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Abstract: 

This paper proposes a data-driven parameter tuning of the internal model controllers (IMC) in 

cascade architecture with minimum phase processes. In order to perform the parameter tuning of 

the IMC, we utilize the fictitious reference iterative tuning (FRIT), which enables us to obtain the 

desired parameter of the controllers with only one-shot experiment data. The algorithm does not 

require mathematical process models but only a single set data collected from the closed loop 

system. Moreover, the proposed approach enables us to obtain both the optimal parameters of two 

controllers for the desired tracking property and mathematical models of the controlled process 

simultaneously. To show the validity of the proposal, we give illustrative examples.  
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Tóm tắt: 

Bài báo đề xuất sử dụng FRIT - một thuật toán dùng trực tiếp dữ liệu thực nghiệm để điều chỉnh 

thông số của bộ điều khiển IMC trong hệ thống điều khiển tầng với các đối tượng pha cực tiểu. 

Thuật toán đề xuất không đòi hỏi mô hình toán học của đối tượng điều khiển mà chỉ yêu cầu duy 

nhất một bộ dữ liệu vào/ra thu thập từ hệ thống. Kết quả nhận được là các bộ điều khiển với thông 

số tối ưu cho tín hiệu ra mong muốn của hệ thống, đồng thời nhận được mô hình toán học của đối 

tượng điều khiển. 

Từ khóa:   

Dữ liệu thực nghiệm, FRIT, điều khiển tầng, IMC. 

 

1. INTRODUCTION  

Cascade control has been implemented in 

industry and different applications due to 

their disturbance rejection, faster response 

and other advantages over single loop 

control systems [1]. Usually, the 

controllers are tuned sequentially, the 

inner loop controller is tuned first to give 

a faster response than the outer loop, and 
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then, the primary controller is tuned 

according to the resulting system. Thus, 

tuning of cascade controllers is a time 

consuming task. 

On the other hand, internal model control 

(IMC, [2]) is one of the effective 

approaches to the achievement of a 

desired tracking property. The utilization 

of IMC for cascade control yields the 

robustness and flexibility in tuning 

parameters. Thus, it provides a better 

system response than sequential tuning 

due to the adjustment of the inner loop 

has minimum effects on the outer loop. 

In [3], Jeng et al. proposed an automatic 

tuning method for cascade control 

systems based on a single closed loop step 

test. This method identifies the required 

process information with the help of B-

spline series expansions of the step 

responses. Then, two PID controllers are 

tuned using an IMC method. Lee et al. [4] 

proposed IMC - based PID tuning rules 

that enable simultaneous tuning of 

primary and secondary controllers. Their 

method is based on process models for 

cascade control systems. The main point 

of simultaneously tuning cascade 

controllers is to approximate the inner 

loop dynamics with the inner loop design 

target. Such an approximation allows 

obtaining a process model for the tuning 

of primary controller. However, this 

approximation may be inaccurate because 

the implemented secondary PID controller 

cannot guarantee meeting the inner loop 

design target. In [5], Cesca et al. proposed 

a model-based procedure using IMC 

approach for synthesizing the controllers. 

The suggested tuning procedure 

determines the controller filter time 

constants to assure robust stability. 

It is clear that most methods in mentioned 

studies require the process models,  

thus the controller design asks  

an identification, which  encounters 

difficulties in practice. In recent years, 

design of a data-based control system 

(without system identification) has been 

proposed, such as iterative feedback 

tuning (IFT, [6]), virtual reference 

feedback tuning (VRFT, [7]), and 

fictitious reference iterative tuning (FRIT, 

[8-9]) for the single loop control system. 

In contrast to the iterative tuning method 

(IFT), which requires many control 

executions, the VRFT and FRIT require 

only one-shot experiment. While VRFT 

considers error between the virtual input 

and actual one, FRIT focuses on error 

between the fictitious output and the 

actual one.  

Compared to a model-based approach, in 

the data-based methods, the controller is 

directly designed based on the 

experimental data, thus the modeling step 

is omitted and problems of under 

modeling encountered in practice are 

avoided. Moreover, due to the special of 

IMC structure, it is expected that a data-

driven approach to the IMC yields not 

only a controller but also a mathematical 

model of the plant. In [9], Kaneko et al. 

have succeeded in applying a data-driven 
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FRIT for the single loop IMC, which 

yields simultaneous attainment of optimal 

controller and a plant model.  In [10-11], 

Nguyen et al. developed FRIT for cascade 

control systems, two PI controllers are 

simultaneously tuned to get the desired 

performance. As an application of the 

data-driven FRIT for cascade systems, the 

speed of DC motor  is controlled in [11].  

