
Section on Information and Communication Technology - Vol. 11, No. 02

A COLLABORATIVE NETWORK INTRUSION
DETECTION ARCHITECTURE FOR A

PROGRAMMABLE DATA PLANE

Thi Nga Dao1,∗, Manh Hung Tran1, Van Duc Le2

Abstract

For early detection and response to network threats, a network intrusion detection system
should be executed on a data plane. However, due to high model complexity, an intrusion
detection model based on advanced machine learning techniques becomes unsuitable for
limited-resource switches. To address this problem, we propose a lightweight joint detection
model that is inspired by classification parallelism and neuron pruning. Specifically, the
traditional multi-label classification model is decoupled into several class-specific sub-models
and each sub-model takes charge of detecting one or several traffic classes. In our model, the
number of participating switches can vary based on network traffic and available computing
resources of edge devices. Moreover, to reduce the size of sub-models, magnitude pruning
is applied for each sub-model to only keep salient connections. Evaluation experiments are
conducted with various network parameters and results show that the proposed architecture
achieves much lower model complexity than the traditional multi-label classifier without a
reduction in classification performance.

Index terms

Traffic management, intrusion detection, neuron pruning

1. Introduction

A network intrusion detection system (NIDS) has received great attention from re-
searchers and practitioners since it plays a main role in strengthening the network
security [1]–[3]. NIDS can be located in an external device that collects packet in-
formation and predict possible attacks [4]–[6]. However, using the external device leads
to significantly high detection delay. Therefore, NIDS should be distributed at edge
devices (e.g., networking switches) to achieve quick detection time and early response to
network threats. When deploying NIDS in a data plane, the lack of computing resources
of edge devices should be considered carefully, especially when the data rate is high.
Although a lot of intrusion detection systems were proposed in the literature, there is
still a lack of detection models on distributed edge devices. To address these issues, we

1Faculty of Radio-Electronic Engineering, Le Quy Don Technical University, Vietnam
2School of Computer Science and Engineering, Nanyang Technological University, Singapore
∗Corresponding author: daothinga@mta.edu.vn

34

doi:10.56651/lqdtu.jst.v11.n02.536.ict

Journal of Science and Technique - ISSN 1859-0209, December-2022

propose a collaborative network intrusion detection model that allows multiple switches
to participate in the detection task.

To fast inference on online data items, Wang et al. introduced class parallelism
called SensAI in which a single neural network (NN) is decoupled into multiple bi-
nary classifiers or sub-models [7]. Each class-specific classifier consists of important
neurons for a certain type of class and these sub-models can run over multiple machines
simultaneously and independently. A softmax layer is applied after combining outputs
of the sub-models to obtain the classification result. Due to the smaller size of each sub-
model than the original network, SensAI achieves a huge reduction in model complexity
and inference time, as shown in the CIFAR10 dataset.

Inspired by class parallelism and magnitude pruning, we design NIDS that can
be embedded in a chain of resource-constrained switches. The collaborative detection
architecture is divided into multiple binary sub-models and each of these sub-models
is implemented in a single device to detect one or several attack classes. The main
difference between SensAI and our model is that SensAI needs N devices in the case
of N classes and each device takes responsibility for a specific traffic class. Meanwhile,
our model can deploy on M devices (M ≤ N) and a device can detect one or some
classes. A threshold value λ (0 ≥ λ ≥ 1) is used to determine whether an incoming
packet is classified at a device. More specifically, if the probability of a traffic class is
greater than λ, we can conclude the traffic type of the incoming packet without requiring
other devices. Otherwise, another device is needed for traffic inspection. In the worst
case, we combine outputs of the sub-models and add a softmax layer at the last device
to conclude the traffic label. The complexity of each sub-model is smaller than that
of the original multi-label architecture. To further reduce model complexity, we adopt
magnitude pruning for sub-models after training parameters of these sub-models.

There are three steps for model training. First, network parameters of fully-connected
class-specific sub-models are trained separately by minimizing an entropy-based loss
function. Then, we apply magnitude pruning for sub-models independently. Specifically,
connections with the lowest absolute weight values are removed from the fully-connected
models. Finally, the whole collaborative architecture is fine-tuned after adding a softmax
layer, which merges outputs of sub-models. An entropy-based loss function is used to
find the optimal parameters. For performance evaluation, the IoT dataset [8] with nearly
three million samples and five attack types is used. Main performance metrics include
accuracy, confusion matrix, and the number of floating-point operations (FLOPs).

