TỔNG HỢP, KHẢO SÁT TÍNH CHẤT QUANG VÀ HOẠT TÍNH XÚC TÁC QUANG CỦA VẬT LIỆU NANO CeO₂:0,04Sm³⁺, xEu³⁺

Đến toà soạn 07-08-2023

Nguyễn Văn Hải^{1*}, Nguyễn Thị Khánh Linh¹, Đinh Thị Hiền¹, Nguyễn Thị Anh Vui¹

Hoàng Như Vân²

¹Trường Đại học Sư phạm Hà Nội, ²Trường Đại học Phenikaa

* Email: hainv@hnue.edu.vn

SUMMARY

SYNTHESIS, INVESTIGATION OF OPTICAL PROPERTIES AND PHOTOCATALYTIC ACTIVITY OF CeO₂:0,04Sm³⁺, xEu³⁺ NANOCRYSTALS

In this work, $Sm^{3+}/Eu^{3+}co$ -dopped CeO₂ phosphor was synthesized through sol-gel method combined with temperature calcination at 600 °C The crystal structure of powders was characterized by X-ray diffraction, and it revealed that all studied samples were single-phase with the cubic fluorite-type structure and space group $Fm\bar{3}m$. The scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) spectra were employed to characterize the samples. The photoluminescence measurements displayed that all the samples had excellent optical properties at room temperature. Under 404 nm excitation, the CeO₂: Sm^{3+} exhibited typical peaks at 567, 604, and 653 nm corresponding to transitions ${}^{4}G_{5/2} \rightarrow {}^{6}H_{J}$ (J = 5/2, 7/2, 9/2) of Sm^{3+} . Meanwhile, CeO₂:0,04Sm³⁺, xEu³⁺ phosphors exhibited strong orange-red emission both Sm^{3+} and Eu^{3+} . The photocatalytic performance of CeO₂:0,04Sm³⁺, xEu³⁺ nanocomposites was tested under ultraviolet irradiation on an aqueous solution of methylene blue (MB) dye using an UV-C lamp. The degree of degradation was monitored by absorption spectroscopy. The photocatalytic degradation efficiency of CeO₂:0,04Sm³⁺, 0,04Eu³⁺ was above 95% within only 90 min of irradiation.

Keywords: CeO_2 : Sm^{3+} , Eu^{3+} phosphor; Sol-gel method; Photoluminescence; Methylene blue; Photocatalytic activity.

1. ĐẶT VẤN ĐỀ

Gần đây, vật liệu nano CeO_2 pha tạp các ion đất hiếm có nhiều ứng dụng rộng rãi dựa trên tính chất huỳnh quang, hoạt tính xúc tác quang,...

Trong lĩnh vực xúc tác quang, các oxide kim loại như CeO_2 , Ti O_2 và SnO_2 được sử dụng làm xúc tác phân hủy chất ô nhiễm dựa trên đặc điểm vùng cấm của chúng [1-4]. Ti O_2 có năng lượng vùng

cấm lớn (3,2 eV) và chỉ hoạt động khi hấp thụ tia UV. CeO₂ có năng lượng vùng cấm nhỏ hơn và hấp thụ một phần ánh sáng khả kiến. Tùy thuộc vào hình thái và kích thước hạt, dải cấm của CeO₂ biến đổi từ 2,9 đến 3,2 eV, đồng thời các cặp electron-lỗ trống của CeO₂ có thời gian tồn tại lâu hơn so với TiO₂ [1]. Tinh thể nano CeO₂ có đặc điểm nổi bật là khả năng lưu trữ oxygen và lỗ trống oxygen. Nguyên tử ceri có xu hướng chuyển đổi giữa trạng thái oxi hóa +3 và +4 nên có thể trao đổi oxygen thông qua quá trình khử Ce⁴⁺/Ce³⁺, một yếu tố chìa khóa trong xúc tác. Bán kính ion Ce³⁺ (128,3 pm) lớn hơn đáng kể so với Ce⁴⁺ (109,8 pm) và các lỗ trống oxy làm tăng kích thước và gây biến dang ô đơn vi, dẫn đến các trang thái điện tử độc đáo trong vùng cấm [1]. Ngoài ra, cấu trúc mạng tinh thể CeO₂ có lượng khuyết oxy cao cũng góp phần hỗ trơ phản ứng quang xúc tác oxi hóa nước. Gần đây, khả năng xúc tác quang của CeO₂ được tăng cường bằng cách pha tạp các ion đất hiếm. Các ion đất hiếm đóng vai trò quan trọng cho sự chuyển điện tử, dẫn đến sự làm mất màu nhanh phẩm nhuộm bằng xúc tác quang. Việc pha tạp các nguyên tố đất hiểm làm giảm vùng cấm và tăng tính chất quang xúc tác của vật liệu. Ví dụ, vật liệu CeO₂: Sm³⁺ có hiệu suất phân hủy quang xúc tác (photocatalytic degradation efficiency) đối với xanh methylene (MB) và Bisphenol A lần lượt là 86,667 % và 98,76 % [1]. Tuy nhiên, hoạt tính quang xúc tác của CeO₂, cơ chế phản ứng và vai trò của vật liệu pha tạp ít được quan tâm nghiên cứu.

