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Abstract. The infinite system of differential equations for the nonequilibrium Green functions
of electrons in a single-level quantum dot connected with two conducting leads is truncated by
applying the mean-field approximation to the mean values of the products of four operators. As
the result the system of Dyson equations for the two-point real-time nonequilibrium Green func-
tions in the Keldysh formalism as well as that of the two-point imaginary-time Green functions
are derived.

1. INTRODUCTION

The electrons transport through a single-level quantum dot (QD) connected with
two conducting leads was the subject for the theoretical and experimental studies in many
works since the early days of the nanophysics [1-19]. Two observable physical quantities
which can be measured in the experiments on the electrons transport are the electron
current through the QD and the time-averaged value of the electrons number in the QD.
All they are expressed in terms of the single-electron Green functions. Since the electron
transport is a nonequilibrium process one should work with the in Keldysh formalism of
nonequilibrium complex-time Green functions [20,21]. Due to the presence of the strong
Coulomb interaction between electrons in the QD the differential equations for the single-
electron Green functions contain the multi-electron Green functions and all these coupled
equations form an infinite system of differential equations for an infinite number of Green
functions. In order to find some approximate finite closed system of equations one can
either to apply the perturbation theory and retain only some appropriate chain of ladder
diagrams or to assume some approximation to decouple the infinite system of equations
and obtain a finite closed system. In the former case one should use the noncrossing
approximation. In both cases the form of the approximate finite system of equations
depends on the mechanism of the approximation and therefore the approximate systems in
different works are different. In order to prepare our further study we revise the derivation
of the approximate finite system of equations for the complex-time Green functions of
electrons in the open single-level QD. As the mechanism for decoupling the infinite system
of equations to obtain the approximate finite one we assume the mean-field approximation
to the mean values of the products of four operators. The system of two Dyson equations
for two complex-time two-point Green functions will be derived.
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In Sec. II the Hamiltonian of the model and the equations of motion for the electron
destruction and creation operators are presented. The differential equations for the Green
functions are derived in Sec. III. In Sec. IV from the mean-field approximation it follows
the relations between the Green functions which decouple the infinite system of equations
and lead to the closed system of Dyson equations for two complex-time Green functions.
The conclusion and discussions are presented in Sec. V.

2. HAMILTONIAN AND EQUATIONS OF MOTION

Consider the single electron transistor (SET) consisting of a single-level quantum dot
(QD) connected with two conducting leads through two potential barriers. The electron
transport through this SET was investigated experimentally and studied in many theoret-
ical works [1-19]. It was assumed that the electron system in this SET has following total
Hamiltonian

H :Ezc;cg + Unyny + ZZ {Eo( K)at ( k)as( k) + Ey( k)b ( k)bs( k)}
+ZZ{V 0 (K)o + Vi ( K)etao( K) + Vo Kb ( K)eo + Vi ( K)ebbo( K)},

N :C(—y’—cav J:T,l,
E=E°—p, BEu(k)=E)(k) — o, Ep(k)=Ej(k) -,
(1)

where ¢, and ¢} are the destruction and creation operators for the electron at the energy
level E¥ in the QD, a,(k), b, (k) and a} (k), b} (k) are those of the electrons with the
kinetic energies E0(k), E{(k), resp., in the leads; p, iq, p are the corresponding chemical
potentials, V, (k) and V;(k) are the coupling constants in the effective tunneling interaction
Hamiltonian.

For the study of the Green functions we work in the Heisenberg picture and set

colt) = eth et ey (t) = ez‘HtC(—Tl—e—z‘Ht7
ao( k1) = eMas(K)e ™, a5 (k1) = eag (ke ", (2)
bo( k,t) = eZthJ( k)e 1t bo( k,t) = '} (k)e

These formulae can be used not only for the real time ¢, but also for the complex time ¢
in the Keldysh formalism. In terms of the operators in the 1. h. s. of the formulae (2) we
define the Green functions

7

GE(t — 1) = 8, G(t — 1) = —i (Tc|eo(t)E, /(t’)]> ﬂ : 3)
HE (t—1) =650 HC(t —t') = —i (Te[n—o (t) c» ( ) )5 (4)
G (kit—t') = 0,0 G( kit —t') = —i (Tolas( k, t)c ]>ﬂ, (5)
Hgo(kit =) = 850 H( kit = t') = —i (Tc[n—o(t)a (kt) () g (6)

