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Abstract

Human action recognition (HAR) has been used in a variety of applications such as
gaming, healthcare, surveillance, and robotics. Research on utilizing data such as color,
depth, and skeletal data has been extensively conducted to achieve high-performance HAR.
Compared with color and depth data, skeletal data are more compact, therefore, they are more
efficient for computation and storage. Moreover, skeletal data are invariant to clothing textures,
background, and lighting conditions. With the booming of deep learning, HAR has received a
lot of attention. Spatial-Temporal Graph Convolution Networks (ST-GCN) have proved to be
state-of-the-art architecture for HAR using skeleton data. However, this does not hold when
working with challenging datasets that contain incomplete and noisy skeletal data. In this
paper, a new method is proposed for HAR by adding a Feature Fusion module and applying
hyperparameter optimization. The performance of the proposed method is evaluated on the
challenging dataset CMDFALL and the newly-built MICA-Action3D dataset. Experimental
results show that the proposed method significantly improves the performance of ST-GCN
on these challenging datasets.

Index terms
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1. Introduction

Research on human action recognition (HAR) has been actively conducted in re-
cent years. HAR is used in a wide number of applications such as robotics, gaming,
surveillance, and healthcare. HAR focuses on predicting which action is being done
by a person using data collected by sensors. Sensors can be either wearable sensors or
ambient sensors. Wearable sensors include accelerometers and body-mounted cameras.
Ambient sensors could be microphones and surveillance cameras. Input data for HAR
may be color, depth, optical flows, or skeletal data. Research on utilizing these types
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of data is investigated in relevant works [1], [2]. However, HAR is still a difficult task
due to the diversity of actions, inter-class similarity, and intra-class variance.

Human actions are naturally performed in a 3D space, which generates 3D skeleton
data. The human skeleton can be modeled by joints connected in a certain order. Each
action can be represented as the evolution of joints over time. Therefore, skeletal data
are sequences of joint coordinates. Action representation using skeletal data is more
compact when compared with color or depth data so HAR using skeletal data offers
computation and storage efficiency. Moreover, skeletal data are reliable for HAR since
they are invariant to the subject’s appearance, background, and lighting. Early research
of psychologists shows that skeleton data are informative to represent certain action
classes [3]. Nowadays, skeletal data can be acquired directly by motion-capture/depth
sensors or indirectly via applying pose estimation on videos. Skeletal data has become
more accessible thanks to the adoption of low-cost depth sensors like Microsoft Kinect,
as well as other efficient pose estimation methods. This makes skeleton-based HAR a
popular approach. However, a problem that exists is inherent noise and incompleteness
in skeletal data. The impact of this problem to HAR can be reduced by deploying data
pre-processing techniques.

In terms of skeleton-based HAR, different methods have been proposed with promis-
ing results. Early methods on HAR use handcraft feature extraction, which results in
limited performance and makes it difficult to generalize since those methods do not
fully exploit spatial and temporal relationships among joints. Recently, Spatial-Temporal
Graph Convolution Networks (ST-GCN) architecture is proposed to capture the spatial
connections as well as the temporal evolution of joints [4]. In ST-GCN, each node in
the graph maps to a joint in the skeletal model. There are two kinds of edges in this
graph. Spatial edges are edges between naturally connected joints in the skeletal model.
Temporal edges are edges that connect the same joints in different frames. Therefore, ST-
GCN encodes relations between joints over spatial and temporal dimensions as graphs.
The advantage of ST-GCN is that the relations between joints are naturally represented as
graphs. Multiple graph convolutional layers are applied to extract the feature maps. The
dynamics of human actions which are represented by the motion pattern of joints in the
temporal dimension can be learned by ST-GCN. However, original works of ST-GCN [4]
did not attempt to tackle the limitation of skeletal data such as noise and incompleteness.
There exists inherent noise in skeletal data in most datasets in practice. ST-GCN comes
with promising results on large datasets such as Kinetics and NTU-RGBD but this does
not hold for challenging datasets with noise and incomplete skeletal data. Furthermore,
absolute joint positions are deployed in the original ST-GCN framework. We realize
that utilizing spatial and temporal joint offsets extracted from joint data can improve
HAR performance in our recent work [5]. HAR using joint offsets is more robust to
noise and incompleteness in skeletal data.

To handle the above issues, in this paper, a new framework is proposed to improve
the performance of ST-GCN on challenging datasets using a Feature Fusion module and
hyperparameter optimization. The Feature Fusion module combines joint offsets in both
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spatial and temporal dimensions. Hyperparameter optimization, which is the same as
in [6], is applied to ST-GCN using a stochastic gradient descent (SGD) algorithm with
optimized Nesterov momentum. The performance of the proposed method is evaluated
on challenge datasets such as CMDFALL [7] and MICA-Action3D [8]. Experimental
results indicate that the proposed method significantly improves the performance of the
ST-GCN on the evaluation datasets. The paper is organized as follows. Section 2 reviews
related works in HAR. Section 3 describes the proposed system, whereas experimental
results are discussed in Section 4. Section 5 provides concluding remarks.

