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Abstract:

This paper proposes a data-driven parameter tuning of the internal model controllers (IMC) in
cascade architecture with minimum phase processes. In order to perform the parameter tuning of
the IMC, we utilize the fictitious reference iterative tuning (FRIT), which enables us to obtain the
desired parameter of the controllers with only one-shot experiment data. The algorithm does not
require mathematical process models but only a single set data collected from the closed loop
system. Moreover, the proposed approach enables us to obtain both the optimal parameters of two
controllers for the desired tracking property and mathematical models of the controlled process
simultaneously. To show the validity of the proposal, we give illustrative examples.
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Tém tit:

Bai bao dé xuét sir dung FRIT - mdt thudt toan dung truc tiép di liéu thuc nghiém dé diéu chinh
thdng sd cla bd diéu khién IMC trong hé thdng diéu khién tdng véi cac ddi tugng pha cuc tiéu.
Thudt toan dé xuét khdng doi hdi md hinh todn hoc cua ddi tugng diéu khién ma chi yéu cau duy
nhat mot bd dif liéu vao/ra thu thap tir hé thng. K&t qua nhén dudc 13 cac bd diéu khién véi thdng
s6 t6i uu cho tin hiéu ra mong mudn cla hé théng, dong thdi nhan dugc mé hinh todn hoc cia déi
tugng diéu khién.

T khéa:
D{ liéu thuc nghiém, FRIT, diéu khién tang, IMC.

1. INTRODUCTION

Cascade control has been implemented in
industry and different applications due to
their disturbance rejection, faster response

and other advantages over single loop
control systems [1]. Usually, the
controllers are tuned sequentially, the
inner loop controller is tuned first to give
a faster response than the outer loop, and
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then, the primary controller is tuned
according to the resulting system. Thus,
tuning of cascade controllers is a time
consuming task.

On the other hand, internal model control
(IMC, [2]) is one of the effective
approaches to the achievement of a
desired tracking property. The utilization
of IMC for cascade control yields the
robustness and flexibility in tuning
parameters. Thus, it provides a better
system response than sequential tuning
due to the adjustment of the inner loop
has minimum effects on the outer loop.

In [3], Jeng et al. proposed an automatic
tuning method for cascade control
systems based on a single closed loop step
test. This method identifies the required
process information with the help of B-
spline series expansions of the step
responses. Then, two PID controllers are
tuned using an IMC method. Lee et al. [4]
proposed IMC - based PID tuning rules
that enable simultaneous tuning of
primary and secondary controllers. Their
method is based on process models for
cascade control systems. The main point
of  simultaneously  tuning  cascade
controllers is to approximate the inner
loop dynamics with the inner loop design
target. Such an approximation allows
obtaining a process model for the tuning
of primary controller. However, this
approximation may be inaccurate because
the implemented secondary PI1D controller
cannot guarantee meeting the inner loop
design target. In [5], Cesca et al. proposed

a model-based procedure using IMC
approach for synthesizing the controllers.
The  suggested  tuning  procedure
determines the controller filter time
constants to assure robust stability.

It is clear that most methods in mentioned
studies require the process models,
thus the controller design  asks
an identification, which encounters
difficulties in practice. In recent years,
design of a data-based control system
(without system identification) has been

proposed, such as iterative feedback
tuning (IFT, [6]), virtual reference
feedback tuning (VRFT, [7]), and

fictitious reference iterative tuning (FRIT,
[8-9]) for the single loop control system.
In contrast to the iterative tuning method
(IFT), which requires many control
executions, the VRFT and FRIT require
only one-shot experiment. While VRFT
considers error between the virtual input
and actual one, FRIT focuses on error
between the fictitious output and the
actual one.

Compared to a model-based approach, in
the data-based methods, the controller is
directly  designed based on the
experimental data, thus the modeling step
is omitted and problems of under
modeling encountered in practice are
avoided. Moreover, due to the special of
IMC structure, it is expected that a data-
driven approach to the IMC yields not
only a controller but also a mathematical
model of the plant. In [9], Kaneko et al.
have succeeded in applying a data-driven
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FRIT for the single loop IMC, which
yields simultaneous attainment of optimal
controller and a plant model. In [10-11],
Nguyen et al. developed FRIT for cascade
control systems, two PI controllers are
simultaneously tuned to get the desired
performance. As an application of the
data-driven FRIT for cascade systems, the
speed of DC motor is controlled in [11].
However, the results in [10-11] are only
controllers, no any process model is
achieved.

