
Journal of Science and Technique - ISSN 1859-0209, December-2021

PRUNING-BASED INTRUSION DETECTION
FOR MAXIMIZING THE TRAFFIC

MANAGEMENT IN INTERNET OF THINGS

Thi-Nga Dao1, Manh-Hung Tran 1, Huu-Noi Nguyen2

Abstract

This work considers the problem of maximizing the number of packets to be classified by
the network security system in programmable switches in Internet of Things. With the purpose
of developing a lightweight security method for programming switches with limited computing
resource, we present a neural-network-based intrusion detection model that combines with a
neuron pruning method to achieve low model complexity without significant sacrifice in
accuracy. Then, we formulate an integer linear programming (ILP) problem that maximizes
the amount of monitored traffic by all switches under requirements of classification accuracy
and computing resources. The optimization problem is considered in two cases: using and not
using the neuron pruning (NP)-based models to show the benefits of the proposed lightweight
architecture. The evaluation results show that NP-based models allow switches to manage more
data traffic while satisfying given requirements of accuracy and computing resources.

Index terms

Traffic management, intrusion detection, neuron pruning

1. Introduction

With the recent development of technologies such as low-power devices, data ana-
lytics, and processors, more and more Internet of things (IoT) devices are allowed to
be connected to form a network in a variety of applications (i.e., smart home, smart
agriculture, smart transportation, and surveillance system) [1], [2], [3], [4]. However,
it is challenging to monitor such high volume of data traffic under the fact that the
number of network attacks tends to increase over time. Therefore, there is a need for
a network intrusion detection and classification system that can quickly detect network
threats and take an appropriate action for detected attacks. This work aims to address
the problem of maximizing the amount of data traffic to be classified by the security
model.

1 Faculty of Radio-Electronic Engineering, Le Quy Don Technical University, Hanoi, Vietnam
2 Faculty of Information Technology, Le Quy Don Technical University, Hanoi, Vietnam

61



Section on Information and Communication Technology - Vol. 10, No. 02

Some network security models require to transmit traffic to external devices for
management, which leads to high detection time [5], [6]. To achieve the low detection
latency, the classification model is usually implemented on edge devices (e.g., switches)
that are distributed near IoT devices. One big challenge of implementing the classifica-
tion function on edge devices is that the classification model should have a lightweight
architecture with low model complexity since the edge devices are usually equipped
with limited computing and memory resources. Note that high accurate classification
models are constructed based on advanced machine learning techniques (e.g., neural
network) with high model complexity. Therefore, a simplification method is needed to
reduce the model complexity of the classification models [7], [8], [9], [10].

In this work, we consider a simple neuron pruning method [8] to build a traffic
classification model with low complexity, thus making it suitable for edge devices with
constrained computing resources. There are three steps to construct the neuron pruning
(NP)-based traffic classification model: training the whole model, removing unimportant
connections, re-training the pruned model. Note that the programming language (i.e.,
P4) for data plane only supports a limited set of arithmetic operations. Therefore, we use
only supported operations by P4 for implementing the classification model. To evaluate
the NP-based model, we measure and compare the classification accuracy and detection
delay of the NP-based model with the fully-connected (FC) architecture. The detection
delay is measured on a programmable switch.

Then, we introduce the integer linear programming (ILP) problem to maximize the
number of packets to be managed by all participating switches in the network. Two
main constraints are considered including accuracy requirement and computing resource.
Specifically, the average classification accuracy of all switches should be greater than a
given threshold value and the time used for traffic classification by each switch should
be less than a threshold value based on available resources. Each switch independently
assigns a suitable detection model to specific packets such that all constraints are
satisfied and the number of monitored packets is maximized. To highlight the benefits
of NP models, we consider two cases: using NP models and not using NP models
with different accuracy and computing resource threshold values. Note that since the
incoming data rate at a switch tends to vary over time, the switch needs to re-determine
packet assignment whenever the data rate changes with a large value.

The main contributions of our work is listed as below.

1) First, we introduce the neuron-pruning-based intrusion detection and classification
model with low complexity that can achieve low detection delay.

2) Then, we formulate an optimization problem to assign the right detection model to
a specific incoming packet for the traffic management maximization under accuracy
and computing resource constraints.