However, the results in [10-11] are only 

controllers, no any process model is 

achieved.  

From these backgrounds, we propose a 

data-driven approach of FRIT for IMC 

parameter tuning in cascade systems. The 

processes we treat here are linear, time-

invariant, stable and minimum phase. The 

algorithm does not require mathematical 

process models but only a set of 

experimental data collected from the 

closed-loop system. Particularly, it is 

expected that the application of FRIT for 

cascaded IMC leads to both optimal 

controllers for achievement of a desired 

performance and mathematical models 

that reflect dynamics of the actual 

process. 

[Notations] Let   and n
 denote the set 

of real numbers and that of real vectors of 

size ,n  respectively. For a time series ,w  

we use ( )w t  to describe the value of w  at 

time t . For a transfer function G , the 

output y  of G  with respect to u  is 

denoted with y Gu  for the enhancement 

of the readability. For a time series 

      , 2 , , ,   w w w w N we use 

the following notation 

   
2

2

1

1
: .



 
N

N
k

w w k
N

 

2. PRELIMINARIES 

2.1. Internal model control for cascade 

systems 

An IMC for a cascade system is shown in 

Fig.1 [3], [5]. In this figure, 1C and 2C  are 

the IMC controllers, 1P  and 2P  are the 

process for the loops. 
2P  is a process 

model of the inner loop and 
BP  is the 

equivalent process model of the outer 

loop. ,r u  and  2 1,y y  are the reference 

signal, the input, and the outputs, 

respectively. 

The closed loop transfer function for the 

inner loop is determined as: 

 
2 2

2

2 2 21


 

C P
G

C P P
   (1) 

 
Figure 1. Internal model control  

for cascade structure 

The transfer function BP  is a model of 

equivalent process BP  composed of the 

inner loop and the primary plant 1P  

connected in series, namely: 

 
2 2

B 1

2 2 21


 

C P
P P

C P P
  (2) 
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The transfer function 
ryG  from r  to 

1y  

can be expressed as: 

   
1 2 2 1

ry

2 2 2 1 2 2 1 1 B 1 2 B 2 21


     

C C P P
G

C P P C C P P C P C C P P P

(3) 

Using the transfer function relations for 

the inner and outer loop, the respective 

IMC controllers are derived to satisfy the 

set point and disturbance rejection 

requirements. 

2.2. Assumptions  

Consider the case 1P  and 2P  are linear, 

time-invariant, stable and minimum 

phase, they are unknown except degrees 

of the numerator and the denominator. 

Assume that the process models 
1P  and  

2P  are parameterized with a tunable 

vector  
T

T T

P P1 P2:        as: 

1 0

1 P1

1

( ) ,
1

  
 

  

a s a s a
P

b s b s









     (4) 

and:  

1 0
2 P2

1

' '
( ) ,

' ' 1

  
 

  

k

k

l

l

a s a s a
P k l

b s b s
   (5) 

where 
T

1

P1 0 1

    a a b b  

   

and  
T 1

P2 0 1' ' ' ' .  k l

k la a b b   

For the inner loop, from the result  

by Azar et al. [1] and Lee et al. [4], the 

IMC controller is obtained and augmented 

by a filter  
  2

2

2

1

1



n

F
s




 as shown 

following: 

   
  2

11

2 P 2 2 2 P

2

1
,

1

 


n
C P F P

s
  


      

(6) 

where 2n  must be selected to ensure that 

the IMC controller is proper. 2 adjusts the 

speed of the closed response in the inner 

loop and it should be tuned to meet the 

desired performance.  

The IMC controller design for the outer 

loop is based on the process of the outer 

loop BP , which composes of the inner 

loop and the primary process 1P  

connected in series, then a model  
BP  also 

depends on P  and 2 . The IMC 

controller 1C  is designed such that the 

closed loop transfer function of the outer 

loop ryG  follows the reference model dT . 

From the result in Kaneko et al. [9], we 

construct the controller 1C  as: 

   
1

1 P 2 B P 2 d, ,


C P T      (7) 

The reference model dT  should have the 

form: 

  1
d

1

1

1



n

T
s

   (8) 

where 1n  must be selected to guarantee 

the controller 1C  proper. In a cascaded 

IMC structure, if the reference model dT  

is given, the controllers 1C  and 2C  

depend on both P  and 2 . For 

convenience, we use the following 

notation: 
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P

2

 
  
 





    (9) 

The closed loop system in the cascaded 

IMC structure with a tunable parameter 

vector   is illustrated in Fig. 2. The  

input u  and the outputs 2 1,y y  also 

depend on the parameter vector ,  so we 

denote them as ( )u   and 2 1( ), ( )y y  , 

respectively. 

