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NOVEL ADAPTIVE EQUALIZERS FOR THE NONLINEAR CHANNEL
USING THE KERNEL LEAST MEAN SQUARES ALGORITHM

BO CAN BANG THICH NGHI MOI CHO KENH VE TINH PHI TUYEN
U DUNG GIAI THUAT BINH PHUONG TRUNG BINH TOI THIEU KERNEL

ABSTRACT

The combination of the kernel trick and the least-mean-square (LMS)
algorithm provides an interesting sample by sample update for an adaptive
equalizer in reproducing Kernel Hilbert Spaces (RKHS), which is named here the
KLMS. This paper shows that in the finite training data case, the KLMS algorithm
is well-posed in RKHS without the addition of an extra regularization term to
penalize solution norms. In this paper, we propose an algorithm for Kernel
equalizers based on LMS algorithm with more simple computation, while the
convergence rate will be adjusted based on the algorithm's control step size. The
solution can be applied to the equalizers in OFDM satellite systems in order to
reduce output errors and capacity of computation.
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TOM TAT

tdi thiéu (LMS) cho phép néng cAp ting mAu ddi véi bd can béng thich nghi
trong khdng gian tai tao Hilbert Kernel (RKHS), dugc goi 1a KLMS. Bai béo ching
t6 réng trong trudng hop s6 liéu hudng dan hiu han, gii thuat KLMS thich hop
trong khdng gian RKHS ma khong can thém mot gidi han on dinh mé rong. Trong
bai bAo nay, mot gidi thuét duoc d& xuat cho bd can bang kernel dua trén LMS
vdi viéc tinh toan don gidn hon trong khi tac d hdi tu cd thé duoc diéu chinh dira
trén kich thude budc didu khién clia thuét toan. Gidi phap nay cd thé duoc ap
dung cho b can béng trong hé thdng thdng tin vé tinh OFDM gidip gidm 16i dau
rava khéi lugng tinh toan.

Tirkhoa: Phurong phép kernel; gidi thuat LMS; kénh vé tinh; can béng kénh.
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1. INTRODUCTION

Nowadays, the OFDM satellite information systems are
considered to be strong nonlinear systems. Under the
influence of radio transmission medium, the nonlinearity of
the channel causes the signal to be intercepted between
the symbols, ISI, and the interference between the
subcarriers, ICl. Signal predistortion techniques at the
transmitters [11] or equalizers at the receivers can be used
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to eliminate these interferences. The proposed control
algorithms usually use the Volterra series. These algorithms
are respresented in high order series [8] therefore they are
extremely complex. Over the past ten years, adaptive
nonlinear equalizers are being used in satellite channels [8].
These equalizers mainly use artificial neural networks [8, 11]
and RBF networks are the most commonly used method.
RBF equalizers, with simple structures, have the advantage
of being adequate for nonlinear channels. However, their
most basic disadvantage is that only the optimal local root
can be found. Therefore, the output errors will be very large
when these equalizers are used in OFDM satellite
information systems. To overcome this disadvantage,
kernel equalizers have been proposed with the application
of kernel method to traditional equalization algorithms for
the purpose of simplifying computation and thus
improving the equalization efficiency [6, 7] [9, 10].

In this paper, we propose a new equalization method
using multikernel technique which operates based on
adaptive KLMS algorithm. Because this method uses the
gradient principle therefore the computation is simple
and effective [11]. This equalization algorithm is mainly
based on least mean squares (LMS) algorithm and is
kernel standardized accepts consistent criteria for
directory design [12].

Basically, the LMS multikernel algorithm is still based on
gradient princile. However, due to the specificity of the
multikernel, there are different application hypotheses. In
[1], to restrain imposing optimal weight, the authors used a
port fuction softmax s, (n), therefore limits the application
areas of the equalizer. In [2], the authors developed a
multikernel learning algorithm based on the results of Bach
et al. 2004 [3] and the extension of Zien and Ong 2007 [13].
The optimization tool is based on Shalev-Shwarts and
Singer 2007 [14]. This is a generic framework for designing
and analyzing the most statistic gradient descent
algorithm. However, they are not commonly used for the
fuctions with strong convexity. Do et al. 2009 [15] proposed
the Pegasos algorithm, which has relatively good
convergence with small A. The disadvantage of this
algorithm is that it requires knowing the upper limit of the
optimal root.
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In this paper, we propose an algorithm for kernel
equalizers based on LMS algorithm that does not require
the above factors to make the computation more simple,
while the convergence rate will be adjusted based on the
algorithm's control step size. The LMS kernel algorithm
makes the output error of the equalizer smaller than the
conventional LMS algorithm, therefore it is consistent with
the equalizers in OFDM satellite systems.