3) We evaluate and compare the performance of the NP-based intrusion detection
model with the FC architecture to prove the lightweight architecture.

4) The traffic management problem is considered under two cases (with and without
NP models) given various requirements. The experimental results show that using

62



Journal of Science and Technique - ISSN 1859-0209, December-2021

NP models always produce a better traffic management approach than not using
NP models.

The rest of the paper is organized as below. Section 2 presents assumption of the
network system and Section 3 introduces the detail architecture of the NP-based intrusion
classification model. Then, the optimization problem is presented in Section 4. To prove
the advantages of the NP-based model, Section 5 shows the performance evaluation of
the NP-based model and counterpart algorithms on the data plane. Finally, we conclude
our work in Section 6.

Programmable
Switches

Smart Transportation


Smart Grid Smart Home

Server

Server

Surveillance System

Attack

Implement NIDS
to detect

abnormal packets 

Fig. 1. The overview of network intrusion detection system for IoT

2. Network System

Figure 1 presents IoT networks consisting of IoT devices from multiple applications
(e.g., smart grid, smart transportation, smart home, smart healthcare, and surveillance
system), servers, and switches that connect IoT devices and servers. Data traffic gener-
ated from IoT devices can be transmitted to servers via switches. Participating switches
are connected using an arbitrary network topology such as bus, star, tree, ring, mesh.
For example, the mesh topology is shown in Figure 1. Besides the forwarding function,
these switches are in charge of managing data traffic and make sure that only normal
data should be forwarded. If there is an attack from an IoT devices in smart grid toward
a server in Figure 1, switches equipped with the network intrusion detection system
(NIDS) detect abnormal packets and make an appropriate actions to block these packets
from accessing the server.

Assume that IoT devices generate data periodically or whenever an event (e.g., fire,
gas leakage, and smoke) is detected. Hence, the data rate may vary over time. We
demonstrate the changes of traffic rate in the IoT Korea dataset [11] in Figure 2.
Specifically, we measure the number of incoming packets per second. If a period
lasts for one second, there are around 1,000 periods. Generally, the data rate changes
significantly over time. For example, there are around 500 incoming packets per second

63



Section on Information and Communication Technology - Vol. 10, No. 02

0 200 400 600 800 1000
Period Index

0

500

1000

1500

2000

2500

Nu
m

be
r o

f I
nc

om
in

g 
Pa

ck
et

s p
er

 S
ec

on
d

Fig. 2. Changes of traffic rate in the IoT Korea dataset

at the beginning and this number can increase up to 2,500 or reach nearly 0 at some
points in the experimental duration. Since the incoming data rate at each switch varies
over time, the detection model used by a switch should be adapted accordingly. For
instance, when the data rate is low, the switch can use a complex detection model to
achieve high accuracy. In contrast, a simpler prediction model with low complexity
should be considered in cases when the data rate is high.

In order to quickly detect and respond to network threats, we execute the traffic
classification model on programmable data plane. More specifically, data plane pro-
grammability allows us to easily add customized packet processing functions on edge
devices, thus significantly reducing detection delay. There are multiple commercial
programming edge devices including NetFPGA SUME developed by Digilent [12] and
Intel Tofino2 [13]. When a data packet arrives at the input port, the switch makes
a prediction on the traffic type of the packet. There are five different traffic labels:
normal, reconnaissance, man-in-the-middle, denial-of-service, and botnet. Based on
the prediction output, the switch can take an appropriate action for this packet, e.g.,
forwarding the packet, dropping the packet, or adding an alarm field in the packet
header.

In our work, each programmable switch makes the decision on the detection model
independently. There are multiple factors that should be taken into account: the incoming
data rate, available computing resources, accuracy and detection time of each detection
model. Note that there is a balance between the accuracy and detection time of the
traffic classification model. Specifically, if using a model with high complexity, we can
achieve high accuracy with a sacrifice in detection time and vice verse. Therefore, these
factors should be considered carefully by participating switches.

64



Journal of Science and Technique - ISSN 1859-0209, December-2021

In the following section, we introduce a lightweight detection and classification model
with the support of a parameter trimming method. Then, an optimization problem for
the traffic management maximization is proposed in Section 4 to select a suitable model
given constraints on computing resources and average performance.