From these backgrounds, we propose a
data-driven approach of FRIT for IMC
parameter tuning in cascade systems. The
processes we treat here are linear, time-
invariant, stable and minimum phase. The
algorithm does not require mathematical
process models but only a set of
experimental data collected from the
closed-loop system. Particularly, it is
expected that the application of FRIT for
cascaded IMC leads to both optimal
controllers for achievement of a desired
performance and mathematical models
that reflect dynamics of the actual
process.

[Notations] Let R and R" denote the set
of real numbers and that of real vectors of
size n, respectively. For a time series w,

we use w(t) to describe the value of w at
time t. For a transfer function G, the
output y of G with respect to u is
denoted with y =Gu for the enhancement
of the readability. For a time series
w={w(A), w(24),---,w(NA)},we use
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the following notation
2

o, = 3 (k)

2. PRELIMINARIES

2.1. Internal model control for cascade
systems

An IMC for a cascade system is shown in
Fig.1 [3], [5]. In this figure, C,and C, are
the IMC controllers, P, and P, are the
process for the loops. I52 IS a process
model of the inner loop and P, is the
equivalent process model of the outer
loop. r,u and v,,y, are the reference

signal, the input, and the outputs,
respectively.

The closed loop transfer function for the
inner loop is determined as:

__ GR
1+C,(R,-R))

G, 1)

A

Figure 1. Internal model control
for cascade structure

The transfer function P, is a model of
equivalent process P, composed of the
inner loop and the primary plant P,
connected in series, namely:

C:ZPZ

s 1+C,(P,-B))

R )
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The transfer function G, from r to vy,
can be expressed as:
_ CC,PP

" 1+C,(R,-B)+CCPR-CP-CCR(P-F))
©)

Using the transfer function relations for

the inner and outer loop, the respective

IMC controllers are derived to satisfy the

set point and disturbance rejection
requirements.

G

2.2. Assumptions

Consider the case B, and P, are linear,

time-invariant, stable and minimum
phase, they are unknown except degrees
of the numerator and the denominator.

Assume that the process models P, and

P, are parameterized with a tunable
vector p, = py,' ppzT]T as:

V%
a,s" +--+a5s+a,

, u<y (4)
bs" +---+bs+1

Iﬁl(pPl) =

and:

< a's“+--+a's+a,
P, =X , k<l (5
z(ppz) b|'S +~~~+bl'S+1 (5)

Pr1 :I:a#...ao by bl:IT e R
and o, :[ak ay'h bl]T < R

where

For the inner loop, from the result
by Azar et al. [1] and Lee et al. [4], the
IMC controller is obtained and augmented

by a filter F(ﬂz)z; as shown

(4s+1)"

following:

TRUGNG PAI HOC BIEN LUC

C, (Pp’ﬂ'z) = F~)271F = F~)2 (pp )_lm

(6)
where n, must be selected to ensure that

the IMC controller is proper. A, adjusts the

speed of the closed response in the inner
loop and it should be tuned to meet the
desired performance.

The IMC controller design for the outer
loop is based on the process of the outer
loop P,, which composes of the inner

loop and the primary process P

connected in series, then a model P, also
and A,. The IMC

controller C, is designed such that the

depends on p,

closed loop transfer function of the outer
loop G, follows the reference model T,.

From the result in Kaneko et al. [9], we
construct the controller C, as:

Cl(pp’ﬂz): FN)B (pplﬂz)ile (7)

The reference model T, should have the
form:

Ty = ;n (8)
(As+1)"

where n, must be selected to guarantee

the controller C, proper. In a cascaded

IMC structure, if the reference model T,

is given, the controllers C, and C,

depend on both p, and A,. For

convenience, we use the following
notation:

4
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a

The closed loop system in the cascaded
IMC structure with a tunable parameter
vector p is illustrated in Fig. 2. The

input u and the outputs vy,,y, also
depend on the parameter vector p, so we
denote them as u(p) and v,(p), v,(p),
respectively.