The structure of this paper is presented as follow:
Section 2: Kernel method; Section 3: KLMS equalizer;
Section 4: Simulation and Section 5: Conclusion.

2. KERNEL METHOD

Kernel trick gives an algorithm which uses inner
products in it's calculations. We can construct an
alternative algorithm, by replacing each of the inner
products with a positive definite kernel function.

Kernel Function: Given a set X, a 2-variable function
K: X x X —Cis called positive definite kernel function
(K= 0) provided that for each n € N and for every choice of
n distinct points {X;,.....x,} € X the Gram matrix of K
regarding {Xi,......X,} Is positive definite.

The elements of the Gram Matrix (or kernel Matrix) of K
regarding {x,,......X,} are given by the relation:

(K%)= K(xi,x) for ijj = 1,...,n (1)

The Gram Matrix is a Hermitian Matrix i.e. a matrix equal
to it's Conjugate Transpose. Such a matrix being Positive
Definite means that A = 0 for each and every one of it's
eigenvalues A.

Kernel Trick:
Consider a set X and a positive definite (kernel) function
K: X xX — R. The RKHS theory ensures:

o the existence of a corresponding (Reproducing Kernel)
Hilbert Space H, which is a vector subspace of F (XR)
(Moore’s Theorem).

o the existence of a representation ® : X — H: ®(x) = k,
(feature representation) which maps each element of X to
an element of H (k, € H is called the reproducing kernel
function for the point x).

so that:

(PX);PYNH = Kk = ky(X) =K(x,y)
Thus:

e Through the feature map, the kernel trick succeeds in
transforming a non-linear problem within the set X into a
linear problem inside the “better" space H .

¢ We may, then, solve the linear problem in H, which
usually is a relatively easy task, while by returning the result
in space X. We obtain the final, non-linear, solution to our
original problem.

Some Kernel functions:

The most widely used kernel functions include the
Gaussian kernel:
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K(xix;) = eﬂllexjn2 2)
as well as the polynomial kernel
K(xix)) = (%7 %; + 1)P (3)

But there are plenty of other choices (e.g. linear kernel,
exponential kernel, Laplacian kernel etc.)

Lots of algorithms capable of operating with kernels
including adaptive filters (Least Mean Squares Algorithm)
etc.

3. KLMS EQUALIZERS

The Channel Equalization Task aims at designing an
inverse filter which acts upon the filter's output, x,, thus
producing the original input signal as close as possible.

We execute the algorithm NKLMS for the set of examples
((Xnvxn»l! e vxn»k+1)wyn»D)

where k > 0 is the “equalizer’s length" and D the “equalizer’s
time delay" (present at almost any equalization set up).

In other words, the equalizer's result at each time
instance n corresponds to the estimation of y, ..

Vol v,
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Figure 1. Equalization Task

Motivation:

Suppose we wish to discover the mechanism of a function

F:X cR™— R (true equalizer)
having at our disposal just a sequence of example inputs-
outputs
{(xp,dp),(X5,dy),...,(X,dn),...}
(where x, e XcRMand d, € R foreveryn e N).

Objective of a typical Adaptive Learning algorithm: to
determine, based on the given “training" data, the proper
input-output relation, f,, member of a parametric class of
functions H = {f,,: X —> R, w € R"}, so as to minimize the
value of a predefined loss function L(w).

L(w) calculates the error between the actual result dn

and the estimation f,(x,), at every step n.
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Figure 2. Adaptive Equalizer
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Stochastic Gradient Descent method: at each instance
timen=1.2,...,N the gradient of the mean square error

'VL(W) = 2E[(dn - Wn»lTXn)(Xn)] = 2E[enxn] (4)
approximated by it's value at every time instance n
E[enxn] = enxn (5)

leads to the step update (or weight-update) equation,
which, towards the direction of reduction, takes the form:

Wn = Wn»l + “enxn (6)
Note: parameter u expresses the size of the “learning
step” towards the direction of the descent.

The Least-Mean Square Code:

ew=0

efori=1toN (e.g. N=5000)
f=w'x
e=d;-f (a priori error)
W =W + pex;

¢ end for

Variation: generated by replacing the last equation of
the aforementioned iterative process with

Py @)

llxil12 1
called Normalized LMS. It's optimal learning rate has been
proved to be obtained when p=1.