3. A Neuron Pruning-based Intrusion Detection and Classification
Model

In this section, we introduce a timely and lightweight network intrusion detection
architecture that can be suitable for programmable networking devices with limited
computing resource. Recently, neural networks (NNs) have emerged as an advanced
machine learning technique to learn a non-linear mapping from input features to output
values. However, NNs suffer from the high model complexity, which leads to high
detection delay.

To address the issue of large detection latency, we apply a neuron pruning technique
that trims unnecessary connections of the model and only keeps salient weights. The
reason of proposing pruning-based detection model is to provide the switch other
options with low complexity for selection, especially for the cases of high data rate.
The construction of the pruning-based network intrusion detection model is shown in
Figure 3. The fully-connected architecture consists of three layers: input, hidden, and
output. The ReLU activation function is used for the hidden layer since it only contains
simple operations and can be easily implemented using the P4 programming language.
Assume that z is the input of ReLU function, then the output of ReLU is given by:

ReLU(z) = max(0, z) (1)

The softmax function is considered at the output layer. Now, the construction of the
fully-connected model with one hidden layer is presented. We define x, h and y as the
vectors for input, hidden and output units, respectively. Meanwhile, W1 and b1 denote
the weight matrix and bias vector, respectively, that connect the input and hidden layers.
Network parameters for the output layer are defined as W2 and b2. The fully-connected
model is computed as below.

h = ReLU(W1x+ b1) (2)

y = W2h+ b2 (3)

There are three phases for the training procedure: learning the fully-connected model,
pruning unnecessary connections, re-training the pruned network. In the first phase,
parameters including weights and biases are trained by minimizing the entropy-based
loss function L as follows.

65



Section on Information and Communication Technology - Vol. 10, No. 02

Fully-connected Model

Pruned Model

Pruned Neuron

Input
Layer

Hidden
Layer

Output
Layer

Phase 1
Train the FC model

Phase 2
Prune the Least

Important Neurons

Phase 3
Re-train the Pruned Model

Compute the score of connections
Remove connections with smallest score

Fig. 3. Construction of the network intrusion detection model incorporating with neuron pruning

L = − 1

m

m∑
j=1

ny∑
i=1

t
(j)
i log(y(j)i ) (4)

where m and ny are the number of samples and the number of data classes, respectively,
while t

(j)
i and y

(j)
i denote the ith true label and predicted output of the jth sample.

In the next phase, the trained weights with the least minimum scores are removed
from the network. We use an absolute value to represent the weight score since the
smaller weight value means less important for the network. We define the pruning rate
pprune (0 ≤ pprune ≤ 1) as the ratio of the number of removed connections to the total
number of connections of the fully connected layer. The percentile pw of the absolute
weight values is calculated such that pprune×100% of weight values are below or equal
to pw. For example, assume that a list of weight values is {2, 3, 4, 5 } and pprune = 0.5,
then pw = 3.5. Note that, pw is selected such that at most pprune×100% of weight values
are pruned from the fully connected network. Then, if a weight with the absolute value
is greater than pw, we keep this connection. Otherwise, the connection is trimmed from
the network. We use a binary mask matrix M with the same size as the weight matrix
to denote the pruning status of weights. For example, for the connection from the input

66



Journal of Science and Technique - ISSN 1859-0209, December-2021

to the hidden layer in Fig. 3, the binary mask is represented as M =

0 1 0 1
0 0 1 0
0 1 0 1

.

Since the first neuron of the hidden layer is removed, the first column of M is set to
0, i.e, no connection is connected to the first neuron of the hidden layer.

In the final phase, the remaining connections of the pruned network are re-trained.
We can call this step is fine-tuning. The entropy-based loss function is still used for
re-training. The difference with the first phase is that we multiple the connections with
the binary mask matrix so that the pruned weights are not trained in this phase. In the
proposed method, the parameter pprune selection depends on several factors including
the number of incoming packets and the available computing resource of switches. More
specifically, pprune can be a high value if there are not many packets or the computing
resource is high enough.

Note that since the P4 language only supports integer operations, we need to convert
the trained network parameters into integer values. Assume that k bits are used to
represent the fractional part of parameters. Recall that W1 and b1 denote the trained
weight and bias float values of the hidden layer, respectively. Then, the integer hidden
vector hint is derived as below.

