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ABSTRACT 
Normal Mode (NM) and Parabolic Equation (PE) have been used widely by 

Underwater Acoustic Community due to their effectiveness. In this paper, author 
investigates NM and PE in term of their mathematical approach as well as their 
computation. Further, Tonkin Gulf has been modeled and simulated using both 
of NM and PE. The simulation results show that there are the agreement and the 
reliability between both methodologies.  

Keywords: SONAR, Parabolic Equation, Normal Mode, Tonkin Gulf. 

TÓM TẮT 
Phương pháp Mode chuẩn và phương trình Parabolic được dùng rộng rãi 

trong cộng đồng thủy âm vì sự hiệu quả của chúng. Trong bài báo này, tác giả
nghiên cứu mode chuẩn và phương trình Parabolic ở khía cạnh toán học và tốc độ
tính toán. Hơn nữa, Vịnh Bắc Bộ được mô hình hóa và mô phỏng dùng cả mode 
chuẩn và phương trình Parabolic. Các kết quả mô phỏng cho thấy có sự đồng 
nhất và tin cậy giữa hai phương pháp trên.  

Từ khóa: SONAR, Phương trình Parabolic, Mode chuẩn, Vịnh Bắc Bộ. 
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1. INTRODUCTION 
First, sound propagation in ocean waveguide is 

investigated for a long time since its important role in 
SONAR (Sound navigation and ranging) techniques. As we 
known, there are numerous ways of the underwater sound 
modeling which appeared in time order namely ray, normal 
mode (NM) and parabolic equation (PE) [1]. 

Second, the NM is introduced the first time 
independently by Pekeris [2] and Ide [3] and then is 
classified by Williams [4]. After some decades of 
development of the NM, it becomes one of the most 
powerful approach of ocean acoustic computation. The 
best idea of NM is that it considers an acoustic pressure as 
an infinite number of modes which are similar to those  
obtained from a vibrating string. Each mode corresponds 

to an eigenfunction (mode shape) and an eigenvalue 
(horizontal propagation constant). 

Third, the PE method is introduced firstly by Tappert [5] 
and is considered the modern  method since it applied for 
the medium which has layers separated unclearly [5-8]. The 
advantages of parabolic method consists of  using a source 
with one-way propagation, applying for range 
dependence, as well as performing in the medium which is 
not required exactly layered separation.  

In this paper we investigate NM and PE in term of their 
mathematical approach as well as their computation. 
Besides, Tonkin Gulf has been modeled and simulated 
using not only NM but also PE. The obtained results show 
that when we divided the grid small enough (the depth, 

z
4


  , the range, ( )r 5 10 z    , the parabolic algorithm 

converged fast. The achieved results of transmission loss 
factors (TLs) shows that there is a consistent agreement of 
TLs between NM and PE. The computation of PE is slightly 
more than NM.  

The rest of the paper is organized as follows. Section 2 
presents the mathematical representations of NM and the 
PE. We evaluate the NM and PE model in Tonkin gulf in 
section 3. Section 4 is our discussions. We conclude the 
paper in section 5. 

2. NORMAL MODE AND PARABOLIC EQUATION 

2.1. The Normal Mode 
Staring from Helmholtz equation in two dimensions 

with sound speed c and density ρ depending only on depth 
z [1]: 
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where zs is source depth, z is depth and r is distance. 

Using separation of variables (r, z) (r). V(z)  , we 
obtain the modal equation 
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( ) [ ] [ ] ( )
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with the boundary conditions such as  
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dV
V 0 0 0

dz            (3) 

The former condition implies a pressure release surface 
and the latter condition is from a perfect rigid bottom. The 
modal equation that is the center of the NM, has an infinite 
number of modes. Each mode represents by a mode 
amplitude Vm(z) and a horizontal propagation constant krm. 
Vm(z) and krm are also called eigenfunction and eigenvalue 
respectively 

Noting that the modes are orthonormal, i.e., 
D
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Since the modes forms a complete set, the pressure can 
represents as a sum of the normal modes 
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After some manipulations, we obtain 
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where 1
0H  is the Hankel function of the first kind. 

