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H - INFINITY FULL-STATE FEEDBACK CONTROL
FOR A BALL-BALANCING ROBOT

DIEU KHIEN H - INFINITY PHAN HOI TOAN TRANG THAI CHO ROBOT CAN BANG BONG

DOI: https://doi.org/10.57001/huih5804.2023.047

ABSTRACT

The main purpose of this paper is to present the H - infinity controller
proposed to control the ball - balancing robot. In this paper, a method of
building state-space models is presented. The state - space model is built on
three separate planes xy, yz and zx by applying Lagrange equations for each
plane. Lagrange equation is the relationship between kinetic, potential, and non
- potential force, the model of this system is found by solving this equation. The
H - infinity controller is designed for two planes yz, zx. Because the state - space
model in yz and zx are the same, the H - infinity controller is only designed for
one plane. The H - infinity controller is approached by Linear matrix inequalities
(LMIs) to optimize the cost function. For the xy plane, the state - space model is
different, therefore the PID controller is used. The simulation results performed
on MATLAB/Simulink are fully presented in this paper. With the PID controller for
the xy plane, a minor test is done to examine the response of this controller.

Keywords: Ball balancing robot, H - infinity, Linear matrix inequalities, PID
controller.

TOM TAT

Muc dich chinh ca bai béo nay trinh bay vé bd diéu khién H - infinity st
dung trong robot can bang béng. Bai bao nay da chi ra mét phuong phap dé xay
dung md hinh khéng gian trang thai. Mo hinh khdng gian trang thdi nay dugc
xdy dung bang cach dp dung phuang trinh Lagrange cho méi mat phang xy, yz
va zx. Phuong trinh Lagrange la phuong trinh thé hién méi lién hé giita dong
nang, thé nang va cac luc phi thé, md hinh cia hé théng dugc tim ra bang céch
gidi phuong trinh nay. Bo diéu khién H - infinity dugc thiét k& cho hai mat phang
yz va zx. BGi vi mo hinh khdng gian trang thai cia hé thong trong hai mét phang
nay a giéng nhau, do d6 chi can thiét k& mot bo diéu khién H - infinity. B diéu
khién H - infinity duoc ti€p can bang cac bat dang thiic ma tran tuyén tinh (LMs)
dé t6i uu héa ham chi phi. DGi véi médt phang xy, mé hinh khong gian trang thai
clia c6 su khac biét, nén b diéu khién PID dugc st dung. Cac két qué tinh todn va
md phong dugc thuc hién bang MATLAB/Simulink, d6i véi bo diéu khién PID, mot
thi nghiém nhé dugc dua ra dé kiém tra dap ting cda no.

Keywords: Robot cdn bdng bong, H - infinity, bdt ddng thiic ma trdn tuyén
tinh, b diéu khién PID.
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1. INTRODUCTION

The ball - balancing robot (also known as the Ballbot),
includes the main ball, three omniwheels, three motors,
and a body, as described in Figure 1. In the body are control
circuits, batteries, etc. Three motors and three omniwheels
provide torques to the ball, directing the movement of the
ball to keep the body upright. This model works almost like
an inverted pendulum.

Ballbot can self-balance on a ball with a small footprint.
Therefore, the object can easily navigate in difficult terrains.
Ballbot has the ability to move on inclined surfaces as well
as vintage in narrow spaces. Ballbot is a new model,
successfully built in 2005 by Ralph Hollis [1]. The maximum
tilt angle of the first ballbot is 1 degree and used LQR/PID to
control it. Another ballbot was developed by Tohoku
Gakuin University from 2006 to 2008 [2, 3], and has been
designed to be better than CMU because although only
using the PD controller, this ballbot's deflection angle
could be up to 5 degrees. In addition, Amirkabir University
of Technology [4], and the University of Adelaide [5] 2009
have a ballbot that is at a height of 1.6m and uses LQRI
control, however, this ballbot cannot rotate around its own
axis.

Figure 1. A ball balancing robot
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The main contribution of this study is the successful
application of the H - infinity controller to the ballbot
system. That is the basis for applying this controller to
another system, or it is possible to develop the H - infinity
controller for the ballbot with external disturbance.
Because the H - infinity controller is the controller to limit
the exogenous. The dynamic model and some control
methods are presented in detail [6]. In this study, a dynamic
model of the ballbot was built by Euler - Lagrange method.
The state-space equations are found by solving the
Lagrange equation. The Lagrange equation is the binding
between energy (including kinetic and potential energy)
and non-potential forces. This model is separated into three
subsystems, in that two subsystems describe the motion of
the ballbot in yz and zx plane, and the rest of the
subsystem describes the motion of the ballbot in xy plane.
Furthermore, in this study, a linearization method is shown
by the partial derivative of the equation of motion of the
ballbot. Thus, the system is approximated around the
balance position. With the H - infinity controller, there are
many ways to approach, such as the transfer function
approach. In this paper, the H - infinity controller is
approached by linear matrix inequalitises. The H - infinity
controller used is a full-state feedback controller and
ignores all noise from the environment. Simulations are
given to demonstrate the stability of the control theory.