Trong lĩnh vực vật liệu phát quang, việc phát triển các chất phát quang phát xạ vùng màu đỏ định hướng ứng dụng cho chiếu sáng nông nghiệp đang được quan tâm nghiên cứu. Mang nền ceri dioxid (CeO₂) có năng lượng photon thấp, độ ổn định nhiệt cao, ít độc hai nên được sử dụng phổ biến trong lĩnh vực chiếu sáng trang thái rắn, cảm biến, thiết bị quang điện tử [6-9]. Trong các ion đất hiếm, ion Eu³⁺ là tâm phát quang phát xạ màu đỏ điển hình [6-9]. Tuy nhiên, các chuyển mức 4f-4f trong Eu³⁺ bi cấm theo quy tắc loc lưa, dẫn đến hiệu suất phát xa thấp [8]. Để khắc phục han chế này, các ion tăng nhay như Tb³⁺, Bi³⁺ và Sm³⁺ được pha tạp vào mạng nền để tăng cường hiệu suất phát xạ của Eu³⁺ thông qua quá trình truyền năng lượng [7-12]. Đối với ion Sm³⁺, sự chênh lệch năng lượng mức ${}^{4}G_{5/2}$ của Sm³⁺ so với mức ${}^{5}D_{0}$ của Eu³⁺ khá nhỏ (~ 600 cm⁻¹) nên ion này có khả năng truyền năng lượng hiệu quả tới Eu³⁺ [13-14]. Hơn nữa, Sm³⁺ có thể được kích thích bằng nguồn UV, cho thấy một phương pháp hiệu quả để cải thiên cường đô phát xa của Eu^{3+} [15].

Do vậy, trong nghiên cứu này, hệ vật liệu nano $CeO_2:0,04Sm^{3+}$, xEu^{3+} (x = 0,02, 0,04 và 0,06) được tổng hợp theo phương pháp sol-gel để khảo sát tính chất quang và hoạt tính xúc tác quang

phân hủy MB. Phương pháp sol-gel sử dụng các thiết bị đơn giản hơn, thời gian tổng hợp ngắn hơn và nhiệt độ nung thấp hơn so với các phương pháp công bố ở tài liệu [4-5, 9].

2. PHƯƠNG PHÁP NGHIÊN CỨU

2.1. Tổng hợp và xác định cấu trúc

Quá trình tổng hợp vật liệu sử dụng các hóa chất có xuất xứ Trung Quốc với độ tinh khiết 99,9%.

Các bước tổng hợp vật liệu CeO₂:0,04Sm³⁺, xEu³⁺ bằng phương pháp sol-gel như sau:

Bước 1: Trộn các dung dịch Ce(NO₃)₃, Sm(NO₃)₃ và Eu(NO₃)₃ với tỉ lệ hợp thức theo mol tương ứng là (100 - 4 - x), 4 và x. Thêm tiếp citric acid, điều chỉnh pH bằng dung dịch NH₄OH đặc, khuấy từ ở 80 °C đến khi toàn bộ dung dịch trở nên đặc sánh ở dạng gel.

Bước 2: Nung khô toàn bộ gel thu được ở 400 °C trong 4 giờ.