(7)

Ggff/c( k;t — t) - 500 Gaccc( k t— t ==t <TC a— ( k’ t)CJ( ) J(t)é ( /)]>ﬂ7
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GEif( kit —t') = 65 G kit —t') = —i (To[c—o(t)co (t) a_,(
GUC(kt —t') = 6,0 Geot (ki t —t') = —i (Tela—g(kyt)a, (1, t)e—q (t) (¢
Gkt — 1) = 6,0 G* (KLt —t') = —i (Tela—q(kt)co ( )

and similarly for the others
Goo(kst =), Hyg/(kit —t'), Goaf(kt —t'),
Gebe(kt — 1), GUT(k,Lt—t), GL(k,lt—t)
etc., where (...) ;3 denote the thermal equilibrium statistical average value
B Tr { . .e‘ﬁH}
(...) 5 = W
and T denote the ordering along the Keldysh contour C in the complex t plane presented
in Fig. 1.
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Fig. 1. Contour C consists of three parts C'= C; U Cy U Cs.

Because there is no magnetic interaction all Green functions (3)—(10) are propor-
tional to dyq.

From the equal-time canonical anti-commutation relations between the
electron destruction and creation operators it follows the equations of motion for the
operators

ey (t) . .
i—p— = Beo(t) +Ung(t)es(t) + Zk: (Vi(k) ag(k,t) + Vi(k)bo(k,t)],  (11)
idé;ft) = —Eey(t) — Un_q(t) ,(t) — Zk: [Va(K)dg (kot) + Vi (k)b (kot)], (12)
iw = Eu(k)as(kyt) + Va(k)eq (1), (13)
4o (kt)

dt

—E.(k)a,(k,t) — V. (k)éo (1),
and similarly for b,(k,t) and b, (k,t)

a
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3. DIFFERENTIAL EQUATIONS FOR THE GREEN FUNCTIONS

Using the equation of motion (11) and the equal-time canonical anti-commutation
relation between ¢, (t) and ¢,/ (t') it is easy to derive the differential equation for the Green
function G5, (t — /)

d - _
[1'% — E] GE (t—1t) =050 0c(t =)+ UHE, (t — ')
) (15)
+ Z k)G, (ki t — t') + Vi (k)G (ks t — 1)),

which contains the Green functions H, (t — '), G, (k;t — ') and G, (k;t — t'). These
new functions must satisfy following differential equations which can be also derived by
using the equations of motion (11)—(14)

i (B U)] HEE (4 — 1)

dt
—néc(t —t') + Z K)H, (k;t — ') + Vi (k) HZ, (k; t — )]

(16)

+ Z[ k)G (k; t — ') 4 Vi (k) GO (ks t — 1)

~ Va(K) G (st — ) = Vi (K)Gade (ki t = )],
where

n = <C?—CT> = <cfcl>, (17)
i Bull0] Gt — ) = VaGE (e 0) (18)

and similarly for G, (k;t —t').
Introduce the complex-time Green function ST (t — ) of the free electron with a
given energy F. It is the solution of the differential equation

d
[z— — E] SE(t —t) = dc(t —t). (19)
dt
Then we can write the solution of the differential equation (18) in the integral form
GO (ki t— 1) = Vi(K) / dt"SE(t — G (¢ — 1), (20)
C

and similarly for G%, (k; t—1'). Substituting the expression of the form (20) for G2, (k; t —
b* . . . . . -

t') and G2, (k;t — t') into the r.h.s. of the differential equation (15) for GS¢,(t —t') we

rewrite this equation in the new form

d z . _
[za - E] G, (t—t') = 8yerdc(t—t' ) +UHE, (t—t’)+/dt”2(1)(t —t"G<, (" 1), (21)

c
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where (1 (¢t — ¢"') is the following self-energy part

20— ¢) = Y { Va0 S50t — 1) + G sBOE -1} (@2)

Kk
The differential equation for the Green function HS,(t — t') contains the Green

- ¢ (k- be (1. & (1. bect (1, ac (1.
function HAZ, (ki t — t'), HYZ, (k;t — t'), Gt (ki t — 1), GYer (ks t — t'), GEae(k; ¢ — ¢') and
G¢(k; t — ') which must satisfy following differential equations