 

Figure 2. A cascaded IMC system  

with a tunable vector 

2.3. Problem setting 

The objective of this paper is to find a 

parameter vector   to  attain the design 

output, which is represented by a 

reference model dT , with the direct use of 

experimental data. The model-reference 

criterion is described as: 

2

1 d( ) ( ) 
N

J y T r              (10) 

Since controllers include the process 

models internally, it is expected that  

we can also simultaneously obtain 

appropriate models of the actual process. 

For this purpose, FRIT, which is briefly 

explained in the next section, is utilized. 

3. FICTITIOUS REFERENCE 

ITERATIVE TUNING - FRIT [8] 

In this section, the brief review of FRIT is 

expressed. The main idea of the FRIT 

scheme is to construct the model-

reference criterion in the fictitious domain 

[8]. 

Consider a conventional closed loop 

system as Fig. 3, where ,r u  and y  are 

the reference signal, the input, and the 

output, respectively. The controller C  is 

parameterized by a vector   since the 

controlled plant model is unknown. 

 

Figure 3. A conventional closed loop system 

with a tunable vector  

First, set an initial parameter vector 0  of 

the controller and perform a one-shot 

experiment on the closed loop system to 

obtain the data 0( )u   and 0( ).y   The 

controller 0( )C   is assumed to stabilize 

the closed loop system such that 0( )u   

and 0( )y   are bounded. By using the data 

0( )u   and 0( )y  , the fictitious refence 

signal ( )r   is computed as: 

1 0 0( ) ( ) ( ) ( ) r C u y      (11) 

For a given reference model d ,T  the cost 

function is described by: 

2
0

F d( ) : ( ) ( ) 
N

J y T r     (12) 

Then we minimize F ( )J   to achieve the 

optimal parameter vector * , which 

yields a desired controller. Note that the 
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cost function (12) with the fictitious 

reference signal ( )r   in Eq. 11 requires 

only the initial data 0( )u   and 0( )y  . 

This means that the minimization of  Eq. 

12 can be performed off-line by using 

only one-shot experimental data. As for 

the relationship between the minimization 

of ( )J   and that of F ( )J  , it was shown 

in Theorem 3.1 by Souma et al. [8] that 
*( ) 0J   is equivalent to *

F( ) 0J   

(see Theorem 3.1 in [8] for the detailed 

proof and discussions). 

4. FRIT FOR CASCADED INTERNAL 

MODEL CONTROL 

4.1. Simultaneous attainment of 

controllers and process models  

Consider a cascade control system with 

IMC as Fig. 2. Under the assumption that 

the processes are unknown and they are 

parameterized by   as Eq. 4 and Eq. 5, 

we give the following result. 

Theorem 1: For a given reference  

model dT , assume that the controllers  

are described as Eq. 6 and Eq. 7,  

then ry d( ) G T  holds if and only if  

both 1 1( )P P   and 2 2( )P P   

simultaneously holds. 

Proof. It follows from Eq. 3 that the ‘if’ 

part clearly holds, with a notice that 

together with Eq. 2, we see B 1P PF  

when 2 2.P P  Thus, we focus on the 

‘only if’ part. By implementing the 

controllers described in Eq. 6 and Eq. 7, 

the transfer function ryG from r  to 1y  can 

be expressed as: 

   

1 1

d B 2 2 1
ry 1 1 1 1

2 2 2 d B 2 2 1 d d 2 2 21

 

   


     

T P P FP P
G

P F P P T P P FP P T T P F P P

     

    

1 1

d B 2 2 1

1 1 1

d 2 2 d B 2 2 11 1 1

 

  


   

T P P FP P

T F P P T P P FP P

       (13) 

Since the left hand side is equal to d ,T   

Eq. 13 yields: 

      1 1 1

d B 2 2 1 d 2 21 1 1 1      T P P FP P T F P P

                                                             (14) 

If we can achieve 2 2P P  then 
1 1P P  

simultaneously holds. (Q.E.D). 