Bước 3: Nghiền sản phẩm bằng tay trong cối mã não, tiếp tục ủ nhiệt ở 600 $^{\circ}$ C trong 4 giờ, thu được vật liệu CeO₂:0,04Sm³⁺, xEu³⁺.

Vật liệu CeO₂:0,04Sm³⁺, xEu³⁺ (x = 0,02, 0,04, và 0,06) được xác định cấu trúc, hình thái đặc trưng và tính chất quang bằng các phương pháp với máy đo tương ứng như sau: giản đồ nhiễu xạ tia X (D8-Advance Bruker), phổ phản xạ khuếch tán (JASCO V-770), kính hiển vi điện tử quét (HITACHI S-4800), phổ tán xạ năng lượng tia X (detector HORIBA, model 7593-H gắn trên hệ FESEM HITACHI S-4800) và phổ huỳnh quang (Nanolog, Horiba Jobin Yvon, nguồn kích thích là đèn xenon 450 W, $\lambda = 250$ -800 nm).

2.2 Khảo sát hoạt tính xúc tác

Quá trình khảo sát hoạt tính xúc tác quang được thực hiện theo các bước sau:

Bước 1: Cho 150 mL dung dịch MB 30 ppm vào ống đong, thêm xúc tác CeO₂:0,04Sm³⁺, xEu³⁺ với hàm lượng 2 g/L, khuấy từ 30 phút trong bóng tối để hệ đạt cân bằng hấp phụ.

Bước 2: Nhúng một đèn UV-C (254 nm, 11W) vào dung dịch, khuấy từ ở nhiệt độ thường. Sau mỗi 30 phút, lấy ra 5 mL dung dịch để xác định nồng độ MB tại bước sóng $\lambda_{max} = 660$ nm trên máy UV-Vis S60 Biochorom.

3. KẾT QUẢ VÀ THẢO LUẬN

3.1. Khảo sát điều kiện tổng hợp

a) Ånh hưởng của tỉ lệ mol $k = citric \ acid/CeO_2$

Trong phương pháp sol-gel, ảnh hưởng của phối tử tạo phức đóng vai trò quan trọng. Do vậy, tỉ lệ mol k = 1,0, 1,5 và 2,0 đã được khảo sát.

Hình 1. Giản đồ XRD của vật liệu $CeO_2:0,04Sm^{3+}$, $0,04Eu^{3+}$.

Kết quả Hình 1 cho thấy các vật liệu đều đơn pha CeO_2 kiểu fluorite. Khi hàm lượng citric acid tăng, cường độ các đỉnh nhiễu xạ có sự giảm nhẹ. Do vậy, tỉ lệ k = 1,0 được lựa chọn cho các khảo sát tiếp theo.

b) Ảnh hưởng của pH

Trong quá trình tạo sol, pH ảnh hưởng quan trọng đến sự tạo phức. Kết quả khảo sát cho thấy, khi pH tăng, vị trí các pic nhiễu xạ không thay đổi nhưng cường độ các đỉnh nhiễu xạ có xu hướng giảm, cao nhất ở pH = 2. Do vậy, pH = 2 được lựa chọn để tổng hợp vật liệu.

3.2. Xác định cấu trúc vật liệu

Hệ vật liệu $CeO_2:0,04Sm^{3+}$, xEu^{3+} (x = 0,02, 0,04 và 0,06) sau khi tổng hợp ở điều kiện k = 1,0 và pH = 2 được xác định cấu trúc bằng phương pháp XRD.

Kết quả từ giản đồ XRD cho thấy, tất cả các pic nhiễu xạ đều trùng với thẻ chuẩn (PDF # 01-075-8371) [9], ứng với cấu trúc lập phương kiểu fluorite, nhóm không gian Fm3 m và không có lẫn pha tinh thể nào khác. Các pic nhiễu xạ ứng với các mặt phẳng đặc trưng của cấu trúc fluorite CeO₂ gồm (111), (200), (220), và (311), (222) và (400) đều quan sát được trên giản đồ XRD. Điều này bước đầu cho thấy, các ion đất hiếm đã được pha tạp thành công vào vào nền tinh thể ở vị trí thay thế ion Ce⁴⁺. Ngoài ra, các pic nhiễu xạ đều hẹp và sắc nét, chứng tỏ mức độ kết tinh tốt của các chất phát quang CeO₂:0,04Sm³⁺, xEu³⁺.