5~ B0 Hi st ) = VW) Hp 1 = 1), (23)

and similarly for H, (k;t —t'),

[z'i _ Ea<k>] G (st — )

dt
=({a-o(K)cocty, el }) do(t = 1) + Va(k) [Hyg (t = t)) = Goo (t = 1))
+ SV G Ol =)+ Vi (VG ekt =) @9
- Z DG (kL t —t') + Vo(1)Ga%e (kL t — )],
and similarly for G%% (k; t — /),
. d el /
i< — 2B = Ea(l) + U] £ Gof (i t = ¥)
= ({c_ocoat (k),ci}) et —t') = VEK)[HS, (t—t) — G (t —t')]
(25)

+Z{v* ()[Ge4e(1k; t — t') + G4 (Lk; t —t')]

Y GYE (ks — ) + G (ks 1~ )]}

and similarly for chf?(k; t —t'). The solutions of the differential equations (23), (24) and
(25) can be written in the integral form

H (ks t — ) = Vi (k) / 4" S (1 _ ¢ (" — ), (26)
C



6 Nguyen Van Hieu, Nguyen Bich Ha, and Nguyen Van Hop

and similarly for H%, (k;t —t'),

Gac Eé(k, t— 75/)

= ({a—o(K)eoct,, cf}) S50 (t — 1)
+ Va(k) / dt”SPW (L — 1) [HG (t = t') = G (t = 1)
¢ (27)
+ /dt//SEa(k)(t _ 75//) Z [V ( )Gaacc(k,L ¢ ) + % ( )Gabcc(k,L ¢ )]
C 1
) / at' S0 (') Y7 Va( G (L " — ) + V(DG (kL " — )]
C 1
and similarly for G%% (k; t — /),
Goo'(kit —t)
_ <{C_JCJCL1—J (k), C:/ > S2E+U—Ea(k) (t _ 75/)
S Vi) [ SPEUE  ) (HE ("~ 1) — G (¢ 1)
c (28)
/dt”S2E+U Ea(k Z{ Gacac Lk; M ) + Gcaac(l k; ¢ )]
C 1

Vi D [GRF (L ¢ — ) + G (Ll ¢ — ¢}

and similarly for Ggff?(k; t —t'). Substituting these solutions into the r.h.s. of the differ-
ential equation for HZ,(t —t') we rewrite this equation in the new form

i 0| - o)

=n0ge 0 (t — ') + / dt"S(t — t"YHE, (1" — t)
C

+Z{V* ) ({a—o(k )eocT, c >SEa(k)( —t)
Kk

V() [ at"SE09 O HEG(t~ ¢) = Gt - t’)]}
c
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ViS04 — 1) 3 (Vi (NG ek 7 — ) 4+ Vi (G (el 1 — 1)

a
1

Vi ()55t — 1) 3 [Va( G (st — ¥) + V(DG (e, 1 — 1)
1

k
k
_ Z{Va(k) {e—pepat, (k) ) >S2E+U—Ea(k) (t—1)
k
+ ‘Va(k)‘2 / dt”S2E+U_Ea(k) (t _ t”)[Hgg/(t” . t) _ ch;/ (t” B t)]}

dt//Z Vi (k)S2E+U Ea(k // ZV* Gacac Lk; N ) Gﬁ‘fﬁé(l,k; " t/)]
k

Q\

/dtﬂz Va S2E+U Ea(k)( t”)Vg‘(l) [chf/é(l,k; ¢ t/) + Gglf/é(l,k; 7 t/)]
k

. Q

+ similar terms with the interchange(a < b).
(29)

4. MEAN- FIELD APPROXIMATION
The r.h.s. of the equation (29) for the Green function HE,(t — t') contains the

multi-electron Green functions
Gg?f(kv 17 l— t/)v Gggé/é(kv 17 l— t/)v Gg'fgé(kv 17 l— t/)v Ggffg/é(k; l— t/)v
GOk, Lt —t), GYO(k, Lt —t), Gk L;t—t)
and the similarly ones with the interchange (a <> b). In order to decouple this equation
with those for the last multi-electron Green functions we apply the mean-field approx-
imation to the products of four operators in the expressions of above-mentioned Green
functions. Consider first the Green function G%°(k,1;t — t') expressing in terms of the
mean value of the product a_,(k,t)a—_s(l,t)cs ()¢ (t'). This product is that of two pairs
each of which consists of a creation operator (a_,(k,t) or ¢,/(t)) and a destruction one