The main contributions of our work is summarized as follows:

• For model complexity reduction, we propose a lightweight distributed detection
architecture based on class parallelism and a neuron pruning method. The proposed
architecture can run on multiple constrained-resource switches and the number of
switches can be lower than the number of attack classes.

• We evaluate the proposed joint detection model with different parameters including
pruning rate, the number of hidden neurons, the number of participating switches,

35

Section on Information and Communication Technology - Vol. 11, No. 02

Programmable
Switches

Smart Transportation

Smart Grid Smart Home

Server

Server

Surveillance System

Attack

Multiple switches involved
in intrusion detection

Fig. 1. The overview of NIDS in Networks.

and a threshold value.
• Experimental results show that the proposed distributed model achieves low model

complexity with similar classification performance to the traditional multi-label
classifier.

• We find the tradeoff between classification accuracy and model complexity when
choosing network parameters such that pruning rate, threshold value, and the num-
ber of participating devices.

The rest of the paper is organized as follows: Section 2 presents the model system and
assumptions. Then, the proposed collaborative detection model is described in Section 3.
Section 4 shows the evaluation performance of the proposed model with various network
parameters. Finally, we draw the conclusion for our work in Section 5.

2. Network system

We assume that switches are used to forward data traffic generated from a device to
a destination. Data traffic can be from a variety of applications such that smart grid,
smart transportation, smart home, and surveillance system. As shown in Figure 1, these
switches are connected using an arbitrary network topology: bus, star, tree, ring, or
mesh. Attacks can be injected into traffic at any points from the generated device to
the destination host. To ensure the network security, data traffic should be inspected at
edge devices.

When a data packet arrives at the input port, the switch makes a prediction on the
traffic type of the packet. In the case of the IoT dataset [8], there are five different

36

Journal of Science and Technique - ISSN 1859-0209, December-2022

traffic labels: normal, reconnaissance, man-in-the-middle, denial-of-service, and botnet.
Based on the prediction output, the switch can take appropriate action for this packet,
e.g., forwarding the packet, dropping the packet, or adding an alarm field in the header.

For quick detection and prevention of network threats, we execute the traffic classi-
fication model on programmable data plane. Data plane programmability allows cus-
tomization of packet processing functions on edge devices, thus leading to a lower
detection delay than the case of sending data traffic to an external device for examination.
Several commercial programming edge devices including NetFPGA SUME developed
by Digilent [9] and Intel Tofino2 [10].

A common architecture of a programmable switch includes four main blocks: parser,
ingress control, outgress control, and deparser. When an incoming packet arrives at the
switch, the Ethernet, IP, and TCP headers are analyzed to extract necessary informa-
tion (e.g., source and destination IP addresses, source and destination port numbers,
and arriving time). This information is used to derive input features of the proposed
architecture. Then, the model outputs the probability of occurring attacks. The packet
is processed at the incoming and outgoing ports by ingress and outgress control blocks,
respectively. Based on the probability of attack types, look-up tables are used to find
appropriate actions (e.g., sending data to a specific port and updating the time-to-live
parameter) for the given packet. The switch can select one of the possible actions after
packet examination.

To embed the intrusion detection function on the programmable switch, we use the
P4 programming language [11], [12]. Since P4 is a domain-specific language, it only
supports a limited number of operations for binary and integer numbers. Arithmetic
operations including addition, subtraction, and multiplication are supported while no
division/modulo operation can be used. Bit shift and element-wise comparison opera-
tions are also supported. We apply the right bit shift instead of division operation to
control the number of bits used for units in the network.

When designing an intrusion detection function on a data plane, we should consider
the fact that edge devices are equipped with limited computing resources and memory
footprints. Therefore, it is a need for a lightweight distributed architecture that can make
use of resources of multiple switches for intrusion detection. The next section presents
a collaborative detection model followed by a performance evaluation.