Từ kết quả đo XRD, giá trị kích thước tinh thể trung bình của vật liệu CeO_2 :0,04 Sm^{3+} , xEu³⁺ (x = 0,02, 0,04 và 0,06) cũng đã được xác định theo công thức Debye-Scherrer, thu được kết quả lần lượt là 19,0 nm, 19,8 nm và 18,1 nm.

Tiếp theo, các nguyên tố trong thành phần vật liệu được xác định bằng phép đo EDX (Hình 2).

Hình 2. Giản đồ tán xạ năng lượng tia X của vật liệu $CeO_2:0,04Sm^{3+}, 0,04Eu^{3+}$.

Trên giản đồ EDX xuất hiện đầy đủ các nguyên tố trong mẫu vật liệu $CeO_2:0,04Sm^{3+}$, $0,04Eu^{3+}$ và không có nguyên tố tạp chất. Tỉ lệ phần trăm các nguyên tử Ce : Sm : Eu gần đúng với tỉ lệ 0,92 : 0,04 : 0,04 trong thành phần dự kiến của vật liệu tổng hợp. Như vậy, kết quả này càng khẳng định các chất phát quang thu được độ tinh khiết cao.

Phổ phản xạ-khuếch tán DRS của các vật liệu $CeO_2:0,04Sm^{3+}$, xEu^{3+} đã được ghi lại. Từ kết quả đo phổ DRS, năng lượng vùng cấm của các vật liệu được xác định bằng phương pháp Tauc (Hình 3).

Kết quả Hình 3 cho thấy, các vật liệu $CeO_2:0,04Sm^{3+}$, xEu^{3+} hấp thụ mạnh photon trong vùng UV do sự chuyển dịch điện tích trực tiếp từ orbital 2p của O sang orbital 4f của Ce [11]. Như vậy, mạng nền CeO_2 có khả năng hấp thụ bước sóng kích thích vùng tử ngoại để có thể truyền cho tâm phát quang.

Hình 3. Phổ DRS và năng lượng vùng cấm của vật liệu CeO₂:0,04Sm³⁺, xEu³⁺.

Bên cạnh đó, trên giản đồ Tauc cho thấy độ rộng vùng cấm ít phụ thuộc vào hàm lượng Eu^{3+} pha tạp, nhận giá trị 3,16 eV khi x = 0,02 và 3,13 eV khi x = 0,04 và 0,06. Giá trị này giảm nhẹ so với năng lượng vùng cấm của CeO_2 là 3,2 eV [3].

Hình thái bề mặt của vật liệu được xác định bằng phương pháp chụp ảnh SEM. Kết quả từ ảnh SEM cho thấy các hạt vật liệu có dạng hình cầu với kích thước hạt trung bình (tính bằng phần mềm ImageJ) khoảng 36 nm.

3.3 Tính chất huỳnh quang của vật liệu

Để khảo sát tính chất huỳnh quang, phổ huỳnh quang của các vật liệu đã được ghi lại ở bước sóng kích thích 360 nm (Hình 4).

Hình 4. Phổ PL của vật liệu CeO_2 : ySm³⁺.

Hình 4 cho thấy, dưới kích thích 360 nm, chất phát quang CeO_2 :ySm³⁺ có sự phát xạ đặc trưng của Sm³⁺ ở 573 nm (${}^4G_{5/2} - {}^6H_{5/2}$), 631 nm (${}^4G_{5/2} - {}^6H_{5/2}$)

 ${}^{6}H_{6/2}$) và 660 nm (${}^{4}G_{5/2}-{}^{6}H_{9/2}$) [10-12]. Cường độ phát xạ của các mẫu đạt giá trị cực đại khi pha tạp 4% mol Sm³⁺ (y = 0,04) sau đó giảm dần khi tăng hàm lượng Sm³⁺ do hiệu ứng dập tắt nồng độ. Mẫu CeO₂:0,04 Sm³⁺ có cường độ phát xạ cao nhất và được chọn để tổng hợp chất phát quang CeO₂:0,04Sm³⁺, xEu³⁺.

