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ABSTRACT 
The main purpose of this paper is to present the H - infinity controller 

proposed to control the ball - balancing robot. In this paper, a method of 
building state-space models is presented. The state - space model is built on 
three separate planes xy, yz and zx by applying Lagrange equations for each 
plane. Lagrange equation is the relationship between kinetic, potential, and non 
- potential force, the model of this system is found by solving this equation. The 
H - infinity controller is designed for two planes yz, zx. Because the state - space 
model in yz and zx are the same, the H - infinity controller is only designed for 
one plane. The H - infinity controller is approached by Linear matrix inequalities 
(LMIs) to optimize the cost function. For the xy plane, the state - space model is 
different, therefore the PID controller is used. The simulation results performed 
on MATLAB/Simulink are fully presented in this paper. With the PID controller for 
the xy plane, a minor test is done to examine the response of this controller. 

Keywords: Ball balancing robot, H - infinity, Linear matrix inequalities, PID 
controller.  

TÓM TẮT 
Mục đích chính của bài báo này trình bày về bộ điều khiển H - infinity sử 

dụng trong robot cân bằng bóng. Bài báo này đã chỉ ra một phương pháp để xây 
dựng mô hình không gian trạng thái. Mô hình không gian trạng thái này được 
xây dựng bằng cách áp dụng phương trình Lagrange cho mỗi mặt phẳng xy, yz 
và zx. Phương trình Lagrange là phương trình thể hiện mối liên hệ giữa động 
năng, thế năng và các lực phi thế, mô hình của hệ thống được tìm ra bằng cách 
giải phương trình này. Bộ điều khiển H - infinity được thiết kế cho hai mặt phẳng 
yz và zx. Bởi vì mô hình không gian trạng thái của hệ thống trong hai mặt phẳng 
này là giống nhau, do đó chỉ cần thiết kế một bộ điều khiển H - infinity. Bộ điều 
khiển H - infinity được tiếp cận bằng các bất đẳng thức ma trận tuyến tính (LMIs) 
để tối ưu hóa hàm chi phí. Đối với mặt phẳng xy, mô hình không gian trạng thái 
của có sự khác biệt, nên bộ điều khiển PID được sử dụng. Các kết quả tính toán và 
mô phỏng được thực hiện bẳng MATLAB/Simulink, đối với bộ điều khiển PID, một 
thí nghiệm nhỏ được đưa ra để kiểm tra đáp ứng của nó. 

Keywords: Robot cân bằng bóng, H - infinity, bất đẳng thức ma trận tuyến 
tính, bộ điều khiển PID.  
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1. INTRODUCTION 

The ball - balancing robot (also known as the Ballbot), 
includes the main ball, three omniwheels, three motors, 
and a body, as described in Figure 1. In the body are control 
circuits, batteries, etc. Three motors and three omniwheels 
provide torques to the ball, directing the movement of the 
ball to keep the body upright. This model works almost like 
an inverted pendulum. 

Ballbot can self-balance on a ball with a small footprint. 
Therefore, the object can easily navigate in difficult terrains. 
Ballbot has the ability to move on inclined surfaces as well 
as vintage in narrow spaces. Ballbot is a new model, 
successfully built in 2005 by Ralph Hollis [1]. The maximum 
tilt angle of the first ballbot is 1 degree and used LQR/PID to 
control it. Another ballbot was developed by Tohoku 
Gakuin University from 2006 to 2008 [2, 3], and has been 
designed to be better than CMU because although only 
using the PD controller, this ballbot’s deflection angle 
could be up to 5 degrees. In addition, Amirkabir University 
of Technology [4], and the University of Adelaide [5] 2009 
have a ballbot that is at a height of 1.6m and uses LQRI 
control, however, this ballbot cannot rotate around its own 
axis.   

 
Figure 1. A ball balancing robot 
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The main contribution of this study is the successful 
application of the H - infinity controller to the ballbot 
system. That is the basis for applying this controller to 
another system, or it is possible to develop the H - infinity 
controller for the ballbot with external disturbance. 
Because the H - infinity controller is the controller to limit 
the exogenous. The dynamic model and some control 
methods are presented in detail [6]. In this study, a dynamic 
model of the ballbot was built by Euler - Lagrange method. 
The state-space equations are found by solving the 
Lagrange equation. The Lagrange equation is the binding 
between energy (including kinetic and potential energy) 
and non-potential forces. This model is separated into three 
subsystems, in that two subsystems describe the motion of 
the ballbot in yz and zx plane, and the rest of the 
subsystem describes the motion of the ballbot in xy plane. 
Furthermore, in this study, a linearization method is shown 
by the partial derivative of the equation of motion of the 
ballbot. Thus, the system is approximated around the 
balance position.  With the H - infinity controller, there are 
many ways to approach, such as the transfer function 
approach. In this paper, the H - infinity controller is 
approached by linear matrix inequalitises. The H - infinity 
controller used is a full-state feedback controller and 
ignores all noise from the environment. Simulations are 
given to demonstrate the stability of the control theory. 