3. Collaborative intrusion detection on multiple distributed switches

For early detection and quick response to network threats, NIDS should be im-
plemented in the data plane. However, since edge devices are usually equipped with
limited resources and memory footprints, the detection architecture should have low
model complexity. In this work, we develop a lightweight intrusion detection model
that allows joint detection between multiple networking devices. To do that, the idea of
class parallelism [7] is modified in which the traditional multi-label classification model
is decoupled into numerous sub-models with lower model complexity than the original

37

Section on Information and Communication Technology - Vol. 11, No. 02

ReLU

Sigmoid
Device 1

ReLU

Sigmoid

Device n

Input

Input

Generated

 data

Device 2

Source Host

Destination

Probability of
majority classes

Probability of
minority classes

Softmax Traffic Label

Fig. 2. The joint intrusion detection architecture.

one. Each sub-model is implemented at a device to output the probability of one or
multiple attack types. To more lessen the number of operations in each sub-model, a
neuron pruning algorithm is utilized to remove unnecessary connections. In this section,
we first present the main architecture of the joint detection model and how to train the
network parameters of the proposed model.

Let nlabel denote the number of traffic labels in which the security system is interested.
As shown in Figure 2, the proposed architecture decomposes a detection function into
k class-specific sub-models (k ≤ nlabel). Let n1, n2, ..., and nk denote the number of
attacks of which switches 1, 2, ..., and k take in charge, respectively (

∑k
i=1 ni = nlabel).

When packets arrive at device 1, data features are extracted and used to predict the
probability of the major attack classes. The architecture of the sub-models consists of
three layers: input, hidden, and output layers. Since the P4 programming language only
supports operations for integers and binary, the ReLU function is used at the hidden
layers. Meanwhile, because sub-models return the probabilities of attacks, the sigmoid
function, which outputs a value between 0 and 1, is considered at the output layer of
sub-models. At the last device, a softmax layer is added to determine the most likely
traffic type. Packet features are only extracted at the first device and then these features
are sent to other devices.

To construct the joint detection model, three main steps are required as shown in
Figure 3. Before nework training, we need to know the training dataset and hyper-

38

Journal of Science and Technique - ISSN 1859-0209, December-2022

Step 1: Train fully-connected class-specific sub-models separately

Step 2: Remove unimportant connections of class-specific sub-models

Step 3:Add a softmax layer and retrain the whole sparse model

Start

Input: Training dataset

End

Output: Trained sub-models

Fig. 3. Training procedure.

parameters such as threshold value and pruning rate. The purpose of the training
procedure is to find learned parameters including weights and biases. Parameters training
is implemented at a centralized device and then learnt parameters are sent to distributed
switches. In step 1, we train fully-connected sub-models independently by minimizing
an entropy-based loss function. The loss function Li at device i is defined as below.

Li = − 1

m

m∑
j=1

t
(j)
i log(y(j)i) (1)

where m is the number of training samples while t
(j)
i and y

(j)
i , respectively, are the target

and predicted values of the jth sample at device i. Training terminates when there is
no improvement in classification accuracy on the validation set for the most recent 20
epochs.

In the next training step, we apply magnitude pruning in which links with the lowest
absolute weight values in sub-models are totally removed. Since trained weight values
of sub-models may have a big gap, connection removal should be done separately
between sub-models to avoid layer collapse. Layer collapse is a situation when there
is no remaining connection between two consecutive layers, which makes the network
untrainable. The amount of trimmed connections depends on pruning rate, which is
denoted by pprune (0 ≤ pprune ≤ 1). For example, if pprune = 0.3 and there are 100
connections in a fully-connected sub-model, we remove 30 weakest links and keep 70

39

Section on Information and Communication Technology - Vol. 11, No. 02

No

Yes

 argmax

argmax

Device 1 Device 2

No

Device n

Yes

 argmax

Fig. 4. Inference phase.

strongest connections. A binary mask matrix M with the same size as the weight matrix
to denote the pruning status of weights. Values 0 and 1 represent removed and remaining
connections, respectively. Since sub-models are trained and pruned separately, we can
make use of multiple processors in the first two steps to speed up the training process.

In the final step, a softmax layer is added by combining outputs of sub-models to
determine the most likely traffic label. We minimize an entropy-based loss function L
that is derived as follows.