Hình 5. Phổ PL của vật liệu $CeO_2:0,04Sm^{3+},$ $xEu^{3+}.$

Từ Hình 5 cho thấy, dưới bước sóng kích thích 360 nm, các chất phát quang CeO₂:0,04Sm³⁺, xEu³⁺ (x = 0,02, 0,04 và 0,06) phát ra dải màu đỏ cam mạnh ở 590 nm (${}^{5}D_{0}{}^{-7}F_{1}$) và 612–632 nm (${}^{5}D_{0}{}^{-7}F_{2}$) của Eu³⁺. Đáng chú ý, cường độ phát xạ ở bước sóng 573 nm tương ứng với quá trình chuyển đổi ${}^{4}G_{5/2} - {}^{6}H_{5/2}$ của Sm³⁺ có xu hướng giảm khi tăng hàm lượng pha tạp Eu³⁺ đạt giá trị cực đại ở mức pha tạp 4% mol Eu³⁺. Kết quả này cho thấy ion Sm³⁺ đã đóng vai trò truyền năng lượng cho tâm phát quang Eu³⁺. Vật liệu thu được có phát xạ mạnh trong vùng màu đỏ (600 – 700 nm), trùng với vùng hấp thụ của cây trồng, định hướng ứng dụng trong chiếu sáng nông nghiệp nhằm thúc thẩy quá trình sinh hóa của cây trồng [7].

3.4 Hoạt tính xúc tác quang của vật liệu

Trước hết, hoạt tính xúc tác chuyển hóa MB của hệ vật liệu $CeO_2:0,04Sm^{3+}$, $0,04Eu^{3+}$ được khảo sát ở các nồng độ H_2O_2 là 0, 5, 10, 15 và 20 ppm. Kết quả cho thấy, hiệu suất chuyển hóa MB thấp (20%) khi không có H_2O_2 , chuyển hóa gần như hoàn toàn khi nồng độ H_2O_2 từ 15 ppm trở lên. Mặt khác, khi sử dụng H_2O_2 15 ppm mà không có vật liệu xúc tác, hiệu suất đạt 40%. Từ đó, quá trình xúc tác quang được thực hiện với sự có mặt của H_2O_2 15 ppm (Bảng 1).

Bảng 1. Hiệu suất chuyển hóa MB trên vật liệu xúc tác $CeO_2:0,04Sm^{3+}$, xEu^{3+}

Thời gian (phút)		0	30	60	90
x = 0,00	ất	0	19	83	87
x = 0,02	su:	0	22	91	95
x = 0,04	liệu (%	0	27	92	96
x = 0,06	Η	0	28	94	98

Kết quả cho thấy, tất cả các vật liệu $CeO_2:0,04Sm^{3+}$, xEu^{3+} đều chuyển hóa trên 80% MB chỉ sau 60 phút chiếu sáng. Hơn nữa, hiệu suất chuyển hóa MB có xu hướng tăng khi tăng hàm lượng pha tạp Eu^{3+} , tỉ lệ với số lượng lỗ trống oxy được tạo ra (Theo lí thuyết, cứ 2 ion Eu^{3+} pha tạp thay thế cho 2 ion Ce^{4+} trong mạng nền sẽ tạo ra 1 lỗ trống O^{2-}) [16].

Cơ chế của quá trình xúc tác quang của vật liệu bán dẫn trên nền CeO_2 được giải thích như sau. Khi vật liệu xúc tác được chiếu tia UV của đèn tử ngoại, các electron (e⁻) bị kích thích từ vùng hóa trị (valence band, VB) lên vùng dẫn (conduction band, CB):

$$CeO_2 + h\upsilon \rightarrow CeO_2(e^- + h^+)$$

Các lỗ trống dương (h⁺) tạo ra trong VB kết hợp với các phân tử H_2O và ion OH^- để tạo thành các gốc tự do •OH:

$$\begin{split} h^+ &+ H_2 O \rightarrow H^+ + \bullet O H \\ h^+ &+ O H^- \rightarrow \bullet O H \end{split}$$