" u(p)

Figure 2. A cascaded IMC system
with a tunable vector

2.3. Problem setting

The objective of this paper is to find a
parameter vector p to attain the design
output, which is represented by a
reference model T,, with the direct use of

experimental data. The model-reference
criterion is described as:

3(0) =i () -Tyr],

Since controllers include the process
models internally, it is expected that
we can also simultaneously obtain
appropriate models of the actual process.
For this purpose, FRIT, which is briefly
explained in the next section, is utilized.

(10)

3. FICTITIOUS REFERENCE
ITERATIVE TUNING - FRIT [8]

In this section, the brief review of FRIT is
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expressed. The main idea of the FRIT
scheme is to construct the model-
reference criterion in the fictitious domain

[8].

Consider a conventional closed loop
system as Fig. 3, where r,u and y are
the reference signal, the input, and the
output, respectively. The controller C is
parameterized by a vector p since the

controlled plant model is unknown.

y(p)

1 u(p)

Lol P ]

Figure 3. A conventional closed loop system
with a tunable vector p

First, set an initial parameter vector p° of

the controller and perform a one-shot
experiment on the closed loop system to

obtain the data u(p°) and y(p°). The
controller C(p°) is assumed to stabilize
the closed loop system such that u(p°)
and y(p°) are bounded. By using the data
u(p®) and y(p°), the fictitious refence
signal (p) is computed as:

F(p) =C(p) " u(p’)+y(p")

For a given reference model T,, the cost

(11)

function is described by:

30 =]y T (12)

Then we minimize J.(p) to achieve the

optimal parameter vector p, which
yields a desired controller. Note that the
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cost function (12) with the fictitious
reference signal F(p) in Eq. 11 requires
only the initial data u(p°) and y(p°).
This means that the minimization of Eq.
12 can be performed off-line by using
only one-shot experimental data. As for
the relationship between the minimization
of J(p) and that of J_(p), it was shown
in Theorem 3.1 by Souma et al. [8] that
J(p)=0 is equivalent to J_(p)=0
(see Theorem 3.1 in [8] for the detailed
proof and discussions).

4. FRIT FOR CASCADED INTERNAL
MODEL CONTROL

4.1. Simultaneous attainment of
controllers and process models

Consider a cascade control system with
IMC as Fig. 2. Under the assumption that
the processes are unknown and they are
parameterized by p as Eg. 4 and Eq. 5,

we give the following result.

Theorem 1: For a given reference
model T,, assume that the controllers

are describped as Egq. 6 and Egq. 7,
then G (p)=T, holds if and only if
both  R=FB(p) and P, =F(p)
simultaneously holds.

Proof. It follows from Eq. 3 that the ‘if’
part clearly holds, with a notice that

together with Eq. 2, we see P,=PF
when P,=P,. Thus, we focus on the
‘only if" part. By implementing the
controllers described in Eq. 6 and Eq. 7,
the transfer function G, from r to y, can

be expressed as:

Td FN)Bi1 |52’1 FPZ Pl

G, =— LN _ _
1+B,'F(P,~P,)+T,R, B, 'FRR T, ~T,P, 'F (P, P

Td Ii;B_:L ﬁZ_lFPZP].
(1-T,)(1-F(1-B'R))+T,% "R, *FRR,
(13)

Since the left hand side is equal to T,,
Eq. 13 yields:

(1-Ty) R, 'P, "FRR = (1-T, ) (1-F (1-F, R, ))
(14)

If we can achieve P,=P, then P, =P

simultaneously holds. (Q.E.D).