L = − 1

m

m∑
j=1

n∑
i=1

t(j)i log(y(j)
i) (2)

where t(j)i is the target value of the ith training sample and y(j)
i is the output of the

softmax layer. At each epoch, the remaining parameters of sub-models are updated.

Figure 4 shows how the proposed joint detection model classifies an online packet. As
a packet arrives at device 1, the first sub-model is executed to compute the probabilities
ŷ1 of n1 attack types. If the maximum value of ŷ1 is greater than a threshold value,
which is denoted by λ, the incoming packet is classified at device 1 and classification
for this packet is done. Otherwise, packet features are sent to device 2 in which the
sub-model 2 is implemented to derive the probabilities of the next n2 traffic labels.
Similarly, if the condition max(ŷ2) ≥ λ is satisfied (i.e., the system is quite sure about
the traffic class), we can conclude the attack label at device 2 without sending packet
features to next devices. Otherwise, another device is involved in packet classification.
In the worst case, the process is repeated until device n, which outputs the probabilities
of the last nk attack classes and combines outputs of all sub-models to return the most
probable traffic type.

4. Experimental results

In this section, we present results for evaluating the proposed joint detection model
and comparing it with existing work. A desktop PC with Intel Core i7 2.5GHz CPU
(with the Radeon R9 M370X 2048 MB and Intel Iris Pro 1536 MB GPU support)
and 16 GB RAM is used to conduct experiments. Table 1 shows attack distribution of

40

Journal of Science and Technique - ISSN 1859-0209, December-2022

the IoT dataset [8] with five different traffic classes: normal, denial-of-service, man-in-
the-middle, botnet, and reconnaissance. There are several reasons for selection of this
dataset. Firstly, samples in the IoT dataset are collected from real network experiments
in a smart home environment. Secondly, this dataset was published in 2019 and quite
up-to-date. Finally, the dataset provides five different traffic classes and the total number
of samples in the dataset is nearly three millions, which is big enough to train a machine
learning model. The whole dataset is split into training, validation, and test sets with
a ratio of 5:2:3. The training and validation sets are used during the training process
while the test set is for performance evaluation. In this paper, we use the number of
traffic samples in each class to distinguish between majority and minority classes. More
specifically, traffic classes including normal, botnet, and Mitm with the highest number
of samples in the Korea IoT dataset are selected as majority classes. The remaining
classes are called minority classes. Six salient input features from the set of features
provided in [13] are used for experiments. The IoT dataset only provides raw packet trace
at devices. To derive input features of the classification model, whenever a packet arrives
at the switch, the source and destination IP addresses are extracted from the packet
header. The selected features include weight, mean, and variance of packet length with
the flow id is the source IP address and weight, mean, and variance of the elapsed period
between two consecutive arriving times with the flow id is the source and destination IP
addresses. Note that these features are computed statistically by switches and presented
using a 32-bit binary number [14]. Different learning rates are examined and the model
with the highest performance on the validation set is evaluated and presented in this
paper. Table 2 summarizes key parameters used in experiments. Default values are
highlighted with bold texts.

Table 1. Attack distribution of the IoT network intrusion dataset.

Name No. of packets Percentage (%)
Normal 1,756,276 58.82
Botnet 1,037,977 34.76
MitM 101,885 3.41
DoS 64,646 2.16

Reconnaissance 25,210 0.84
Total 2,985,994 100

First, we consider the situation when two switches are involved into attack detection.
The first switch takes in charge of classifying three major attacks: Normal, Botnet,
and MitM. Meanwhile, the remaining two classes are for the second switch. Figure 5
presents learning curves during the training process. The number of hidden neurons is
set to ten and there is one hidden layer in each sub-model. The loss function decreases
and the accuracy of both sub-models improves when there are more training epochs.
When comparing performance between two sub-models, we observe that the second sub-
model achieves higher classification accuracy than the first sub-model. Specifically, after
the first training phase, the sub-model 1 produces around 96% accuracy compared to

41

Section on Information and Communication Technology - Vol. 11, No. 02

Table 2. Parameters setup.