Các electron trên CB bị thu giữ ở các vị trí lỗ trống oxy, sau đó phản ứng với O_2 [2], tạo thành ion superoxid:

$$e^-$$
 + lỗ trống → lỗ trống(e^-)
 O_2 + lỗ trống(e^-) → O_2^-

Đồng thời, e⁻ còn bị giữ bởi Ce^{4+} và O_2 bị thu giữ bởi Ce^{3+} :

$$\begin{array}{rl} \mathrm{Ce}^{4+} &+ & \mathrm{e} &\rightarrow \mathrm{Ce}^{3+} \\ \mathrm{Ce}^{3+} &+ \mathrm{O}_2 \rightarrow \mathrm{Ce}^{4+} &+ & \mathrm{O_2}^{-} \end{array}$$

Nhờ đó, sự tái hợp electron-lỗ trống được hạn chế. Khi tăng số lượng lỗ trống, độ linh động của ion oxy tăng, khả năng di chuyển của ion oxy nút mạng tăng, hiệu quả xúc tác tăng.

Trong hệ xúc tác, H_2O_2 cũng đóng vai trò thu giữ electron vùng dẫn, tạo thêm các gốc hydroxyl:

$$H_2O_2 + e^- \rightarrow \bullet OH + OH^-$$

Cuối cùng, các phân tử MB bị oxi hóa, tạo thành sản phẩm [2]:

$$h^+/O_2^-/ \bullet OH + MB \rightarrow San phâm.$$

4. KÉT LUẬN

Trong nghiên cứu này, hệ vật liệu nano $CeO_2:0,04Sm^{3+}$, xEu^{3+} (x = 0,02, 0,04 và 0,06) đã được tổng hợp thành công bằng phương pháp solgel. Vật liệu thu được đều đơn pha với cấu trúc lập phương kiểu fluorite. Các hạt vật liệu có dạng hình cầu, phân bố khá rời rạc với kích thước trung bình khoảng 50 nm.

Hệ vật liệu CeO₂:0,04Sm³⁺, xEu³⁺ thể hiện hoạt tính quang xúc tác tốt, làm mất màu trên 95% MB khi có mặt H_2O_2 sau 90 phút chiếu đèn UV.

Hệ vật liệu CeO₂:0,04Sm³⁺, xEu³⁺ có khả năng phát xạ mạnh ở vùng màu đỏ ở 590 nm (${}^{5}D_{0}-{}^{7}F_{1}$) và 610–631 nm (${}^{5}D_{0}-{}^{7}F_{2}$) của Eu³⁺. Cường độ phát xạ ở bước sóng 573 nm (${}^{4}G_{5/2} - {}^{6}H^{5/2}$) của Sm³⁺ giảm và cường độ phát xạ của Eu³⁺ tăng cho thấy có sự truyền năng lượng từ Sm³⁺ sang Eu³⁺. Bột phát quang màu đỏ thu được có thể định hướng ứng dụng trong chiếu sáng nông nghiệp.

LỜI CẢM ƠN

Nghiên cứu này được hoàn thành trong khuôn khổ đề tài của Bộ Giáo dục và Đào tạo, mã số: B2023-SPH-06. Các tác giả chân thành cảm ơn.

TÀI LIỆU THAM KHẢO

[1] V. Madaan, B. Mohan,...K. Kumar, (2022). Metal-Decorated CeO₂ nanomaterials for photocatalytic degradation of organic pollutants. *Inorganic Chemistry Communications*, **146**, 110099.

[2] S. N. Matussin, M. H. Harunsani, M. M. Khan, (2023). CeO₂ and CeO₂-based nanomaterials for photocatalytic, antioxidant and antimicrobial activities. *Journal of Rare Earths*, **41**, 167-181.

[3] R. A. Husna, Suherman, T. A. Natsir, (2023). Enhancing photocatalytic degradation of methylene blue by mixed oxides $TiO_2/SnO_2/CeO_2$ under visible light. *Results in Engineering*, **19**, 101253. [4] A. Phuruangrat, S. Thongtem, T. Thongtem, (2017). Microwave-assisted hydrothermal synthesis and characterization of CeO_2 nanowires for using as a photocatalytic material. *Materials Letters*, **196**, 61–63.