This paper has a total of 6 sections, Section 2 presents
the model of ballbot, Section 3 illustrates H - infinity control
with the LMIs approach, Section 4 demonstrates a design of
a PID controller for the direction of the body. Section 5 and
Section 6 are simulations and conclusions.

2. MODELING AND LINEARIZATION OF BALLBOT
Table 1. Parameters of the planar model of ballbot

Parameter Symbol Value
Mass of the ball m, 7.13kg
Moment of inertia of the ball J 0.041kgm’
Radius of the ball I 0.12m
Mass of the body mg 4.5%g
Moment of inertia of the body in yz/xz plane J 0.2kgm’
Moment of inertia of the body in xy plane Joy 0.06kgm*
Distance from ball’s COM to body’s COM I 0.5m
Mass of the omniwheel my, 0.19kg
Radius of the omniwheel Iy 0.05m
Moment of inertia of the omniwheel Ju 0.0002375kgm’
Angle of the omniwheel relative to the ground a 45°
Angle between motors in xy plane B 120°
Gravity acceleration g 9.81m/s?
Torque limit T 5Nm

Assumptions: There is no slip, contact between the
omniwheel and the ball as well as between the ball and
ground. No external disturbances included assume the
disturbances are negligible, and the ball moves only in the
xy plane.
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A detailed description of each step is written in [7], and
it will be plainly presented in this section. First, to make it
easier to build a ballbot model, the ballbot is simplified by
separating into two rigid bodies, a ball, and a body, the
latter contains the motor, omniwheel, and internal
electronic components. The model parameters are given in
Table 1. There are two ways to model the ballbot [6] either
as a planar model and a 3D model. In the planar model, the
dynamics of rotation around the individual inertia axes are
assumed to be completely decoupled. In 3D modeling, the
system is modeled with coupled dynamics. In this paper,
for simplification, the planar model is used.

Binding equations:

X =@, I (M
Y =@y, K% (2)
Xg =Xg =@yl +5in6, | 3)
Yg =Xk =@yl +5sin6, | (4)

Figure 2. Planar model of Ballbot, showing the coordinates and variables.
On the left: xy plane; on the right: zx plane.

where, @,, ¢y, ¢, are the angles of the ball in yz, zx, xy
planes. 6,, 8,, 6, are the angles of the ball in yz, zx, xy planes.
For ease of system modeling, the process moments
generated by the motors T,, T,, T, are converted to the
moments of inertia of the ball in yz, zx, xy planes, T,, T, T,.
The planar model in yz plane is the same as the planar
model in zx plane. Thus, the equation of motion in yz plane
is not different from the equation of motion in zx plane.
The equation of motion can be written in matrix form as
follow:
2 A Tk
merg + g +=-Jw —— Tedw + Y cos6
'w 'w
—k 7
—— Ty +ygcos6  —-Jy +Jg+mg
Tw 'w

—r ysinBO | =
o Y . = fw
—gysin©@
where, m, =m, + mg + my, r,=r + ryand y = Img + (rc +
rw)my

In xy plane, the equation of motion in xy plane is written
as follows:

G

P +my,r2 (5)
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2 2| 2 .
(f Jexy + 1 Jw SIN® ) T¢ + 1 Ry Jgyy SINAT,

i oy I + 1 gy + ) Sin” @ "
6 e sina(r Jyy sinaTe + 1, )¢ T,)
‘ iy Jay I + 1 Uy + ) Sin” @
Ik fw Jgxy SINQAT,
where, T, = KW 7By z

2 2 2
w Jexy + 1k Jwsin®a

The equation of motion in xz/yz plane in state - space
form:

X:[q]:Ax+Bu:f (7)

q
Linearization the system by first-order Taylor expansion
at equilibrium position with parameters of ballbot in Table
1, the matrices of system are determined:

o 0 10
A0 0 01
0 29709 0 Of
0 22918 0 0
[ o
B=| ©° ; C=l,; D=[0o 0 0 o )
18.39
| -5.53

where, I, is the unit matrix. The linearization of the
system only approximates the system around the
equilibrium position. With the above equation, it can be
recognized that this model is like an inverted pendulum.
Do the same with xy plane, from equation (6), the matrices
of system is:

0010 0
0 0 0 1 0
A= , B= 9)
0 00O 66.984
0 00O -23.302

Matrixes C and D in xy plane are the same as matrixes C
and D in zx/yz plane.