W1,int = int(W1 × 2k) (5)

Xint = int(X × 2k) (6)

b1,int = int(b1 × 22k) (7)

hint =

{
(WintXint + bint)//2

k, if WintXint + bint ≥ 0

0, otherwise.
(8)

After doing the division (//), we get the integer part of the output of the division.

After applying the neuron pruning method, the model complexity can be considerably
reduced. We now compare the number of connections between the fully-connected and
pruned models in the case of a hidden layer. We define nx and nh as the number of
input and hidden units, respectively. Then, the number of connections can be reduced
by (nxnh + nhny)pprune. In our case, the number of input features and output units
are 6 and 5, respectively. If the number of hidden features is 20 and pprune = 0.5,
the proposed pruning-based architecture can reduce 110 connections compared to the
fully-connected model.

When fine-training the pruned network is done, the parameters are sent to pro-
grammable switches. Each switch computes the output values y that represent the

67



Section on Information and Communication Technology - Vol. 10, No. 02

probability of traffic classes for an incoming packet. Then, the packet is classified into
label with argmax(y). Depending on the classified label, we can take different actions
for this packet. For example, the packet can be forwarded normally or dropped at the
switch.

4. The traffic management maximization strategy

We present an integer linear programming (ILP) problem that maximizes the amount
of data to be managed by all participating switches given constraints of classification
accuracy and computing resources. Table 1 summarizes main notations in the ILP. The
system consists of S switches and there are M available detection models at each switch.
Assume that switch i (1 ≤ i ≤ S) receives Ni incoming packets per second. We define
yij as variables that present the number of packets classified by switch i using model
j per second. yij is a non-negative integer value or yij ≥ 0. Note that the total number
of packets processed by switch i should be less than the number of incoming packets

per second, i.e.,
M∑
j

yij ≤ Ni.

We measure the evaluation performance for each detection model including classifi-
cation accuracy and detection time. The measurement is conducted on programmable
switches. Let Aj and Tj denote the accuracy and detection delay of model j (1 ≤ j ≤
M ). We consider two requirements on performance and available computing resource of
switches. First, the average classification accuracy of the system should exceed a given

threshold value, i.e.,
1

Y

S∑
i

M∑
j

yijAj ≥ Ath where Y =
S∑
i

M∑
j

yij . Second, the total

time during an one-time period for conducting the detection and classification function

at each switch should not be greater than a threshold value Tth, i.e.,
M∑
j

yijTj ≤ Tth

where 0 ≤ Tth ≤ 1. Note that Tth selection depends on the resource availability because
a switch may need to perform other tasks besides the packet management task.

Table 1. List of main notation in the ILP formulation

S Number of switches
M Number of traffic classification models
Ni Number of incoming packets per second at switch i
yij Number of packets classified by switch i using model j
Y The total number of packets processed by all switches
Aj Classification accuracy of model j
Tj Detection time for a packet of model j
Ath Threshold value for average classification accuracy
Tth Threshold value for available computing resource

68



Journal of Science and Technique - ISSN 1859-0209, December-2021

The ILP can be defined as follows.

maximize
S∑
i

M∑
j

yij (9)

subject to

1

Y

S∑
i

M∑
j

yijAj ≥ Ath (10)

Y =
S∑
i

M∑
j

yij (11)

M∑
j

yijTj ≤ Tth, ∀i (12)

0 ≤ yij ≤ Ni (13)

M∑
j

yij ≤ Ni (14)

The objective function in (9) indicates that we maximize the number of packets
classified by all switches in the network. Constraints in (10) and (11) guarantees that
the average classification accuracy should be greater than a threshold value, Ath. Then,
constraint in (12) ensures that the total time spent for traffic classification in an one-
second period should be less than Tth (0 ≤ Tth ≤ 1). Finally, the inequalities in (13)
and (14) show the range of variables yij .