2. Related work

Different methods for feature engineering have been proposed in the literature for
skeleton-based HAR. These methods can be divided into handcraft-based and deep
learning-based methods.

In the handcraft-based approach, feature engineering is designed empirically to cap-
ture the evolution of joint motion. In [9], a graph is designed to encode the kinetics
of actions. A bag of 3D points with equal distance on projection contours is utilized
to model the human pose for each frame. An ensemble model is introduced in [10]
by grouping joints into different subsets. Relative Joint Positions (RJP) are defined
as the offsets from the joint positions to the center joint. Fourier Temporal Pyramid
(FTP) is designed to handle noise in skeletal data. In [11], features are concatenated
to create feature vectors. Principal Component Analysis is then implemented to extract
EigenJoints. In [12], the Cov3DJ captures dependence between joints using a covariance
matrix of joint positions. Covariance matrices are calculated over temporal windows of
different sizes, which creates a temporal hierarchy. In [13], joints are grouped into five
groups (spine, two arms, and two legs) and covariance matrices are computed on 3D
joint coordinates (CovP3DJ). The CovP3DJ is reported to be efficient in both spatial and
temporal dimensions. In [14], the Lie group theory is applied for skeleton-based pose
representation. The human pose is structured as the combination of relative positions
among bones. For each pair of bones, there exists a transformation matrix to convert
from one bone segment to the other. Transformations between bones are represented
as elements of SE(3) x SE(3) x ... x SE(3) group. The human pose in each frame
is an item of a Lie group. Due to the manifold nature of the Lie group, interpolation
between elements can not be directly applied. The logarithmic function is applied to
map the Lie group to its algebra se(3) X se(3) x ... x se(3). In [15] and [16], kinetic
features are concatenated to form feature vectors. In a different scheme, HAR methods
using joint subsets are proposed. Joints are selected manually or automatically. In [17],
the Sequence of Most Informative Joints (SM1J) use joints that engage most in actions.
Five joints with the largest variance of joint angles are automatically selected for each
action. In [18], CovMIJ is proposed to take advantage of SMIJ and Cov3DJ. Most
informative joints (MI1J) are automatically selected using the position variance as the
statistical measure. This offers efficient computation and reduces the impact of noise
in skeletal data. In [8], the Covariance Descriptor-based Adaptive Most Information
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Joints (CovAMIJ) method is proposed. The method defines the selection of joints using
covariance matrices. Joint position and velocity are combined for action representation.

In the rise of representation learning, different network architectures have been pro-
posed for HAR such as Convolutional Neural Network (CNN), Recurrent Neural Net-
work (RNN), Long-Short Term Memory (LSTM), and Graph Convolutional Network
(GCN). Features are learned directedly from input data. RNN proves itself as a good
representation in the time domain while LSTM can explore long-term dependency in
time sequences [19]. CNN is a classic method in image classification with efficient
grid modeling. In [20], a two-stream ConvNet architecture is proposed as a two-stream
network. In [21], an architecture combining LSTM and CNN is proposed for HAR. The
standard backpropagation algorithm is applied to tackle gradient descent. In [22], Tem-
poral Convolutional Neural Network with residuals (Res-TCN) is proposed, which can
explicitly learn interpretable spatio-temporal representations for HAR. In [23], a CNN-
LSTM network is proposed to utilize CNN and LSTM to exploit spatial and temporal
information, respectively. In [7], HAR is preliminarily evaluated on the CMDFALL
dataset using Res-TCN deep learning architecture. The CMDFALL dataset focuses on
human falling actions to simulate scenes for elderly monitoring in healthcare. In [24], a
Richly Activated - Graph Convolutional Network (RA-GCN) is proposed to enhance the
robustness of action recognition models on incomplete and noisy skeletal data. Each
stream learns features from currently unactivated joints, which are masked by class
activation maps obtained by preceding streams. In [25], joint and bone information is
utilized in a two-stream framework. The framework is proposed to learn graph topology
adaptively for different GCN layers. In [26], graph convolution is performed on graph
edges to explore relations between different bones, as well as temporal neighboring
edges. Two neural networks are constructed to handle graph nodes and graph edges
using a shared dense layer. In [27], graph regression is proposed to learn the graph from
different observations. Optimization is performed on graph structure over consecutive
frames using spatio-temporal modeling of skeletons. This helps enforce the sparsity of
graphs for simple representation. In [6], a multi-stream adaptive graph convolutional
neural network is proposed using joint, bone, and motion information. A directed
graph neural network is designed specially to extract features for prediction. Graph
topology is made adaptive based on the training process. Motion information is exploited
and combined with spatial information to enhance the performance of a two-stream
framework. Hyperparameter optimization is introduced using stochastic gradient descent
(SGD) with Nesterov momentum.