Substitute (6) back to (5) we have 
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Finally, using the asymptotic approximation of the 
Hankel function, the pressure can be written as 
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2.2. The Parabolic Equation 
Starting from the Helmholtz equation in the most 

general form [1] 

( )2 2 2
0ψ k n 1 ψ 0              (9) 

where n is the refraction index of the medium and k0 is the 
wavenumber at the acoustic source. 

In cylindrical coordinate, (1) becomes 

( )2 2
rr r zz 0
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in which the subscripts denote the order of derivative.  
From the assumption of Tappert [5-6], ψ is defined as 

( , ) ( , ) ( )ψ r z r z V r             (11) 

where z denotes depth and r denotes distance. 
Thus (10) becomes the system of equations as follows 
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The root of (13) is a Hankel function with its 
approximation as 
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After some manipulations, (12) becomes 

( )2 2
0 r zz 02ik k n 1 0              (15), 

i.e. a parabolic equation. 
Taking the Fourier transform both side of (15) in z 

domain obtained 
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Rewrite (16) in simpler form as 
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Thus, from [9] we have 
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where ( ,k )0 zr is the initial value of the source. 

Taking the Inverse Fourier transform both side of (18) 
obtained 

2
z20

0 z

i rkk
i (n 1) r 2ik ik z2

0 z z(r, z) e (r ,k )e e dk
 

 



  
                      

(19) 

where 0r r r   . 

Finally, we arrived 
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This form is called Split-Step Fourier transform. 

3. SIMULATION RESULTS 

3.1. The acoustic and noise source 
The point source with the center frequency of 250Hz and 

the depth of  99m is used in this simulation. We assume that 
the receiver is placed at the same transmitter’s depth; the 
noise source is Gaussian and the SNR level of 3dB. 

3.2. Medium parameters 
Table 1. The medium parameters  

Paremeter Value 
Ocean depth 100m 

Sound speed in winter c(z) = 1500 + 0.3z (m/s) 

Bottom Sand, ρ1 = 2000 kg/m3 
c1 = 1700 m/s 

  In this simulation, Tonkin gulf is used as Pekeris 
waveguide model with its sound velocity which is 
measured from [10]. Thuc was carried out many sound 
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speed measurements which were reported in his 
monograph. On the basis of Thuc’s results, the medium 
parameters of Tolkin gulf are given in the Table 1. 

In Table1, c denotes sound velocity whereas ρ indicates 
medium density. 

3.3. Simulation Results 
The transmission loss factors (TLs) of NM and PE are 

shown in Figure 1 and 2.  

 
Figure 1. Transmission loss factors of NM and PE with range up to 15km, 

noiseless case 

 
Figure 2. Transmission loss factors of NM and PE with range up to 15km,  

SNR = 3dB 

4. DISCUSSIONS 
From Figure 1 and Figure 2 we can see clearly that the 

TLs of both NM and PE with range up to 15km far from the 
acoustic source.  In the conditions of this simulation, this 
TLs are stable after hundreds of simulations. Further, there 
is the agreement of TLs between NM and PE.   

In the first case (noiseless case), from Figure 1, the TL of 
PE seems reducing to distance more slightly than the TL of 
NM. It is basically, could be thought of the nature of range 
dependence of PE approach.  

In the second case (when SNR of 3dB), from Figure 2, 
the agreement of TLs of both methods is more consistent 
since the signal level in this case is higher than the noise 
level and it is compensated for a long range transmission. 

The computation of PE is slightly more than NM (it is not 
shown here). 

5. CONCLUSIONS 
In this paper, the rigorous mathematical analyses  of NM 

and PE are presented. The idea behind NM is vibrating of 
modes along depth axis and behind PE are one-way 
propagation and using Split-Step Fourier transform. 
Further, in conditions of this simulation, there is a 
consistent agreement of TLs between NM and PE in both 
noise and noiseless cases. 
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