5. Experimental Results

5.1. Network Setup

To evaluate the NP-based model and compare with the fully-connected (FC) architec-
tures, we consider the IoT dataset [11] with nearly 3 million data samples. The data is
collected in a wireless network including smart home devices (i.e., intelligent speaker
and Wi-Fi camera) and laptops as well as smart phones. The data distribution of this
dataset with five different traffic classes is shown in Table 2. The normal and Botnet
data are major classes with 58.82% and 34.76% of the whole dataset, respectively. The
remaining three attack types are the minority labels. We randomly divide the whole

69



Section on Information and Communication Technology - Vol. 10, No. 02

Table 2. Label distribution of the IoT network intrusion dataset

No. of packets Percentage (%)
Normal 1,756,276 58.82

Reconnaissance 25,210 0.84
MitM 101,885 3.41
DoS 64,646 2.16

Botnet 1,037,977 34.76
Total 2,985,994 100

dataset into the training and test sets. Network parameters are trained using the training
data while the performance of the evaluated model is measured on the test set only.

To estimate the detection delay of detection models, we consider a network with two
hosts and one programmable switch that connects these hosts as shown in Figure 4.
More specficially, the host h1 extracts data traffic from pcap traces of the IoT dataset
and then sends data packets to the host h2 via the switch. The switch is in charge of
monitoring incoming data by classifying the data packets into one of five different traffic
classes. A variety of classification models are implemented in the switch using the P4
programming language. Assume that we forward all packets from h1 to h2 to measure
the average end-to-end (E2E) delay of detection models under consideration. In fact,
the switch takes different actions for incoming packets: forwarding, dropping, adding
an alarm header in the packet. The network emulator Mininet [14] is used to define
the network topology including the number of hosts, switches and network parameters
(e.g., bandwidth and link delay). The Python-based library Scapy is used for packets
generation and transmission at h1 as well as reception at h2.

Receiver

P4-supported Switch

Pcap
traces

Reading pcap traces
Generating & sending data

 Receiving packets
Computing E2E delay

classification
logs

Classification of incoming traffic

Sender

Fig. 4. Network topology used to collect E2E delay

5.2. Evaluation of the pruning-based model

First, we present learning curves of the NP-based detection model on both training
and validation sets with pruning rate 0.8 in Figure 5. The number of hidden units is
set to 10. There are two phases of parameter learning: training the fully-connected (FC)
model and re-training the NP-based model after trimming unimportant connections. In
the first phase, all network parameters are learned from the scratch by minimizing the

70



Journal of Science and Technique - ISSN 1859-0209, December-2021

Table 3. Performance comparison between NP-based models and other approaches

Model Classification Accuracy (%) Detection Time (ms)
NP w/ pprune = 0.2 94.3 0.822
NP w/ pprune = 0.4 93.97 0.851
NP w/ pprune = 0.6 93.34 0.77
NP w/ pprune = 0.8 89.64 0.73

NB-based model 45.71 0.476
Linear SVM-based model 83.64 0.62

FC w/o hidden layer 88.68 0.578
FC w/ 1 hidden layer 94.17 0.849

loss function. Then, we prune 80% of the least significant connections and re-train the
remaining parameters. Thus, the loss curve gradually goes down in both phases while
the accuracy improves over epochs. In both phases, we stop network training when there
is no improvement in classification accuracy on the validation set for the most recent
20 epochs.

After parameter training, the performance of the NP-based model is considerably
lower than the FC model. This observation is attributed to the fact that the number of
connections in NP-based model is only one-fifth of the FC architecture, which greatly
affects traffic classification performance. Therefore, the classification accuracy of the
pruned model (around 90%) is roughly 4.3% lower than that of the FC model (around
94.3%).

0 50 100 150
Number of Epochs

0

0.2

0.4

0.6

Lo
ss
 V
al
ue

Training FC Model Re-train NP

Loss Value of Validation Set
Loss Value of Training Set

86

90

95

100
Cl
as
sif
ica

tio
n 
Ac
cu
ra
cy
 (%

)

Accuracy of Validation Set
Accuracy of Training Set

Fig. 5. Learning curves of the NP-based intrusion detection model with pprune = 0.8

Then, we compare the performance of NP-based models with different pruning rates
with other approaches including the FC architectures and Naive-Bayes (NB)-based
model [15] and linear support vector machine (SVM)-based method [16] in Table 3.