Parameter Value
The number of devices {2, 3, 4, 5}

#Hidden layer 1
#Hidden Neurons {5, 10, 20, 30}

Threshold Value (λ) between 0.01 to 0.999
Learning rate {0.001, 0.003, 0.005, 0.01, 0.03, 0.05}

Optimizer Adam optimizer [15]
pprune from 0.1 to 0.9

0 25 50 75 100 125 150 175
Number of Epochs

0.05

0.10

0.15

0.20

Lo
ss

 V
al

ue

Loss Value sub-model 1 (Major Classes)
Loss Value sub-model 2 (Minority Classes)

(a)

0 25 50 75 100 125 150 175

92

93

94

95

96

97

98

99

Va
lid

at
io

n
Ac

cu
ar

cy
 (%

)

Accuracy sub-model 1 (Major Classes)
Accuracy sub-model 2 (Minority Classes)

(b)

Fig. 5. Learning curves on the validation set during the first training step:
(a) Loss value and (b) Classification accuracy.

nearly 100% of the sub-model 2. One factor contributing to this observation is that both
sub-models have ten hidden units but the sub-model 1 needs to classify three classes
compared to two classes of the sub-model 2. Therefore, the sub-model 1 should have a
more complex architecture than the sub-model 2. It can also be inferred from Figure 5
that the first sub-model needs more training epochs than the second one (188 compared
to only 63).

We examine the accuracy and detection delay with different threshold values from
0.01 to 0.999 as shown in Figure 7. Recall that the threshold value λ is used to determine
whether a packet can be classified before arriving at the last device. More specifically,
if the maximum output unit of a sub-model exceeds λ, the incoming packet is predicted
to belong to a specific label. If using a high threshold value, we are more sure about
label prediction. As a result, when using a larger threshold value, classification accuracy
can significantly increase. Performance becomes convergent with λ ≥ 0.3 for all values
of hidden units. Note that there is more likely that packets are classified by the second
switch instead of the first switch in the case of higher λ. As a result, the detection
delay, which includes transmission latency between two devices, becomes much larger.
Therefore, it is important to select an optimal threshold value to reduce the detection

42

Journal of Science and Technique - ISSN 1859-0209, December-2022

Normal Botnet MitM DoS Recon

No
rm

al
Bo

tn
et

M
itM

Do
S

Re
co
n

343474 6324 1415 0 0

4363 203145 0 0 0

17137 0 3054 0 0

12974 1 0 0 0

4592 471 0 0 0

0

50000

100000

150000

200000

250000

300000

350000

400000

(a) λ = 0.1
Normal Botnet MitM DoS Recon

No
rm

al
Bo

tn
et

M
itM

Do
S

Re
co
n

340155 4625 1415 0 0

4228 202110 0 0 0

17129 0 3054 0 0

4 0 0 0 0

2871 0 0 0 0

0

50000

100000

150000

200000

250000

300000

350000

400000

(b) λ = 0.5
Normal Botnet MitM DoS Recon

No
rm

al
Bo

tn
et

M
itM

Do
S

Re
co
n

113132 2180 34 0 0

939 195459 0 0 0

439 0 0 0 0

1 0 0 0 0

55 0 0 0 0

0

50000

100000

150000

200000

250000

300000

350000

400000

(c) λ = 0.9

Fig. 6. Confusion matrix of samples classified by the sub-model 1 with different threshold values:
a) λ = 0.1, b) λ = 0.5, c) λ = 0.9.

0.01 0.1 0.2 0.3 0.4 0.5 0.7 0.9 0.999
Threshold Value

89

90

91

92

93

94

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

30 Hidden Units
20 Hidden Units
10 Hidden Units
5 Hidden Units

(a)

0.01 0.1 0.2 0.3 0.4 0.5 0.7 0.9 0.999
Threshold Value

100000

200000

300000

400000

500000

600000

Nu
m
be

r o
f S

am
pl
es

 c
la
ss
ifi
ed

 b
y
De

vi
ce

 1

30 Hidden Units
20 Hidden Units
10 Hidden Units
5 Hidden Units

(b)

Fig. 7. Impact of threshold value on performance: (a) Classification accuracy and (b) Detection delay.

delay. The number of hidden features is set from five to 30 and there is one hidden layer.
When we increase the number of hidden units, classification performance can be clearly
improved but the model size increases. Therefore, a network with ten hidden neurons
are selected as the default architecture for a balance between accuracy and model size.