[5] A. A. G. Santiago1, N. F. Andrade Neto, E. Longo, C. A. Paskocimas, F. V. Motta, M. R. D. Bomio, (2019). Fast and continuous obtaining of Eu^{3+} doped CeO₂ microspheres by ultrasonic spray pyrolysis: characterization and photocatalytic activity. *Journal of Materials Science: Materials in Electronics*, **30**, 11508–11519.

[6] S. Wang, Z. Song, Q. Liu, (2023). Recent progress in Ce^{3+}/Eu^{2+} -activated LEDs and persistent phosphors: focusing on the local structure and the electronic structure. *J. Mater. Chem. C*, **11**, 48-96.

[7] K. Singh, M. Rajendran, R. Devi, S. Vaidyanathan, (2022). Narrow-Band Red-Emitting Phosphors with High Color Purity, Trifling Thermal and Concentration Quenching for Hybrid White LEDs and $Li_3Y_3BaSr(MoO_4)_8:Sm^{3+}$, Eu^{3+} -Based Deep-Red LEDs for Plant Growth Applications, *Inorg. Chem*, **61**, 2768–2782.

[8] X. Zhang, R. Cui, K. Guo, M. Zhang, J. Zhang, and C. Deng, (2023). Luminescence properties of Ca_2GdNbO_6 : Sm^{3+} , Eu^{3+} red phosphors with high quantum yield and excellent thermal stability for WLEDs. *Ceram. Int*, **49**, 15402–15412.

[9] N. V Hai, D. T. Hien, N. T. K. Linh, B. T. Hoan, N. M. Tu, H. N. Van, (2023). Blue-excited red emission of $CeO_2:Eu^{3+}$, Al^{3+} cubic phosphor: Influence of Al^{3+} ion doped and Judd-Ofelt theory. *Journal of Luminescence*, **263**, 120047.

[10] W. Huang, Y. Tan, D. Li, H. Du, X. Hu, G.

Li, Y. Kuang, M. Li, D. Guo, (2019). Improved photo-luminescence by co-doped lithium in the phosphor system $CeO_2:Eu^{3+}$. *Journal of Luminescence*, **206**, 432-439.

[11] L. Sun, Y. Tan, D. Li, H. Du, D. Guo, (2020). Defects and symmetry influence on visible emission of Bi^{3+} Co-doped CeO₂: Eu^{3+} phosphor. *Optical Materials*, **100**, 109654.

[12] M. Qu, X. Zhang, X. Mi, Q. Liu, Z. Bai, (2020). Novel color tunable garnet phosphor of Tb^{3+} and Eu^{3+} co-doped $Ca_2YZr_2AlO_{12}$ with high thermal stability via energy transfer. *Journal of Alloys and Compounds*, **828**, 154398.

[13] H. Guoa, Q. Shia, K. V. Ivanovskikhc, L. Wanga, C. Cuia, P. Huang, (2020). A high color purity red-emission phosphor based on Sm^{3+} and Eu^{3+} codoped $\text{Ba}_3\text{Bi}(\text{PO}_4)_3$. *Materials Research Bulletin*, **126**, 110836.

[14] H. Duan, R. Cui, M. Zhang, C. Deng, (2021). Photoluminescence properties and energy transfer studies of Ba₂YAlO₅: Sm³⁺, Eu³⁺ orange-red phosphors, *Optik - International Journal for Light and Electron Optics*, **238**, 166774

[15] E.F. Huerta, O. Soriano-Romero, A.N. Meza-Rocha, S. Bordignon, A. Speghini, U. Caldino, (2020). Lithium-aluminum-zinc phosphate glasses activated with Sm^{3+} , $\text{Sm}^{3+}/\text{Eu}^{3+}$ and $\text{Sm}^{3+}/\text{Tb}^{3+}$ for reddish-orange and white light generation. *Journal of Alloys and Compounds*, **846**, 156332.

[16] B. Choudhury, P. Chetri and A. Choudhury, (2013). Annealing temperature and oxygen-vacancy-dependent variation of lattice strain, band gap and luminescence properties of CeO₂ nanoparticles. *Journal of Experimental Nanoscience*.