71



Section on Information and Communication Technology - Vol. 10, No. 02

Pruning rate changes between 0.2 and 0.8 and we consider the FC model without and
with one hidden layer. Classification accuracy deteriorates and the average detection
time per packet becomes smaller when we prune more connections (e.g., the pruning
rate pprune increases). For example, when the pruning rate changes from 0.2 to 0.8, the
accuracy decreases nearly 5% while we can save almost 1 ms for the detection time.
In cases of the FC model, using one hidden layer can produce better performance than
not using hidden layer. More specifically, the difference in classification accuracy is
around 5.5% between two versions of the FC model. However, the detection time of
the FC without hidden layer is 0.27 ms lower that the FC with one hidden layer. The
proposed NP-based models outperform NB-based and SVM-based methods in terms of
classification accuracy. For example, the accuracy of NP with pprune is 44% and 6%
higher than that of NB-based and SVM-based approaches.

5.3. Evaluation of the traffic management maximization strategy

In this subsection, we assume that there are a switch (S = 1). We find the optimal
solutions for ILP in two cases: with and without NP models. Note that since the proposed
optimization problem is novel and is not presented elsewhere, there is no heuristic
algorithms for this problem. Therefore, we compare the optimal solutions in two above-
mentioned situations. Another reason for consideration of these two cases is that we aim
to highlight the effectiveness of the pruning-based intrusion detection models, especially
when the networking devices are equipped with constrained computing resources. The
experimental results show that the NID system can inspect more incoming packets when
using pruning-based models than the case of not using pruning methods. If using NP
models, the total number of available models (M ) is six including four NP models with
pprune = 0.2, 0.4, 0.6, 0.8 and two FC models without hidden layer and with a hidden
layer. If NP models are not considered, M = 2 (two FC models). We use OR-Tools
developed by Google to solve ILP. The number of packets arriving at the switch is a
random variable with uniform distribution in the range [1000, 2500].

Table 4 presents the number of packets assigned to each model where the accuracy
threshold changes from 90% to 94%. We use symbol p to indicate the pruning rate for
short. In this example, the number of incoming packets is 1,319. If using NP models, we
can assign more packets to the FC model with nh = 0 when Ath is low. This is attributed
to the fact that the FC model with nh = 0 requires the lowest detection time among
models under consideration. When Ath increases, fewer packets are assigned to the FC
model with nh = 0 since the FC model has low classification accuracy. For example,
when Ath = 93%, only 87 packets are assigned to the FC models while 1,232 packets
are monitored by the NP models. When Ath = 94%, all packets are managed by the
NP models. Note that the NP model with pprune = 0.2 has slightly higher classification
accuracy and lower detection delay than the FC model with one hidden layer. Therefore,
the switch prefers to select the NP model with pprune = 0.2 when Ath is high.

In cases of not using NP models, the number of packets examined by the FC model
with nh = 0 gradually decreases with the increase of Ath. This is because the FC model

72



Journal of Science and Technique - ISSN 1859-0209, December-2021

Table 4. Solutions of ILP with different accuracy requirements

Ath (%) Models NP p = 0.2 NP p = 0.4 NP p = 0.6 NP p = 0.8 FC nh = 0 FC nh = 1 Y
90 w/ NP 0 0 374 3 942 0 1,319

w/o NP - - - - 1,001 317 1,318
91 w/ NP 0 0 739 0 580 0 1,319

w/o NP - - - - 761 557 1,318
92 w/ NP 204 0 694 1 420 0 1,319

w/o NP - - - - 521 798 1,319
93 w/ NP 0 0 1,219 13 83 4 1,319

w/o NP - - - - 269 994 1,263
94 w/ NP 854 0 387 0 0 0 1,241

w/o NP - - - - 36 1,153 1,189

with nh = 0 has lower classification accuracy than the case of nh = 1. Moreover, if not
using the NP models, the total number of managed packets is smaller than the cases
of NP models. The benefits of the NP models become more clear when the accuracy
threshold increases. For example, the difference between the total number of monitored
packets (Y ) is only 1 packet when Ath = 90% and Y = 56 when Ath = 93%.

We investigate the impacts of NP models under a variety of time constraints from 0.5
to 1 (second) in two cases: using and not using NP models. As can be seen in Figure 6,
with a higher value of Tth, more packets can be managed in both cases. The increase in
the total number of monitored packets Y seems to be linear. Y achieves the maximum
value (1,322 and 1,263 in two cases) when Tth = 1 (the whole computing resource at
the switch can be used for the task classification task). Note that using the NP models
achieves higher performance than not using the NP models with all Tth values.