To better presentation of impact of λ, Figure 6 shows confusion matrices of samples
examined by the first sub-model when λ is set to {0.1, 0.5, 0.9}. The total number of
test samples is 597,200. The sub-model 1 classifies 596,950; 575,591; 312,239 samples
while the accuracy of the sub-model 1 is 91.6%, 94.2%, 98.8% with λ = 0.1, 0.5, and
0.9, respectively. That means prediction by the sub-model 1 becomes more accurate
when we increases the threshold value. However, fewer samples can be predicted at the
sub-model 1 in the case of a larger λ value.

Next, the impact of the pruning rate on classification performance is shown in Figure 8
in terms of accuracy and the number of FLOPs including summation and multiplication.
The pruning rate is set from 0.1 to 0.9 with the step size being 0.1. The number of
FLOPs is derived as: 2(nxnh+nhny)(1−pprune) where nx, nh,and ny denote the number

43

Section on Information and Communication Technology - Vol. 11, No. 02

of input, hidden, and output neurons. Generally, classification accuracy deteriorates and
the model complexity is reduced when we use a high pruning rate value. Since fewer
connections are used to distinguish between attack types with a high pruning rate, there
is a decreasing trend in classification performance. There is a balance between accuracy
and model complexity. If high accuracy is required, the model should be more complex
and vice versa. In this work, the pruning rate of 0.6 is selected as the default value for
other experiments to achieve both relatively high accuracy and low model complexity.

We also compare the performance of the proposed joint distributed architecture
and the centralized detection method in which the multi-label classification model is
implemented on a single device [14]. As shown in Figure 8, our joint detection model
achieves similar accuracy to the centralized model while reducing the number of FLOPs.
In terms of classification accuracy, the centralized method has low performance when
pprune is set to 0.9. The reason is that some output units are isolated from the previous
layer, that means these units could not be updated during the re-training and inference
phases. The isolation problem can occur when applying a weight pruning method,
especially with a high pruning rate and a sparse network. Since the fully-connected
centralized model has a lower number of connections than the joint detection model,
the centralized model is more vulnerable to the isolation problem than the proposed
architecture. Since the magnitude pruning considers removing weights, i.e., connections
between neurons, the probability of the isolation problem is higher than the case of
neuron pruning. Therefore, to improve the classification performance of the defense
system, we can use a more advanced neuron pruning method such as layer-wise relevance
propagation (LRP) pruning [16]. In LRP, scores of hidden neurons at a specific layer are
computed based on scores of the activation units of the succeeding layer and weights
connecting these layers. Table 3 shows the improvement of LRP over the magnitude
pruning method. Thanks to more careful consideration of hidden neuron contribution
to the output layer, the improvement is clearly shown with a larger pruning rate.

Table 3. Performance comparison between the magnitude pruning and LRP method.

Pruning rate Magnitude pruning LRP
0.1 94.27% 94.14%
0.3 93.78% 93.69%
0.5 93.35% 93.81%
0.7 91.79% 93.05%
0.9 87.66% 92.69%

0.95 86.92% 92.33%

Figure 9 presents the change in classification accuracy when the number of collab-
orative devices varies from two to five with different threshold values. Note that there
is latency for packet transmission between participating switches. Therefore, if more
devices are involved in traffic classification, detection delay becomes much longer. As a
result, the number of switches should be as low as possible to avoid a long classification
delay. As shown in Figure 9, when there are two switches, relatively high accuracy can

44

Journal of Science and Technique - ISSN 1859-0209, December-2022

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pruning Rate

50

60

70

80

90

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

Accuracy - Joint Detection
Accuracy - Centralization

0

50

100

150

200

250

300

FL
OP

s C
ar

di
na

ry

Number of FLOPs - Joint Detection
Number of FLOPs - Centralization

Fig. 8. Impacts of pruning rate.

0.01 0.1 0.2 0.3 0.4 0.5 0.7 0.9 0.999
Threshold Value

84

86

88

90

92

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

5 Devices
4 Devices
3 Devices
2 Devices

Fig. 9. Impacts of the number of participating devices.

be achieved. As a result, we use two switches as a default value for other experiments.
In addition, the highest performance belongs to the case of five devices while the lowest
accuracy is with three devices. In terms of threshold value, performance of the proposed
architecture can be improved significantly when using a higher threshold value. This is
because we tend to wait for the last switch to classify traffic when λ is high.