4.2. Utilization of FRIT for the
simultaneous attainment

Let consider a cascaded IMC system
described in Fig. 2 with minimum phase
processes. Assume that we can collect the
input/output data {u(p"), y,(0"). ¥,(p")}
from the closed loop system with an
initial setting p°. By using a set of the
initial data, we introduce the fictitious
reference signal () described by:

F(p) =C.(p) "Colp) "u(p") ~Ci(p) *Pu(p")
—C,(p) "Pau(p°) + P,Ru(p’) +

+ Cl(p)il Y, (po) - ISByz (po) + yl(po)
(15)

And we minimize the cost function:

3.0 = |3 -Tr (o) (16)

Consider the meaning of the minimization
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of Eqg. 16. We can see that the output of
the system with respect to the signal
expressed in Eq. 15 always equals to the

initial one y,(p°) for any parameter
vector p

G, (P)F(p) = y,(p") 17)

Indeed, we can validate (17) by using

the trivial relations: yz(p)zéyl(p) and

1

1
AP,

u(p) = Y, (p)-

Substituting Eq. 17 to Eg. 16 enables us to
see that the cost function (16) can be also
rewritten as:

T
1-—2— %, (p°)
[ Gry(p)} '

This implies that the minimization of
J-(p) in Eq. 16 equals to that of the

relative error of the desired transfer
function T, and the closed loop transfer

2

Je(p) = (18)

N

function G, with p under the influence
of y,(p").

Note that the cost function (16) with
the fictitious reference signal f(p) in

Eg. 15 requires only a set of data

{U(), ¥,(0"), ¥1(°)} , which means the
minimization of Eqg. 16 can be performed
off-line by using one-shot experimental
data.

4.3. Algorithm

The algorithm of the proposed approach
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can be summarized as following:

1. Parameterize the process with the
unknown parameter vector p as Eq. 4

and Eq. 5.

2. The controllers are also parameterized
with respectto p as Eq. 6 and Eq. 7.

3. Set an initial parameter vector p°

and perform the closed loop experiment
to obtain a set of data

{u(e®), ¥,(0), i(P")}.

4. Compute the fictitious reference signal
f'(p) by using Eq. 15.

5. Construct the cost function J.(p) as

Eg. 16 and minimize it by an off-line non-
linear optimization.

6. Obtain p =argminJ.(p) Wwhich
yields both desired controllers

C,(0),C,(p") and mathematical models
P(p"), P,(p") of the actual process.

5. SIMULATION RESULTS

In this section, we give examples to show
the validity of the proposed approach.
The  first-order and  second-order,
minimum phase plants are considered in
Example 1 and Example 2, respectively.

5.1. Example 1

Consider a cascade system with the
unknown first-order, minimum phase
1
5s5+1 27 25+1°
are parameterized as:

and:

plants as: B =

Then they
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P= K, (withi=1,2). For the inner
7,S+1
. 1
loop we use the filter: F = )
P (/12) A,s+1

Assume that we can achieve the desired
transfer function of the inner loop, thus

the outer internal model P, has the

1 K, .
ALs+lzrs+1
The unknown parameter vector

parameterized form: P, =

here

p=[K 7K, ,4], and we use the

reference model: T, = > for the
(2s+1)

system.

With the initial parameter vector

p°=[2222 2]T, we perform a one-shot

experiment on the cascade control system
to obtain the initial data u(p°), y,(0°)

and y,(p°), which are described in Fig. 4
and Fig. 5 (the solid line). Note that the
controllers with the initial setting p°are
assumed to be able to stabilize the
closed loop system such as to yield
bounded input/output [8]. In Fig. 5,
we also plot the reference signal
r (the dot-and-dash line) and the
desired output T,r (the dotted line). By
applying the proposed algorithm, the
optimal parameters are obtained as

p = [3.000 4.947 0.984 1.988 1.880]T. We

implement these parameters to the system
in Fig. 2 and perform the final
experiment. The results are illustrated in
Fig. 6. In this figure, the reference signal

r, the optimal output y,(p’) and the
desired output T,r are drawn by the dot-

and-dash line, the solid line and the dotted
line, respectively. From Fig. 6, we see

that the actual output y,(p) and the
desired output T,r are almost the same,
which implies that the desired controllers
are achieved by using p".

