ P
—2(X, —X,)+ Gu+f(X,,X,) (11)
3

- k,
X3 :__:(X1 _X1)
€

The goal of ESO are:
X; = X;,X, > X,,X; =D, as t >
where X,,X, and X, are states of the ESO, € > 0, k;, k,, ks

are positive constants, polynominal s* + k;s? + k,s + k; is
Hurwitz.

Define

n=[n n, nJ

X=X, X, =X,

where n, =———,n, =
€

The following equations can be obtained through
transformation:
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en, = o
3
1 - ko
- _|:X2 _|:X2 __1()(1 _X1):|:|
3 3
—k - 1 -
25_21()(1 X1)+;(X2—x2)
=—kn, +n,
&N, =X, —X,

=f(x,,x,)+Gu+D, —[)?3 —k—i(fg —x1)+Gu+f(i1,>?z)j
£

=—I::—§(x1 ~%,)+(D, ~%, )+ [F (%%, )~ F(%,.%,)]

=-k,n, +n, +[f(x1,x2)—f(i1,iz)}
en, =e(DX —)?3)

k ~ .
= —E—i(x1 —X,)+€D,

=—k,n, +€D,

The fomula of the observation error system is:

e = An+Bf +£CD, (12)
Where
%, 10 0 0
A=k, 0 1[B=|1[,C=|0Ff=Ff(x,%)~f(X,%,)
—*&, 0 0 0 1

The characteristic equation of A is

Ak, -1 0
IN-A|=] k, A -1
ky 0 A

=0

then

(A +k)N +k,A+k, =0

and

N +k N +k,A+k, =0 (13)

If k,, ky, k; is chosen so that A is Hurtwitz, then for any
given symmetric positive definite matrix Q, there exists a
unique symmetric positive definite matrix P sastisfying the
Lyapunov function as follows:

A'P+PA+Q=0 (14)
Define the Lyapunov function as follows:
V, =en'Pn (15)

The derivation of V, is:
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V, =eq'Pn+en'Py
=[An+Bf +£CD_]"Pn+n"P[An +Bf + £CD, ]
=n"A'Pn+(Bf)'Pn+£(CD,) Pn+n"APh
+(Bf)Pn" +£(CD, )P’
=n"(A"P +PA)n + 2n"PBf + 2n"PeCD,

<-n'Qn+2|n|-[P8|-[f|- 2¢[n] - [Pc]-[>,

and
Vy < =Ayo (@[] + 2] |PB[f| + 2¢L [PC] ]

in which—A_, (Q)is the minimum eigenvalue of Q. To

get VO <0, the coefficient&is designed to satisfy the
following condition:

Moo (@[] = 2[n][PB]f| - 2¢L[PC]n] > 0

then the observer error n is asymptotic convergence.
Design € as

1 1— Nt
—:R:OL
€ T+e

<t<t

W R At max

(16)
where o, A, A, are positive constants. Then

LIEJXI = x,,l;ggxz = XZ'L'L'JX3 =D,

Define e, such that

(17)

where X, is the desired wheel slip. Therefore, we have:

€, =X, =Xy

€, =X, — X4 =X, — X4
Select the Lyapunov candidate function as
1
V,=—e’
2
Therefore,
Vi =e& =e(x,—Xy)
In order to realize \/1 <0, choose sliding variable
s=ce, +€ =X, +ce —X,
(c, >0). Then x, =s—c,e, +x,. Therefore,
V,=es—c,e’
If s = 0 then V, <0. Define another Lyapunov candidate
function

1

Vv, =V, +ESZ (20)

The derivative of s is:
§=X,+cé —X, =f(x,,x,)+Gu+D, +cé —X,, then
V, =V, +5$
=es—ce’ +s(f(x,,x,)+Gu+D_ +cé —X,)
Let the observing sliding mode variable be s =e, +ce,,

where e, =X, —x, and e, =X, —X,.
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To get \'/2 < 0, choose control signal u that
1 - - EO =
u=a(—f(x1,x2)—czs—e1—c1e1+xd—nsgn(s)—x3) (21)

Where ¢,> 0, n > 0. Therefore,
V, =s(e, —&,)+5(D, —X,) +5¢,(&, —e,) —C,&’ —C,55 —nssgn(s) <0
As aresult, when t > c,e, >0and e, > 0.

3.2. First-order sliding mode controller

Based on the standard sliding mode control method, we
choose e, such that:

e, =X,—X (22)

where x4 is the desired wheel slip. Therefore, we have:

& =X, —X; (23)

Define the sliding mode surface s = ce, where c is a
positive constant. Note that:

S§=cé=c(x,—X]) (24)
Select the Lyapunov candidate function as:
1
V, = ESZ (25)
The derivative of V, is given by:
V, = s§ = s(cx, — X
1 ( d 'I) (26)

= cs(x, —F(x/)—Gu-D)

In order to get \/1 <0, choose the control signal u such
that:

U=u, +u,, (27)
1 " 1
where u,, —E(—F(x1)+xd), u,, —angn(s)

To sastisfy the reaching conditions of sliding mode
control ss < —n|s|,n>0,KischosenasK=D +n.