3. Proposed system

ST-GCN achieves good performance on large datasets such as Kinetics and NTU-
RGBD [4]. However, this does not hold true for incomplete and noisy datasets [24].
ST-GCN uses joint positions as input data. A diagram of the proposed system is shown
in Fig. 1. A Feature Fusion module is added to generate new input data to ST-GCN
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using RJP and joint velocity. As each sample has a different number of frames, all
samples are normalized to the same length by zero paddings.

‘/
Skeletal
Data
.

A Batch Normalization (BN) layer is applied at the beginning of ST-GCN to normalize
data. A stack of basic blocks with the same order as in [25] is added. There are ten
basic blocks in the proposed system, namely By, Bs, ..., Big. The first four blocks have
64 channels, the next three blocks have 128 channels and the last three blocks have 256
channels. A global average pooling (GAP) layer is added to form feature maps into the
same size. Data are finally passed through a softmax classifier.

Feature Fusion \\ Spatial-Temporal Graph B4 B, , B, .,  GAP Softmax

Convolutional Network )
Action

Labels

Fig. 1. The proposed system.

A diagram of each basic block is shown in Fig. 2. The basic block consists of a
Spatial GCN (Convs), a BN, a ReL.U, a Dropout, a temporal GCN (Convt), a BN, and
a ReL.U layer. Random dropout with a drop rate of 0.5 is applied to prevent overfitting.
A residual link is added to stabilize the training.

Residual connection

Convs BN ReluDropout Convt BN Relu

Fig. 2. Spatial-Temporal basic block.

3.1. Feature Fusion

RJP and joint velocity, as well as their combination, are well-established features
for HAR using handcraft feature extraction [10], [16]. Joint offsets are invariant to
translation and view changes, so HAR using joint offsets is more robust than using the
absolute joint positions. For instance, the high arm wave action is better described by
relative positions from joints to the center joint in the skeletal model rather than the
absolute positions of joints in 3D space. For actions such as hammer and hand catch in
the MICA-Action3D dataset, there are many similar poses so these actions are of high
similarity. It is worth noticing that the velocity of the right hand in the hammer action
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is faster than in the hand catch action when moving down. So joint velocity is also
an important feature. In this work, RJP and joint velocity are combined in the Feature
Fusion module for data pre-processing before feeding the data to ST-GCN.

Coordinates of the i*" joint in frame ¢ can be expressed as:

pi(t) = [2:(8), 4i(), % (1)) (D
The human skeleton at time frame ¢ composes of N joints:

p(t) = [po(t), p1(t), ..., px-1(t)] ()

Relative Joint Positions (RJP) are defined as the offsets between joints to the center
joint p. of the skeletal model as shown in Fig. 3. The middle spine joint in the skeletal
model is selected as the center joint p.. RJP can be mathematically expressed as:

Fig. 3. RJIPs are defined as spatial offsets between joints to the center joint.

RJP;(t) = pi(t) — pe(t) 3)
withi=0,1,...,N — 1.

Motivated by the bio-mechanic-based method in [16], we take joint velocity V ELO(t)
as a feature to represent human actions. These can be seen as the first-order derivatives
of joint positions. The velocity of the i** joint at frame ¢ is defined as:

VELO;(t) = pi(t +2) — pi(t) )
withi =0.1,...,N — 1.

Joint velocity in the last two frames is set equal to their neighboring frame. Feature
vectors F' are created by combining RJP(t) with VELO(t):

F(t) = [RIP(t),VELO(t)] 5)
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Output data of feature fusion module are matrices of size 2C' x T'x N x M, whereas:

« (' is the number of joint coordinate dimensions (aka. the number of channels). The
value is three for dimensions x, ¥, z.

e T is the maximum number of frames for action representation in each dataset.
T = 600 for CMDFALL and T' = 175 for MICA-Action3D. Skeletal sequences
that are shorter than 7" are padded by zeros to the same length 7' for each dataset.

o N is the joint quantity in the skeletal model. N = 20 for both CMDFALL and
MICA-Action3D.

o M is the maximum number of persons in each frame. M = 1 for both CMDFALL
and MICA-Action3D.

In our proposed framework, input data to ST-GCN are the combination of RJP and
joint velocity, not absolute joint positions as in the original ST-GCN scheme.