45

Section on Information and Communication Technology - Vol. 11, No. 02

5. Conclusion

In this work, to address the lack of resources of edge devices, we design a collaborative
detection model that consists of multiple sub-models. Each sub-model is executed on a
programmable switch and only necessary connections are stored to detect one or several
types of traffic. Using experiments with various network parameters, the designed model
is proved to be more lightweight than the multi-label classifier without a reduction
in classification performance, which allows more traffic to be examined at a switch.
Moreover, we find a trade-off between classification accuracy and model complexity
when choosing network parameters such that a threshold value, pruning rate, and the
number of participating devices. For future work, we plan to design an assignment
algorithm that assigns traffic classes to switches under different constraints such as
remaining resources and traffic speed. Moreover, we will address the isolation problem
in which at least one output neuron is isolated from the pruned network.

Acknowledgment

This research is funded by Vietnam National Foundation for Science and Technology
Development (NAFOSTED) under grant number 102.02-2020.06

References
[1] T.-N. Dao and H. J. Lee, “Stacked autoencoder-based probabilistic feature extraction for on-device network

intrusion detection,” IEEE Internet of Things Journal, 2021. doi: 10.1109/JIOT.2021.3078292
[2] Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, and F. Ahmad, “Network intrusion detection

system: A systematic study of machine learning and deep learning approaches,” Transactions on Emerging
Telecommunications Technologies, vol. 32, no. 1, p. e4150, 2021. doi: https://doi.org/10.1002/ett.4150

[3] G. Andresini, A. Appice, and D. Malerba, “Autoencoder-based deep metric learning for network intrusion
detection,” Information Sciences, vol. 569, pp. 706–727, 2021. doi: https://doi.org/10.1016/j.ins.2021.05.016

[4] F. Erlacher and F. Dressler, “On high-speed flow-based intrusion detection using snort-compatible signatures,”
IEEE Transactions on Dependable and Secure Computing, pp. 1–1, 2020.

[5] M. F. Umer, M. Sher, and Y. Bi, “Flow-based intrusion detection: Techniques and challenges,” Computers And
Security, vol. 70, pp. 238–254, 2017. doi: https://doi.org/10.1016/j.cose.2017.05.009

[6] F. Erlacher and F. Dressler, “Fixids: A high-speed signature-based flow intrusion detection system,”
in NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium, 2018. doi:
10.1109/NOMS.2018.8406247 pp. 1–8.

[7] G. Wang, Z. Liu, S. Zhuang, B. Hsieh, J. Gonzalez, and I. Stoica, “Sensai: Fast convnets serving on live data
via class parallelism,” in MLOps Systems workshop in MLSys, 2020.

[8] K. Hyunjae, A. Dong Hyun, L. Gyung Min, Y. Jeong Do, P. Kyung Ho, and K. Huy Kang, “Iot network
intrusion dataset,” 2019. doi: 10.21227/q70p-q449

[9] F. Paolucci, F. Civerchia, A. Sgambelluri, A. Giorgetti, F. Cugini, and P. Castoldi, “P4 edge node enabling
stateful traffic engineering and cyber security,” Journal of Optical Communications and Networking, vol. 11,
no. 1, pp. A84–A95, 2019.

[10] A. Agrawal and C. Kim, “Intel tofino2–a 12.9 tbps p4-programmable ethernet switch,” in 2020 IEEE Hot Chips
32 Symposium (HCS). IEEE Computer Society, 2020. doi: 10.1109/HCS49909.2020.9220636 pp. 1–32.

[11] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese et al., “P4: Programming protocol-independent packet processors,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[12] M. Budiu and C. Dodd, “The p416 programming language,” ACM SIGOPS Operating Systems Review, vol. 51,
no. 1, pp. 5–14, 2017.

46

Journal of Science and Technique - ISSN 1859-0209, December-2022

[13] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An ensemble of autoencoders for online
network intrusion detection,” in Network and Distributed Systems Security (NDSS) Symposium 2018, 2018.
doi: https://doi.org/10.48550/arXiv.1802.09089

[14] T.-N. Dao, V.-P. Hoang, C. H. Ta et al., “Development of lightweight and accurate intrusion detection on
programmable data plane,” in 2021 International Conference on Advanced Technologies for Communications
(ATC). IEEE, 2021. doi: 10.1109/ATC52653.2021.9598239 pp. 99–103.