0.5 0.6 0.7 0.8 0.9 1
Time Constraint

600

800

1000

1200

1400

Nu
m
be
r o

f M
on
ite

re
d 
Pa
ck
et
s w/ NP models

w/o NP models

Fig. 6. Effects of NP-based models with different time constraints

73



Section on Information and Communication Technology - Vol. 10, No. 02

6. Conclusion

This paper aims to maximize the amount of data traffic to be managed by pro-
grammable switches in Internet of Things (IoT). Since the edge-devices usually lack of
computing resources, we introduce a traffic classification model that cooperates with a
network simplification method. The proposed architecture can reduce model complexity
by trimming the least important connections from the classification model. To evalu-
ate the neuron-pruning (NP)-based model, we introduce an optimization problem that
maximizes the number of packets to be classified by all switches in the network. Two
requirements on classification accuracy and available computing resource are considered
to make the problem to be more practical. The evaluation results illustrate that we can
achieve a better traffic management strategy for the network security system in IoT when
using NP models. As future work, we will improve the NP-based intrusion detection and
classification method to achieve higher performance (e.g., reduce the execution time).
Moreover, since finding an optimal solution for the considered optimization problem
may not be easy, especially in large-scale networks, heuristic algorithms should be
proposed and applied in large-scale networks.

Acknowledgment

This research is funded by Vietnam National Foundation for Science and Technology
Development (NAFOSTED) under grant number 102.02-2020.06

References
[1] J. Qi, P. Yang, G. Min, O. Amft, F. Dong, and L. Xu, “Advanced internet of things for personalised healthcare

systems: A survey,” Pervasive and Mobile Computing, vol. 41, pp. 132 – 149, 2017.
[2] D. Glaroudis, A. Iossifides, and P. Chatzimisios, “Survey, comparison and research challenges of iot application

protocols for smart farming,” Computer Networks, vol. 168, p. 107037, 2020.
[3] R. Li, T. Song, N. Capurso, J. Yu, J. Couture, and X. Cheng, “Iot applications on secure smart shopping

system,” IEEE Internet of Things Journal, vol. 4, no. 6, pp. 1945–1954, 2017.
[4] L. D. Xu, W. He, and S. Li, “Internet of things in industries: A survey,” IEEE Transactions on Industrial

Informatics, vol. 10, no. 4, pp. 2233–2243, 2014.
[5] F. Erlacher and F. Dressler, “On high-speed flow-based intrusion detection using snort-compatible signatures,”

IEEE Transactions on Dependable and Secure Computing, pp. 1–1, 2020.
[6] M. F. Umer, M. Sher, and Y. Bi, “Flow-based intrusion detection: Techniques and challenges,” Computers And

Security, vol. 70, pp. 238–254, 2017.
[7] T.-N. Dao and H. J. Lee, “Stacked autoencoder-based probabilistic feature extraction for on-device network

intrusion detection,” IEEE Internet of Things Journal, 2021.
[8] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections for efficient neural network,”

in Advances in neural information processing systems, pp. 1135–1143, 2015.
[9] B. Hassibi and D. G. Stork, “Second order derivatives for network pruning: Optimal brain surgeon,” in Advances

in Neural Information Processing Systems 5 (S. J. Hanson, J. D. Cowan, and C. L. Giles, eds.), pp. 164–171,
Morgan-Kaufmann, 1993.

[10] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning convolutional neural networks for resource
efficient transfer learning,” CoRR, vol. abs/1611.06440, 2016.

[11] K. Hyunjae, A. Dong Hyun, L. Gyung Min, Y. Jeong Do, P. Kyung Ho, and K. Huy Kang, “Iot network
intrusion dataset,” 2019.

74



Journal of Science and Technique - ISSN 1859-0209, December-2021

[12] F. Paolucci, F. Civerchia, A. Sgambelluri, A. Giorgetti, F. Cugini, and P. Castoldi, “P4 edge node enabling
stateful traffic engineering and cyber security,” Journal of Optical Communications and Networking, vol. 11,
no. 1, pp. A84–A95, 2019.