Since the inputs in the above models are virtual torque,
T, T, T, a transformation is needed to find the torques
required for each motor T,, T, Ts;. The relationships
between the virtual torques and the torques of the motors
are:

T1:1(TZ+ 2 (TzcosB)—TysinB) (10)
3 cosa

T, =2(1, +—L(sinB(—V3T, +T,) - cosp(T, +3T,) (11)
3 cosa

T, =2(1, +—(6inB3T, +T,)+ cosB(-T, +3T,)) (12)
3 cosa
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3. LINEAR MATRIX INEQUALITIES FOR H,, FULL - STATE
FEEDBACK CONTROL

There are various approaches to the control of H -
infinity, one of which is quite popular using the transfer
function. This method is presented in [8]. The approach by
LMls is also present in the papers [9-12] are also presented.
However, their presentation is incomplete and
confounding. Furthermore, the controller mentioned in
[13] has been applied without disturbances, the result is
the same as the LQR controller.

For the planar model in xy plane, 6 and ¢ depend only

on the input, T,. Hence, a PID controller will be used, and
this will be explained in Section 4. As for the zx and yz
planes, these two planes have the same equation, therefore
a H - infinity controller for the yz plane will be designed and
copied to the zx plane.

w Z

Figure 3. H - infinity problem

Equations of motion of system include H - infinity
controller [14]:

x=Ax+B,w+B,u
z=C;x+D;;w+Dy,u
y=C,x+D,;w+D,,u
u=Ky

Figure 3 shows a model of a closed loop of the
controller, where w is the exogenous, z is the control error,
u is the control signal, y is the output of the system, the
signals that «can be measured by sensor,

P=[C| D, D] is
C2 D21 D22

A B
K = {C_K’TK} is the controller. Follow [14], the controller
K K

is designed by choosing a matrix K to minimize:

[P +P12(|_KP22)_1KP21 I

plant to be controlled, and

(13)

To simplify the controller, remove the A, By, Cx matrices,
so, it is only necessary to find the D, matrix. For full-state
feedback, y = x, C, = I, D,; = 0 and D,, = 0. With the
assumption of no external disturbances, we get B,, D,, and
D,, are equal to zero. Thus, the closed - loop state - space
representation is:

S(.R) = {—'—A s g} (14)
1

In [14], the following are equivalent:
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1. There exists Dy such that,

fefo =y

2. There exists a positive definite matrix X and Z such
that,

A |0 B,
si{c, [0 o
1 o o

(15)

ATX+XA+Z'B)+B,Z 0 XC]
0 -yl 0 [<0
C.X 0 -yl
and D =2x" (16)
Apply to the planar model in yz/zx plane,
K=[6.22 117.740 7.67 31.26] (17)

4. PID CONTROLLER FOR XY PLANE

The control of the system in the xy plane is extremely
simple. Because the deflection angle of the ballbot in the xy
plane depends only on T,. The system model in the xy
plane is a linear system. However, it is very difficult to
design an LQR or H - infinity controller here, because the A
matrix in state - space equation of the system is a special
matrix. Therefore, a classic controller is chosen, which is
PID. The PID controller is described as below:

t
de
u :er+Kijedt+Kd— (18)
dt
0
where, e is error.

By checking several sets of parameters, chose K, =05,
K, =0, Ky=0.3.

5. SIMULATION
0.1
_0.1',\/
= —)
=0.05
oo
<
g N | I |
0 1 2 3 4 5 6
Time [s]
Figure 4. Angles of ballbot while rotating yaw axis (PID)
|
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Figure 5. Torques input while rotate the yaw axis (PID)

Because the system is modeled on discrete planes,
similar responses of the system in the yz and zx planes are
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recorded. In this study, two tests are concluded to examine
the stability of the H infinity control. For the xy plane, the
PID controller (shown in (18)) controls yaw axis of the
ballbot in Figure 4 and torques for each omniwheels shown

in Figure 5.
0.6
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< 02
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< 9
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Time [s]
Figure 6. Angles of ballbot while balancing ballbot (H-inf)
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Figure 7. Torques input while balancing ballbot (H-inf)
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Figure 8. Angles of ballbot while move ballbot (H-inf)
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Figure 9. Torques input while moving ballbot (H-inf)

With the H - infinity controller, balancing the ballbot
with initial angles of ballbot is 0.1 (rad) for all plane, after 4
seconds the ballbot has completely stabilized (Figure 6).
And the overshoot of the body tilt angle as above does not
cause the ballbot to fall. Besides, the torque of each
omniwheel (in Figure 7) is limited to less than T, (in Table
1). And similarly, when moving the ballbot to the reference
position (in Figure 8), the ballbot remains stable and the
torque is still tightly controlled.
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6. CONCLUSIONS

In summary, this study has presented the planar model
of the ballbot and successfully applied the H - infinity
control to it. This controller is approached by linear matrix
inequalities, with the purpose of controlling the tilt angle of
the ballbot. Besides, also successfully used the PID
controller to control the yaw axis. With the results obtained,
both controllers are working well. In the modeling section,
it is difficult to fully describe the system due to the system
splitted into 3 planes and remove the noises from the
environment. Therefore, the simulation results only
approximate the system response. In the future, these
control theories will be applied to the 3D model for better
results.
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