[15] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
[16] “Pruning by explaining: A novel criterion for deep neural network pruning,” Pattern Recognition, vol. 115, p.

107899, 2021. doi: https://doi.org/10.1016/j.patcog.2021.107899

Manuscript received 02-08-2022; Accepted 09-11-2022
■

Thi Nga Dao received a B.S. degree in Electrical and Communication Engineering from Le
Quy Don Technical University, Vietnam in 2013, an M.S. degree in Computer Engineering
from University of Ulsan in 2016, and a Ph.D. degree in Computer Engineering from University
of Ulsan, South Korea in 2019. She was a postdoctoral fellow at Intelligent Networked
Systems Lab (INSLab) of Ewha Womans University from 2020 to 2021. From July 2019,
she has been working as a lecturer in Faculty of Radio-Electronic Engineering, Le Quy Don
Technical University, Hanoi, Vietnam. Her research interests include machine learning-based
applications in network security, network intrusion detection and prevention systems, human
mobility prediction and mobile crowdsensing.
Email: daothinga@mta.edu.vn

Manh Hung Tran received the B.S. degree in Electrical and Communication Engineering and
the M.S. degree in Electrical Engineering from Le Quy Don Technical University, Vietnam in
1998 and 2003, respectively. His current research interests include Machine Learning, Network
Security.
Email: trmhung@gmail.com

47

Section on Information and Communication Technology - Vol. 11, No. 02

Van Duc Le is a research fellow at School of Computer and Engineering, Nanyang Techno-
logical University, Singapore. Previously, he was a research fellow (2016-2018) at Department
of Computer Science, National University of Singapore. He received the BEng degree in elec-
tronics and telecommunications engineering from Le Quy Don Technical University, Vietnam,
in 2011 and the PhD degree in computer engineering from University of Ulsan, South Korea,
in 2016. His research interests include sensor networks, IoT networked sensing and computing
in cyber-physical systems. He is a Senior Member of IEEE.
Email: vdle@ntu.edu.sg

HỆ THỐNG PHÁT HIỆN XÂM NHẬP MẠNG HỢP TÁC
CHO LỚP DỮ LIỆU LẬP TRÌNH ĐƯỢC

Đào Thị Ngà, Trần Mạnh Hùng, Lê Văn Đức

Tóm tắt

Để phát hiện và phản ứng sớm với những mối nguy hại trong mạng, hệ thống phát hiện
xâm nhập mạng nên được hiện thực ở trên lớp dữ liệu. Tuy nhiên, mô hình phát hiện xâm
nhập mạng dựa trên kỹ thuật học máy tiên tiến có độ phức tạp lớn trở nên không phù hợp
với các chuyển mạch có tài nguyên hạn chế. Để giải quyết vấn đề này, chúng tôi đề xuất
một mô hình phát hiện hợp tác gọn nhẹ lấy cảm hứng từ ý tưởng phân loại song song và cắt
giảm nơ-ron. Cụ thể, mô hình phân loại đa nhãn truyền thống được chia thành một số mô
hình con dành riêng cho từng nhãn dữ liệu và mỗi mô hình con phụ trách phát hiện một hoặc
một số lớp dữ liệu. Trong mô hình của chúng tôi, số lượng thiết bị chuyển mạch tham gia
có thể thay đổi dựa trên lưu lượng mạng và lượng tài nguyên sẵn có của các thiết bị mạng.
Hơn nữa, để giảm kích thước của các mô hình con, phương pháp cắt giảm nơ-ron dựa trên
trọng số được áp dụng cho từng mô hình con nhằm giữ lại các kết nối quan trọng. Mô hình
được đánh giá với các tham số mạng khác nhau và kết quả cho thấy kiến trúc đề xuất có độ
phức tạp thấp hơn nhiều so với bộ phân loại đa nhãn truyền thống mà không làm giảm chất
lượng phân loại tấn công mạng.

Từ khóa

Quản lý lưu lượng mạng, phát hiện xâm nhập mạng, cắt giảm nơ-ron

48