This paper has a total of 6 sections, Section 2 presents 
the model of ballbot, Section 3 illustrates H - infinity control 
with the LMIs approach, Section 4 demonstrates a design of 
a PID controller for the direction of the body. Section 5 and 
Section 6 are simulations and conclusions.  
2. MODELING AND LINEARIZATION OF BALLBOT 

Table 1. Parameters of the planar model of ballbot 

Parameter Symbol Value 
Mass of the ball mK 7.13kg 
Moment of inertia of the ball JK 0.041kgm2 
Radius of the ball rK 0.12m 
Mass of the body mB 4.59kg 
Moment of inertia of the body in yz/xz plane JB 0.2kgm2 
Moment of inertia of the body in xy plane JBxy 0.06kgm2 
Distance from ball’s COM to body’s COM l 0.5m 
Mass of the omniwheel mW 0.19kg 
Radius of the omniwheel rW 0.05m 
Moment of inertia of the omniwheel JW 0.0002375kgm2 
Angle of the omniwheel relative to the ground α 450 
Angle between motors in xy plane β 1200 
Gravity acceleration g 9.81 m/s2 
Torque limit Tmax 5 Nm 

Assumptions: There is no slip, contact between the 
omniwheel and the ball as well as between the ball and 
ground. No external disturbances included assume the 
disturbances are negligible, and the ball moves only in the 
xy plane. 

A detailed description of each step is written in [7], and 
it will be plainly presented in this section. First, to make it 
easier to build a ballbot model, the ballbot is simplified by 
separating into two rigid bodies, a ball, and a body, the 
latter contains the motor, omniwheel, and internal 
electronic components. The model parameters are given in 
Table 1. There are two ways to model the ballbot [6] either 
as a planar model and a 3D model. In the planar model, the 
dynamics of rotation around the individual inertia axes are 
assumed to be completely decoupled. In 3D modeling, the 
system is modeled with coupled dynamics. In this paper, 
for simplification, the planar model is used. 

Binding equations: 

K x Kx φ r            (1) 

K y Ky φ r            (2) 

B K x K xx x φ r sinθ l            (3) 

B K y K yy x φ r sinθ l             (4) 

 
Figure 2. Planar model of Ballbot, showing the coordinates and variables.  

On the left: xy plane; on the right: zx plane. 

where, φx, φy, φz are the angles of the ball in yz, zx, xy 
planes. θx, θy, θz are the angles of the ball in yz, zx, xy planes. 
For ease of system modeling, the process moments 
generated by the motors T1, T2, T3 are converted to the 
moments of inertia of the ball in yz, zx, xy planes, Tx, Ty, Tz. 
The planar model in yz plane is the same as the planar 
model in zx plane. Thus, the equation of motion in yz plane 
is not different from the equation of motion in zx plane. 
The equation of motion can be written in matrix form as 
follow: 

2
2 K K

t K K W t W K2 2
W W

2
2 2tK

t W K W B B W t2 2
W W

K
NP

r r
m r J J r J γr cosθ

r r

rr
r J γr cosθ J J m l m r

r r

r γsinθθ
f

gγsi θ

q

n

 
    

 
 

     
 
 

 
  

  







      (5) 

where, mt = mk + mB + mW, rt = rK + rW and γ = lmB + (rK + 
rW)mW 

In xy plane, the equation of motion in xy plane is written 
as follows: 
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2 2 2.. W Bxy K W f K W Bxy z
z 2 2 2
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..
K K W f W K z
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W Bxy K K Bxy K W
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where,  K W Bxy z
f 2 2 2

W Bxy K W

r r J sinα T
T

r J r J sin α



 

The equation of motion in xz/yz plane in state - space 
form: 

q
x Ax Bu f

q

 
    

  


 

                                                         (7) 

Linearization the system by first-order Taylor expansion 
at equilibrium position with parameters of ballbot in Table 
1, the matrices of system are determined: 

;
.

.

A

 
 
 
 
 
 

0 0 1 0

0 0 0 1

0 29 709 0 0

0 22 918 0 0

          

;
.

.

0

0
B

18 39

5 53

 
 
 
 
 
 

           ;
T

4I D 0C 0 0 0                  (8) 

where, I4 is the unit matrix. The linearization of the 
system only approximates the system around the 
equilibrium position. With the above equation, it can be 
recognized that this model is like an inverted pendulum. 
Do the same with xy plane, from equation (6), the matrices 
of system is: 

,
.

.

0 0 1 0 0

0 0 0 1 0
A B

0 0 0 0 66 984

0 0 0 0 23 302

   
   
    
   
   

   

                                    (9) 

Matrixes C and D in xy plane are the same as matrixes C 
and D in zx/yz plane. 

Since the inputs in the above models are virtual torque, 
T1, T2, T3, a transformation is needed to find the torques 
required for each motor T1, T2, T3. The relationships 
between the virtual torques and the torques of the motors 
are: 

1 z z y
1 2

T T (T cosβ) T sinβ
3 cos α
( )                                  (10) 

2 z z y x y
1 1

T T (sinβ( 3 T T ) cosβ(T 3 T ))
3 cosα
( )        (11) 

3 z z y x y
1 1

T T (sinβ( 3 T T ) cosβ( T 3 T ))
3 cosα
( )        (12) 

3. LINEAR MATRIX INEQUALITIES FOR H∞ FULL - STATE 
FEEDBACK CONTROL 

There are various approaches to the control of H - 
infinity, one of which is quite popular using the transfer 
function. This method is presented in [8]. The approach by 
LMIs is also present in the papers [9-12] are also presented. 
However, their presentation is incomplete and 
confounding.  Furthermore, the controller mentioned in 
[13] has been applied without disturbances, the result is 
the same as the LQR controller. 