(a—s (L t) or cy(t)) for the electrons of one and the same type. The mean-field approxima-
tion can be applied to the T-product of these four operators in the following manner

(Tola—o (5 )a—o (ki D)o (e (E)]) 2 (- (5 Hao (k1) (Toleo ()0 (t)])
with
(a0 (Lo (K 1)) = 0t (@0 (K)a_o(K)) = Guna(K),
(Teles(t)ew (1)) = G (t — 1),
As the result we have

GoC(k, Lt —t') ~ —da[l — na (k)]G (t — 1), (30)
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where n, (k) is the density of the electron with the momentum k and spin projection +o

or —o in the lead “a” at the given temperature
e—BEa(k)
na(k) = 41 I e_ﬂEa(k)v

and similarly for Ggﬁf?(k, I; ¢t —t'). Applying the mean-field approximation to each of the
others among above-mentioned multi-electron Green functions in any manner we always
obtain the vanishing mean values in the lowest order the perturbation theory with respect
to the effective tunneling coupling constants V, (k). Note that these functions enter the
r.h.s. of the equation (29) with the coefficients of the second order with respect to the
effective tunneling coupling constants. This means that in this second order they do not
give contributions. Thus in the second order approximation the equation (29) is simplified
and becomes

[z% —(E+ U)] HE, (t —t') =nbyedc(t —t') + T(t =)

dt"S@(t — " YHE, (¢ —t)

C
/ dt"sO(t —t"GE (1" —t),
C

+

where
Tt —t) Z[ (k) ({a_o(K)cpet,, el }) §E0 (¢ — )
k (32)
~Va(k) ({e-opaT, (K), 5 }) SPEHVEW (1 — 1) 4 (a = B)]
2(2) t—t/ ‘Va SEa(k)( )+S2E+U_Ea(k)(t—t/)] +(a_> b)}, (33)

SO —¢) =3 {na(k) Va(l) [$5:09 (1 — 1) + S2EU B9 (4 — /)] 4 (a — 1)} (34)
k

Note that in the r. h. s. of the formulae (32)-(34) there appear the crossing terms
containing S2FHU—Fa(k) (4 — /), They must disappear in the noncrossing approximation.
To proceed further we note that

<{a_ j,c: > = g <a_ (k) f0>,

; 35
<{c_gcg (k), c+ > = —0uo! <a_ (k) f0> , (35)
where (a_,(k)ct,) is a limiting value of the Green function G*,_, (k;1):

(a_o(k)ct,) =iG%,_,(k; +0). (36)

For evaluating the vertex (32) in the second order with respect to the tunneling coupling
constants V, (k) we calculate the limiting value (36) in the first order. Introduce the
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Fourier transformations of the Green functions, for example
_ +oo L
G*(k;t) = % [ dwe ™G (k; w),
—0o
+o0 o
§Ea(k) (t) = % i dwe ™t §Fa(k) (w), (37)
_ oo L
Ge(t) = 5= [ dwe ™'G(w).
—0oQ
From the equation (18) it follows that

Go%(k; w) = Vo (k) ST M) () GC(w). (38)

For deriving G°®(k;w) in the first order with respect to the constant V,(k) it is enough to
use the expression of G(w) in the case of the vanishing tunneling coupling constant and

have
. nq (k) 1 —ng(k)
G“(k;w) =V, (k -
(s w) =Va(k) [w—i()— Ba(k) '~ w+i0 — Bq(K)
1 e PE e~ PRE+U) 1 e PE
tz [w—iO—E T W0-E-U ' ati0-E T wrio_E-U)
(39)
Z =1+ 2¢PE 4 ¢ AREHD)
It is easy to calculate the limit
1
ac k: - 1 - —iwe ~vac k ) 4
G¥(l+0) = lim o [ dwe 4G (k) (10)
—00
by using the residue theorem and obtain
(a0 (K)c’y) = —va(k)Va(k), (41)
where
1 (e BE _[1 1 e BB (K —B(E+U) _ 1 4 ¢—BE+U, (K
I/a(k) _ 1 e [ +e ]na( ) +6_ﬂEe [ +e ]na( ) 7 (42)
Z E — E,(k) E+U-E,(k)