Settings for the Kernel LMS algorithm ;
¢ new hypothesis space: the space of linear functionals
H, = {T 1 H = R, T (0(X)) = (W;¢(X))w, W € H}

W= W+

¢ new sequence of examples: {(¢(x,),d,),....(d(X,),d.)}
¢ determine a function
f(Xn) = Tw(d(X,) =<w,f(xn)>,, weH

s0 as to minimize the loss function:
L(w) = E[ld,, -f (x)I*] = Elld, - (W, (X)) 7]
e oNce more:
e,=d,-f(x,)
We calculate the Frechet derivative:
VL(w) = -2E[e¢(x,)]
which again (according to LMS rational...) we approximate
by it's value for each time instance n
VL(w) = -2e,0(X,,)
eventually getting, towards the direction of minimization
Wi = Wiy + pend(x,) (8)
The Kernel Least-Mean Square Code:
¢ Inputs: the data (x,,y,) and their number N
e Output: the expansion w= YY_ a K(; @), where
O = L€y
e Initialization:

2 = 0, n: the learning step, . the parameter p of the
learning step

Define: vector & =0, array D = {} and the parameters of
the kernel function.

eforn=1...Ndo
ifn==1then
f,.=0
else
Calculate the equalizer output

fn = ZMk—_l A I(ll k'Xn)

end if
Calculate the error: e, = d,-f,
o = [E,
Register the new center u, = X, at the center’s
list, i.e.
D={Du,}, & ={d" ;a;}
e end for

Notes on Kernel LMS algorithm: After N steps of the
algorithm, the input-output relation is

Wy =1l e dp(x,)

f(xn) = HZ;?:? ekK(xk’xn) (9)
We can, again, use a normalised version:
Wn =Wpg + K(f:::fn) ¢(xn) (10)

getting the normalized KLMS (NKLMS).(replacing the step
a, = we, with a, = e /k, where k = K(x,x,) would have
already been calculated at some earlier step).

4. SIMULATIONS

In order to test the performance of KLMS algorithm we
consider a typical non-linear channel equalization task. The
non-linear channel consists of a linear filter

t,=0.8y,+ 0.7y,
and a memoryless non-linearity
g,=t,+0.8t*+0.7t}2
Then, the signal gets effected by additive white

Gaussian noise being finally observed as x,. Noise level has
been set equal to 15dB.

We used 50 sets of 5000 input signal samples each
(Gaussian random variable with zero mean and unit
variance) comparing the performance of standard LMS with
that of KLMS.

We consider all algorithms in their normalized version.
The step update parameter was set for optimum results (in
terms of the steady-state error rate). Time delay was also
configured for optimum results.

The learning curve is plotted in Figure 3. We compare
the performance of the conventional LMS and the KLMS.
The Gaussian kernel with a = 0.1 is used in the KLMS for
best results, and | = 5 and D =2. The results are presented in
Table II; each entry consists of the average and the
standard deviation for 100 repeated independent tests. The
results in Table 1 show that, the KLMS outperforms the
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conventional LMS in terms of the bit error rate (BER) as can
be expected because the channel is nonlinear. The
regularization parameter for the LMS and the learning rate
of KLMS were set for optimal results.
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Figure 3. The leaming curves of the LMS (n = 0.005) and kernel LMS
(n=0.1) in the nonlinear channel equalization (6= 0.4)

Table 1. Performance comparison in nce with different noise levels o

1000

Algorithms Linear LMS (n =0.005) KLMS (n=0.1)
BER (0=0.1) 0.162+0.014 0.020+0.012
BER (0=0.4) 0.177+0.012 0.058+0.008
BER (0=0.8) 0.218+0.012 0.130+0.010

5. CONCLUSIONS

This paper proposes the KLMS algorithm used in
Nonlinear Satellite Channel Equalization. Since the update
equation of the KLMS can be written as inner products,
KLMS can be efficiently computed in the input space. This
capability includes modeling of nonlinear systems, which is
the main reason why the kernel LMS can achieve good
performance in the nonlinear channel equalization.

Demonstrated by the experiments, the KLMS has
general applicability due to its simplicity since it is
impractical to work with batch mode kernel methods in
large data sets. The KLMS is very useful in problems like
nonlinear channel equalization The superiority of KLMS is
obvious, which was of no surprise as LMS is incapable of
handling non-linearities.
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