For the planar model in xy plane, θ  and φ  depend only 
on the input, Tz. Hence, a PID controller will be used, and 
this will be explained in Section 4. As for the zx and yz 
planes, these two planes have the same equation, therefore 
a H - infinity controller for the yz plane will be designed and 
copied to the zx plane.  

 
Figure 3. H - infinity problem 

Equations of motion of system include H - infinity 
controller [14]: 

1 2x Ax B w B u    

1 1 1 1 2z C x D w D u    

2 21 22y C x D w D u    

u K y  

Figure 3 shows a model of a closed loop of the 
controller, where w is the exogenous, z is the control error, 
u is the control signal,  y is the output of the system, the 
signals that can be measured by sensor, 

1 2

1 11 12

2 21 22

A B B
P C D D

C D D

 
   
  

 is plant to be controlled, and 

K K

K K

A B
K

C D
 

  
 

 is the controller. Follow [14], the controller 

is designed by choosing a matrix K to minimize: 

|| ( ) ||1
11 12 22 21P P I KP KP                                                          (13) 

To simplify the controller, remove the AK, BK, CK matrices, 
so, it is only necessary to find the DK matrix. For full-state 
feedback, y = x, Cx = I, D21 = 0 and D22 = 0. With the 
assumption of no external disturbances, we get B1, D11 and 
D12 are equal to zero. Thus, the closed - loop state - space 
representation is:  

ˆ ˆ( , ) 2

1

A B K 0
S P K

C 0

 
  

 
                                                          (14) 

In [14], the following are equivalent:  
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1. There exists DK such that,  

,
2

1
K

A 0 B
0 0

S C 0 0 γ
0 D

I 0 0

  
       
     

                                        (15) 

2. There exists a positive definite matrix X and Z such 
that,  

T
1

1

T T T
2 2 XCA X XA Z B B Z 0

0 γ
C X

I 0 0
0 γI

   
 

  
 
 

         

and 1
KD ZX                           (16) 

Apply to the planar model in yz/zx plane,  

 . . . .K 6 22 117 740 7 67 31 26                              (17) 

4. PID CONTROLLER FOR XY PLANE 
The control of the system in the xy plane is extremely 

simple. Because the deflection angle of the ballbot in the xy 
plane depends only on Tz. The system model in the xy 
plane is a linear system. However, it is very difficult to 
design an LQR or H - infinity  controller here, because the A 
matrix in state - space equation of the system is a special 
matrix. Therefore, a classic controller is chosen, which is 
PID. The PID controller is described as below: 

t

p i d

0

de
u K e K edt K

dt
                                             (18) 

where, e is error.  

By checking several sets of parameters, chose  Kp = 0.5, 
Ki = 0, Kd = 0.3.  

5. SIMULATION 

 
Figure 4. Angles of ballbot while rotating yaw axis (PID) 

 
Figure 5. Torques input while rotate the yaw axis (PID) 

Because the system is modeled on discrete planes, 
similar responses of the system in the yz and zx planes are 

recorded. In this study, two tests are concluded to examine 
the stability of the H infinity control. For the xy plane, the 
PID controller (shown in (18)) controls yaw axis of the 
ballbot in Figure 4 and torques for each omniwheels shown 
in Figure 5. 

 
Figure 6. Angles of ballbot while balancing ballbot (H-inf) 

 
Figure 7. Torques input while balancing ballbot (H-inf) 

 
Figure 8. Angles of ballbot while move ballbot (H-inf) 

 
Figure 9. Torques input while moving ballbot (H-inf) 

With the H - infinity controller, balancing the ballbot 
with initial angles of ballbot is 0.1 (rad) for all plane, after 4 
seconds the ballbot has completely stabilized (Figure 6). 
And the overshoot of the body tilt angle as above does not 
cause the ballbot to fall. Besides, the torque of each 
omniwheel (in Figure 7) is limited to less than Tmax (in Table 
1). And similarly, when moving the ballbot to the reference 
position (in Figure 8), the ballbot remains stable and the 
torque is still tightly controlled. 
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6. CONCLUSIONS 
In summary, this study has presented the planar model 

of the ballbot and successfully applied the H - infinity 
control to it. This controller is approached by linear matrix 
inequalities, with the purpose of controlling the tilt angle of 
the ballbot. Besides, also successfully used the PID 
controller to control the yaw axis. With the results obtained, 
both controllers are working well. In the modeling section, 
it is difficult to fully describe the system due to the system 
splitted into 3 planes and remove the noises from the 
environment. Therefore, the simulation results only 
approximate the system response. In the future, these 
control theories will be applied to the 3D model for better 
results. 
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