Therefore, we can get:

V, =—cKssgn(s)—csD! <—cn|s|<0 (28)
4. SIMULATION RESULTS
The designed controllers are simulated using

MATLAB/Simulink. We test the designed controllers on a
flat, dry asphalt road using step function as the desired
wheel slip. The quarter-car model's parameters are m =
354kg, J = 0.9kgm? and r = 0,310m. F, = 3540N is the
vertical force at the point where the tire and road come
into contact. The car's initial speed is v =27.78m/s, and the
simulation ends when it slows to 3m/s. Assuming the
disturbance is a torque represented as a sine function,
added to the angular speed dynamic equations at a
frequency of 2rirad/s and an attitude of 750Nm.

The parameters of the designed ESO are chosen as
follows in order to achieve precise tracking of the
uncertainty: o = 5000, A\, = A, = 3, k,; =6, k, =11, k; = 6. The
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designed BSMC parameters are chosen as: ¢, = 300, ¢, = 200
and n=10.

‘ |
First-order

Sliding mode T, Vehicle speed
Controller v
7T\
x{] Casell Wheel speed
- r
Backstepping
Sliding mode T, F Wheel slip
Controller 7777 X
|
Case |l
: u D,
|
|
1 Vv, X
: : 1.0 Extended State Dlsturbance
| X,,,X;,|  Observer
|
I
I
v, X, X,

Figure 2. Block diagram of BSMC with ESO and FOSMC. In case |, the BSMC
are tested with and without ESO. In case Il, FOSMCis simulated

To achieve precise wheel slip tracking, the following
parameters of the FOSMC are selected: ¢ = 200 and K= 100.
In order to reduce chattering in the simulation, we can
replace sgn(s) by tanh(s).

(93]
o

Vehicle speed with ESO

= = *Vehicle speed without ESO
= = *Vehicle speed with first-order
Wheel speed with ESO
Wheel speed without ESO

= = *Wheel speed with first-order

]
W

0

Vehicle speed and Wheel speed (m/s)

0 0.5 1 1.5 2 2.5
Time (s)

Figure 3. Vehicle speed and wheel speed

0.12
0.1'( - e eSS T
= 0.08
@
Tg 0.06
=
= 0.04
Desired value
= = - Actual value with ESO
0.02 ~ = +Actual value without ESO
— — -First-order value
0
0 0.5 1 1.5 2 2.5

Time (s)
Figure 4. Wheel slip
The step function's final value is set to 0.1. Figure 3
shows that the wheel speed and the vehicle speed

successfully slowed down in a reasonable amount of time
in both controllers. The result showed that the wheel speed
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with both controllers can successfully reduce the impact of
the uncertainty and provide more stable vehicle speed and
wheel speed decreasing. Comparisons between the desired
wheel slip, the actual wheel slip with and without ESO, the
FOSMC value are shown in Figure 4. The actual value with
ESO is the closest and most stable to the desired wheel slip,
followed by the FOSMC value. The actual value without ESO
is the least stable and is highly vulnerable to uncertainty.
Figure 5 shows the torque brake generated in both
controllers. Figure 6 demonstrates how well the ESO is able
to estimate the overall system uncertainty.

2000 - e 2
— y 7 /4
= .k / \ /
Z |/ \ / \
< 1500 1/ \ \ /
S ( : / \ /
g \ / 3 /
{ i \
£ 1000 | ) / \ /
5 | \ / z /
= | \ 3 /
= X / \
M | N;. oh .
500 } R S
| = = - Brake torque with ESO
| = = *Brake torque without ESO
0 | — = * Brake torque with first-order
0 0.5 1 125 2 2.5
Time (s)

Figure 5. Brake torque

200

=)
=)

Uncertainty
S
o

-200
-300
-400 :
0 0.5 1 1.5 2 2.5
Time (s)
Figure 6. Uncertainty and estimated value
5. CONCLUSION
This study presents a comparison between the

backstepping sliding mode control strategy and the first
order sliding mode control strategy for the design of a wheel
slip controller, where the model is a quarter-vehicle model
with uncertainty. The total model uncertainty can be
precisely tracked by the extended state observer using
designed parameters. Finally, the effectiveness of the
suggested controllers is tested, using simulations on a flat,
dry asphalt road with step function as the desired wheel slip.

In future work, the slip ratio observer needs to be taken
into account because it is impossible to precisely measure
the vehicle speed. Additionally, since the longitudinal force
and vertical force at the point of contact between the tire
and the road have an unidentified scaling factor, an
adaptive control technique must be combined with the
suggested controllers.
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THONG TIN TAC GIA
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Nguyén Tung Lim
Truong Dién - Dién tk, Dai hoc Bach khoa Ha Noi
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