4.2. Utilization of FRIT for the 

simultaneous attainment 

Let consider a cascaded IMC system 

described in Fig. 2 with minimum phase 

processes. Assume that we can collect the 

input/output data  0 0 0

2 1( ), ( ), ( )u y y    

from the closed loop system with an 

initial setting 0 . By using a set of the 

initial data, we introduce the fictitious 

reference signal ( )r   described by: 

1 1 0 1 0

1 2 1 2

1 0 0

2 B 2 B

1 0 0 0

1 2 B 2 1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

  





 

  

  

r C C u C P u

C P u P P u

C y P y y

     

  

   

                                                            

(15) 

And we minimize the cost function: 

2
0

F 1 d( ) : ( ) ( ) 
N

J y T r  
  (16) 

Consider the meaning of the minimization 
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of Eq. 16. We can see that the output of 

the system with respect to the signal 

expressed in Eq. 15 always equals to the 

initial one 0

1( )y   for any parameter 

vector    

0

ry 1( ) ( ) ( )G r y       (17) 

Indeed, we can validate (17) by using  

the trivial relations: 2 1

1

1
( ) ( )y y

P
   and 

1

1 2

1
( ) ( ).u y

PP
    

Substituting Eq. 17 to Eq. 16 enables us to 

see that the cost function (16) can be also 

rewritten as: 

2

0d
F 1

ry

( ) 1 ( )
( )

 
   
  N

T
J y

G
 


 (18) 

This implies that the minimization of 

F ( )J   in Eq. 16 equals to  that of the 

relative error of the desired transfer 

function dT  and the closed loop transfer 

function ryG  with   under the influence 

of 0

1( ).y   

Note that the cost function (16) with  

the fictitious reference signal ( )r   in  

Eq. 15 requires only a set of data 

 0 0 0

2 1( ), ( ), ( )u y y   , which means the 

minimization of Eq. 16 can be performed 

off-line by using one-shot experimental 

data. 

4.3. Algorithm 

The algorithm of the proposed approach 

can be summarized as following: 

1. Parameterize the process with the 

unknown parameter vector   as Eq. 4 

and Eq. 5. 

2. The controllers are also parameterized 

with respect to   as Eq. 6 and Eq. 7. 

3. Set an initial parameter vector 0   

and perform the closed loop experiment  

to obtain a set of data 

 0 0 0

2 1( ), ( ), ( )u y y   . 

4. Compute the fictitious reference signal 

( )r   by using Eq. 15. 

5. Construct the cost function F ( )J   as 

Eq. 16 and minimize it by an off-line non-

linear optimization. 

6. Obtain *

Farg min ( ) J   which 

yields both desired controllers 
* *

1 2( ), ( )C C   and mathematical models 

* *

1 2( ), ( )P P   of the actual process. 

5. SIMULATION RESULTS 

In this section, we give examples to show 

the validity of the proposed approach.  

The first-order and second-order, 

minimum phase plants are considered in 

Example 1 and Example 2, respectively. 

5.1. Example 1 

Consider a cascade system with the 

unknown first-order, minimum phase 

plants as: 
1

3

5 1



P

s
 and: 

2

1

2 1



P

s
. 

Then they are parameterized as: 
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(with 1, 2).
1

 


i
i

i

K
P i

s
 For the inner 

loop we use the filter:  2

2

1

1



F

s



. 

Assume that we can achieve the desired 

transfer function of the inner loop, thus 

the outer internal model 
BP  has the 

parameterized form: 1
B

2 1

1

1 1


 

K
P

s s 
.  

The unknown parameter vector here 

 
T

1 1 2 2 2: K K    , and we use the 

reference model: 
 

d 2

1

2 1



T

s
 for the 

system. 

With the initial parameter vector 

 
T0 2 2 2 2 2 , we perform a one-shot 

experiment on the cascade control system 

to obtain the initial data 0 0

2( ), ( )u y   

and 0

1( )y  , which are described in Fig. 4 

and Fig. 5 (the solid line). Note that the 

controllers with the initial setting 0 are 

assumed to be able to stabilize the 

closed loop system such as to yield 

bounded input/output [8]. In Fig. 5,  

we also plot the reference signal  

r  (the dot-and-dash line) and the 

desired output dT r (the dotted line). By 

applying the proposed algorithm, the 

optimal parameters are obtained as 

 
T* 3.000 4.947 0.984 1.988 1.880 .  We 

implement these parameters to the system 

in Fig. 2 and perform the final 

experiment. The results are illustrated in 

Fig. 6. In this figure, the reference signal 

r , the optimal output *

1( )y   and the 

desired output  dT r  are drawn by the dot-

and-dash line, the solid line and the dotted 

line, respectively. From Fig. 6, we see 

that the actual output *

1( )y   and the 

desired output dT r  are almost the same, 

which implies that the desired controllers 

are achieved by using *.  