[13] A. Agrawal and C. Kim, “Intel tofino2–a 12.9 tbps p4-programmable ethernet switch,” in 2020 IEEE Hot Chips
32 Symposium (HCS), pp. 1–32, IEEE Computer Society, 2020.

[14] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid prototyping for software-defined
networks,” in Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, Hotnets-IX,
(New York, NY, USA), Association for Computing Machinery, 2010.

[15] G. K. Ndonda and R. Sadre, “A two-level intrusion detection system for industrial control system networks
using p4,” in 5th International Symposium for ICS & SCADA Cyber Security Research 2018 5, pp. 31–40,
2018.

[16] F. Musumeci, V. Ionata, F. Paolucci, F. Cugini, and M. Tornatore, “Machine-learning-assisted ddos attack
detection with p4 language,” in ICC 2020-2020 IEEE International Conference on Communications (ICC),
pp. 1–6, IEEE, 2020.

Manuscript received 27-7-2021; Accepted 17-12-2021.
■

Thi-Nga Dao received a B.S. degree in Electrical and Communication Engineering from the Le
Quy Don Technical University, Vietnam in 2013, an M.S. degree in Computer Engineering from
University of Ulsan in 2016, and a Ph.D. degree in Computer Engihneering from University of
Ulsan, South Korea in 2019. From July 2019, she has been working as a lecturer in Faculty of
Radio-Electronic Engineering, Le Quy Don Technical University, Hanoi, Vietnam. Her research
interests include machine learning-based applications in network security, network intrusion
detection and prevention systems, human mobility prediction and mobile crowdsensing. . E-
mail: daothinga.mta@gmail.com

Manh-Hung Tran received the B.S. degree in Electrical and Communication Engineering and
the M.S. degree in Electrical Engineering from the Le Quy Don Technical University, Vietnam
in 1998 and 2003, respectively. His current research interests include Machine Learning,
Network Security. Email: trmhung@gmail.com

75



Section on Information and Communication Technology - Vol. 10, No. 02

Huu-Noi Nguyen received the B.Sc. degree in applied mathematics and informatics from
Lipetsk State University, Lipetsk, Russia. He currently studying the Ph.D program in Computer
Science at Le Quy Don Technical University. His current research interests include Machine
Learning, Anomaly Detection, IoT and Information Security. Email: noi.nguyen@lqdtu.edu.vn

PHÁT HIỆN XÂM NHẬP TRONG MẠNG DỰA TRÊN
VIỆC LOẠI BỎ BỚT NƠ-RON ĐỂ TỐI ĐA HOÁ

VIỆC QUẢN LÝ LƯU LƯỢNG TRONG MẠNG KẾT NỐI
VẠN VẬT

Đào Thị Ngà, Trần Mạnh Hùng, Nguyễn Hữu Nội

Tóm tắt

Bài báo này xem xét vấn đề tối đa hóa số lượng gói tin được phân loại bởi hệ thống an
ninh mạng trong các thiết bị chuyển mạch có thể lập trình được trong mạng kết nối vạn vật.
Với mục đích phát triển một phương pháp bảo mật gọn nhẹ cho các thiết bị chuyển mạch
lập trình được với tài nguyên tính toán hạn chế, chúng tôi giới thiệu mô hình phát hiện xâm
nhập dựa trên mạng nơ-ron kết hợp với phương pháp loại bỏ bớt nơ-ron để giảm bớt độ phức
tạp của mô hình mà không ảnh hưởng nhiều đến độ chính xác của mô hình. Sau đó, chúng
tôi xây dựng một bài toán tối ưu nhằm tối đa hóa lượng lưu lượng mạng được giám sát bởi
tất cả các thiết bị chuyển mạch với các yêu cầu về độ chính xác phân loại và giới hạn về
tài nguyên tính toán. Bài toán tối ưu được xem xét trong hai trường hợp: sử dụng và không
sử dụng các mô hình dựa trên việc loại bỏ bớt nơ-ron (NP) để chỉ ra những lợi ích của kiến
trúc gọn nhẹ được đề xuất. Kết quả đánh giá cho thấy rằng các mô hình dựa trên NP cho
phép các bộ chuyển mạch quản lý nhiều lưu lượng mạng hơn trong khi vẫn đáp ứng các yêu
cầu nhất định về độ chính xác và giới hạn tài nguyên tính toán.

76