Therefore the formula (32) can be rewritten in the following manner

Dt =) = 3 { Vol va (0[S0t — #) = SHEHEMI G — )] + (a — 1)} (43)
k

In many previous works this vertex was omitted.
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5. CONCLUSION AND DISCUSSION

In the second order approximation with respect to the effective tunneling coupling
constants and the mean-field approximation for the products of 4 operators in the Green
function G2<5¢(k, 1;t — ') the system of the two Dyson equations for the complex-time
non-equilibrium Green functions were derived:

[i% - E] Ge(t—t) =dc(t —t') + UH®(t —t') + /dt”E(l)(t — "G —t), (44)

[1% o (E + U):| HCE(t - t/) :néc(t - t/) + F(t — t/) + /dt//E(Q)(t _ t//)HCE(t// . 75/)

C
_ /dt//E(B)(t _ t//)GcE(t// . t/), (45)
C

where the self-energy parts () (¢t — ¢),i = 1,2,3 and the vertex I'(t — t') are determined
by the formulae (22), (33), (34) and (43). If ¢t and ¢’ are the imaginary times t = —ir,
t" = —i7’ then this system of equations becomes that of two Dyson equations for the
imaginary time Green functions

G — 1) = (Tr[co () (T)]) (46)
H(r—7') = <TT [n_J(T)CJ(T)EJ/(T/)D ) (47)

From the equations (44) and (45) and formulae (22), (33), (34) and (43) with the complex
times it is straightforward to derive the Dyson equations for the imaginary time Green
functions

(% - E) G(r—7) =bc(r—7)+UH(r—7)+ / dr"sW(r — )G (" — 7') (48)

<dd +FE + U) H (1t — 7)) =néc(r —7")+ (1 —7') + /d’i‘”E(2)(7‘ —YHE (" — 1)
-
C
- / dr"s®(r — G — ), (49)
C

with following self-energy parts X()(r — 7/) and vertex I'(r — 7/)

2O (7 —7) = 3 Va@ $5 0 (7 — 7') + [P SBW( — )}, (50)
k
2@ (r = 7) = S {IVal K [285 0 (7 = 7/) 4 S2E=EC (- - )] 4 (@ - 1)} (51)
k

SO(r — 1) = 3" 1) Va()? [$50 (7 — 7/) 4 S2E4V=Fal (7 — 7)] 4 (a — 1)}
k
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D(r—7) = S AV WP v QST 7 — ') = SPHU M (7)) 4 (0 — 1)}

) (53)
For the study of the real-time Green functions one often considers the case tg — —oo.
In this limit the contribution of the imaginary-time interval [t, tp — ¢3] vanishes and the
integral over the contour C' becomes the sum of two integral on two straight lines : C; from
—00 to +00 in the upper half plane and Cy from +o0o to —oo in the lower half plane (Fig.
1). Because each complex time t or ¢’ can belong either to Cy or Cs, each complex-time
Green functions is a set of four functions of the real variable ¢ — ¢/, for example
G(t — t/)ll if t, t' e Cl,
G(t — t/)lg if te Cl,t/ € CQ,
G(t — t/)gl if te Cg,t/ € Cl,
G(t — t/)gg if t, t ¢ Cs.

Therefore the Fourier transform of each complex-time Green function is a set of four

G(t—t)= (54)

Fourier transforms of four functions of the real time ¢ — ¢ and can be represented as a
2 X 2 matrix

mmz(@wm@mm>_ (55)

From the differential — integral equations (44) and (45) it follows two matrix equa-
tions for the matrices (55):

(w—E)Gw) =1+ UHW) + SV (w)7G(w), (56)
(w

(w—E—-U)Hw)=n+T+3XP5H(w) — 23 (w)HG (w) (57)

where 7 is the metric matrix

ﬁ=<(1) _‘f) (58)

and 2 (w), 2@ (w), 2G)(w) and I'(w) are the matrices of the Fourier transforms of the
self-energy parts and the vertex.

By solving the system of equations (56) and (57) we can derive the analytical ex-
pressions of the Fourier transforms of the Green functions. They will be used for the study
of the physical characters of the QD in subsequent works.
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