0.8

> 04f

60 100
Time [s]

0 30 60 100
Time [s]

Figure 4. The input signal u(p°) and the output
signal y2(p) in Example 1

15

Outputs

0 30 60 100
Time [s]

Figure 5. The reference signal r (the dot-and-
dash line), the actual output y1(p°) (the solid line)
and the desired output Tqr (the dotted line) in
Example 1

14

Outputs

-

LU U
1

i

30 60 100
Time [s]

o

Figure 6. The reference signal r (the dot-and-
dash line), the optimal output y1(p*) (the solid
line) and the desired output Tqr (the dotted line)
in Example 1
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On the other hand, by using p", the plant

3.000

models are obtained as: -
4947s+1

P=
0.984

1.988s+1
poles and gains of the actual plant, we see
that they are also well-identified.

and: P, = . Compared with the

From these results, we can see that the
optimal parameter vector p yields both

controllers for a desired output and
mathematical models of the actual plants.

5.2. Example 2

In this case, the proposed approach
is applied for the unknown second -

order plants as: Pl=23;1 and
3s°+5s+1
P,= % . Thus, the parameterized
25 +3s+1
models of the plants are:
F”)l: :0213"',02 and: |52: /3253"':06 _
P8 +p,5+1 P58+ pes+1
We use the same form of the
filter and reference model as in
example 1, then the unknown
T
vector p=[p p, Ps Py Ps Ps Py Pa ] -
With the initial setting:

=[222222222], we collect a

set of data {u(p°), y,(p°), V,(")} that

are described in Fig. 7 and Fig. 8. The
proposed algorithm is applied and we
obtain the optimal parameter vector as

p =[0.270 0.997 1.849 4.144 1197 0.979
2.236 2.543 1.185]" . After implementing
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p  to the system in Fig. 2, we obtain the

optimal output described in Fig. 9. From
this figure, we can see that the achieved

output y,(p") (the solid line) can meet
the reference one T,r (the dotted line),

that means the vector p° yields optimal
controllers.

.
Time [s] 60 100

0 Sb Time [s] 6’0 100
Figure 7. The input S|°gnal u(p?) and the output
signal yz(p") in Example 2

14r

)

Outputs

054 §

ikt

o

) 60 100
Time [s]

Figure 8. The reference signal r (the dot-and-
dash line), the optimal output y:(p) (the solid
line) and the desired output Tqr (the dotted line)
in Example 2

Moreover, by using p  we obtain the

. 0.27s+0.997
plant models as: P, = >
1.849s" +4.144s +1
and P, = 1'19273+0'979 . It seems
2.236s° +2.543s +1

that, the poles and zeros of the actual
plants are not identified. Fig. 10 and Fig.
11 show the frequency characteristics of
the actual plants and the obtained models.
In these two figures, characteristics of
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P,P(p’) and P(p°) are illustrated by
the dotted line, the solid line and the
dot-and-dash line, respectively. It is seen
that the frequency characteristics of P

and those of é(p*) are almost the same
in frequency range of reference model
Ts. That means the models P(p")
appropriately reflect the dynamics of the
actual plants.

14

Outputs

. 60 100
Time [s]

Figure 9. The reference signal r (the dot-and-
dash line), the optimal output y:(p) (the solid
line) and the desired output Tqr (the dotted line)
in Example 2

Gain (dB)

Phase (deg)

Freauency (radisec)

Figure 10. Frequency characteristics: P; (the
dotted lines), Isl(p*) (the solid lines), and

If’l(p0 ) (the dot-and-dash lines) in Example 2

Gain (dB)

Phase (deg)

Frequency (rad/sec)

Figure 11. Frequency characteristics: P; (the
dotted lines), P,(o" ) (the solid lines), and P,(0°)
(the dot-and-dash lines) in Example 2

6. CONCLUSIONS

In this paper, we have proposed a data-
driven approach to the cascaded IMC
with fictitious reference iterative tuning
(FRIT). The processes we consider here
are linear, time-invariant, stable and
minimum phase. The algorithm directly
designs controllers based on the one-shot
input/output data collected from the
closed-loop system, and it does not
require an identification. The approach
enables us to obtain not only desired
controllers but also mathematical models
that reflect the dynamics of the actual
process.

Future direction of this study is to extend
the proposed method to various processes
(e.g. with unstable zeros and/or time-
delay) to show its useful and effective.
The comparison with other data-driven
approaches will also be considered in the
future researches.
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