 

Figure 4. The input signal u(
0
) and the output 

signal y2(
0
) in Example 1 

 
Figure 5. The reference signal r (the dot-and-

dash line), the actual output y1(
0
) (the solid line) 

and the desired output Tdr (the dotted line) in 
Example 1 

 

Figure 6. The reference signal r (the dot-and-

dash line), the optimal output y1(
*
) (the solid 

line) and the desired output Tdr (the dotted line) 

in Example 1 
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On the other hand, by using * , the plant 

models are obtained as: 
1

3.000

4.947 1



P

s

and:  
2

0.984
.

1.988 1



P

s
 Compared with the 

poles and gains of the actual plant, we see 

that they are also well-identified. 

From these results, we can see that the 

optimal parameter vector *  yields both 

controllers for a desired output and 

mathematical models of the actual plants. 

5.2. Example 2 

In this case, the proposed approach  

is applied  for the unknown second - 

order plants as: 
1 2

1

3 5 1




 

s
P

s s
 and 

2 2

0.5 1

2 3 1




 

s
P

s s
. Thus, the parameterized 

models of the plants are: 

1 2
1 2

3 4 1




 

s
P

s s

 

 
and: 5 6

2 2

7 8 1




 

s
P

s s

 

 
. 

We use the same form of the  

filter and reference model as in  

example 1, then the unknown  

vector  
T

1 2 3 4 5 6 7 8 2:          . 

With the initial setting: 

 
T0 2 2 2 2 2 2 2 2 2 , we collect a 

set of data  0 0 0

2 1( ), ( ), ( )u y y   that 

are described  in Fig. 7 and Fig. 8. The 

proposed algorithm is applied and we 

obtain the optimal parameter vector as 

* 0.270 0.997 1.849 4.144 1.197 0.979


T

2.236 2.543 1.185 . After implementing 

*  to the system in Fig. 2, we obtain the 

optimal output described in Fig. 9. From 

this figure, we can see that the achieved 

output *

1( )y   (the solid line) can meet 

the reference one dT r (the dotted line), 

that means the vector *  yields optimal 

controllers. 

 

Figure 7. The input signal u(p
0
) and the output 

signal y2(p
0
) in Example 2 

 

Figure 8. The reference signal r (the dot-and-

dash line), the optimal output y1(p
*
) (the solid 

line) and the desired output Tdr (the dotted line) 

in Example 2 

Moreover, by using *  we obtain the 

plant models as: 1 2

0.27 0.997

1.849 4.144 1




 

s
P

s s
 

and 2 2

1.197 0.979

2.236 2.543 1




 

s
P

s s
. It seems 

that, the poles and zeros of the actual 

plants are not identified. Fig. 10 and Fig. 

11 show the frequency characteristics of 

the actual plants and the obtained models. 

In these two figures, characteristics of 
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*, ( )
i i

P P   and 0( )
i

P   are illustrated by 

the dotted line, the solid line and the  

dot-and-dash line, respectively. It is seen 

that the frequency characteristics of 
i

P  

and those of *( )
i

P   are almost the same 

in frequency range of reference model  

Td. That means the models *( )
i

P   

appropriately reflect the dynamics of the 

actual plants. 

 

Figure 9. The reference signal r (the dot-and-

dash line), the optimal output y1(p
*
) (the solid 

line) and the desired output Tdr (the dotted line) 

in Example 2 

 

Figure 10. Frequency characteristics: P1 (the 

dotted lines), 1

*P (ρ )  (the solid lines), and 

0

1P (ρ )  (the dot-and-dash lines) in Example 2 

 

Figure 11. Frequency characteristics: P2 (the 

dotted lines), *P (ρ )2
 (the solid lines), and P (ρ )0

2
 

(the dot-and-dash lines) in Example 2 

6. CONCLUSIONS 

In this paper, we have proposed a data-

driven approach to the cascaded IMC  

with fictitious reference iterative tuning 

(FRIT). The processes we consider here 

are linear, time-invariant, stable and 

minimum phase. The algorithm directly 

designs controllers based on the one-shot 

input/output data collected from the 

closed-loop system, and it does not 

require an identification. The approach 

enables us to obtain not only desired 

controllers but also mathematical models 

that reflect the dynamics of the actual 

process. 

Future direction of this study is to extend 

the proposed method to various processes 

(e.g. with unstable zeros and/or time-

delay) to show its useful and effective.  

The comparison with other data-driven 

approaches will also be considered in the 

future researches. 
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