3.2. Spatial-Temporal Graph Convolutional Network

ST-GCN is a deep learning network that processes graph-structured data to output
labels. The graph is used as a representation of the skeletal sequences. An undirectional
graph G = (V, E) is constructed on a skeletal sequence with N joints and 7" frames to
represent both intra-frame and inter-frame links. In this graph, joints in each skeletal
sequence are included in the node set V = {v; |t=1,...,T,i=1,...,N} . Inputs
to ST-GCN are absolute joint coordinates. The graph is naturally defined in two steps.
Firstly, joints in each frame are connected to form spatial edges according to the natural
connectivity of the skeletal model. Denote natural intra-frame connections in each frame
as Eg = {vyvy; | (i,7) € H}, where H is the set of connected joint pairs. Secondly,
each joint is connected to the same joint in consecutive frames to form temporal edges
Er = {vtiv(tﬂ)i}. This graph enables ST-GCN to work with various skeletal models.

The convolution operation for the graph is extended from the convolution operation
for 2D images. Output feature in image convolution is a 2D grid with the same size as
the input using stride one and padding. For a convolutional with a kernel size of K x K,
input feature maps f;, and number of channel C, output value at spatial position x can
be expressed as [4]:

fou(x —Zz,fm (x, b, w)) - w(h,w) (6)

h=1 w=1

where p is the sampling function and w is the weight function. For image convolution,
sampling function can be written as p(x, h,w) = x + p’(h, w). As the input location x
has no bearing on the weight function, weights are applied to all pixels on the image.
Convolution operation on graphs is defined by extending the above formulation on
feature maps of the graph V. The feature map is denoted as ff, : V; — R".

For images, the sampling function p(h,w) for each pixel is defined based on its
neighboring pixels. For graphs, the sampling function of a node v;; is defined on the
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neighbor set B (vy;) = {v; | d (vy;, v) < D} where d (v, vy;) denotes the shortest path
from vy; to vy;. The sampling function can be written as:

p (Utia Utj) = Uty (7)

In image convolution, a natural grid exists for each pixel. Neighboring pixels have
a fixed spatial order. The weight function is a tensor of dimensions (¢, K, K'). There
1s no such implicit arrangement for graphs. In [28], the order is assigned by labeling
around the root node to construct the weight function. Instead of unique labeling to all
neighbor nodes, the neighbor set B(vy;) of vy is partitioned into K subsets. A numeric
label is assigned to each subset. Weight function can be expressed as:

W (V4i, vg;) = W' (I3 (vi;)) ®)

With the above sampling function and weight function, spatial graph convolution can
be expressed as:

Fu W) = 3 e fon (b (v ) - W (10,01 ©)

Vtj EB(UM') Zti (/Utj)

where Z;; (vy;) is the normalizing term included to balance the contribution of different
subsets to output. For temporal graph modeling, convolution is computed for every
single joint along with all frames in skeletal sequence same as in [4]. Let I' be the
temporal kernel size, temporally connected joints are in the neighbor node set:

B (vii) = {vg; |d (v, vis) < K, [q =t [< |T'/2]} (10)

Label map for the neighborhood of vy; is defined as:

ls (Vg;) = lii (vij) + (¢ —t+ |I'/2]) x K (11)

where l;; (vy;) is label mapping for v;;. Spatial edges are represented by adjacent matrix
A. ST-GCN can be implemented using the formula [29]:

for = A2 (A + A 2 E,W (12)

where A" = >7. (AY 4 I"). Identity matrix [ is added to the adjacent matrix to include
self joint connections.

3.3. Hyperparameter optimization

Experiments are conducted using the PyTorch framework. In this paper, hyperparam-
eter optimization same as in [6] is applied. A stochastic gradient descent algorithm with
Nesterov momentum is used as the optimization algorithm. Loss function using cross-
entropy is used to back-propagate gradients. The learning rate is 0.1 and it is divided
by 10 at the thirtieth and fortieth epoch. The setting value of weight decay is 0.0001.
Learning rate warm-up is applied for the first five epochs. The model is trained in 50
epochs. Details on hyperparameter optimization are summarized in Table 1.
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Table 1. Hyperparameter optimization

No. Hyperparameter ST-GCN Proposed

1 adjust_Ir [10, 30] [30, 40]
2 warm_up_epoch None 5

4. Experiment and evaluation

4.1. Evaluation datasets

The proposed method is evaluated on the challenging dataset CMDFALL [7] and our
newly-built dataset MICA-Action3D [8]. On both datasets, half subjects are used for
training, while the other half is used for testing.

CMDFALL dataset: The dataset is built to evaluate algorithms to detect human
falling action in healthcare applications such as elderly monitoring [7]. Elderly falling
detection may help alert family members or medical staff to offer medical treatment
in time. There are seven Kinect sensors used as ambient sensors. Each subject wears
two wireless accelerometers. There are 20 action classes, performed by 50 subjects with
ages ranging from 21 to 40. The subjects include 30 males and 20 females. The list
of actions in the CMDFALL dataset is shown in Table 2. In this paper, evaluation is
performed on data from Kinect view 3 as recommended by the authors of the dataset
[7]. Skeletal data from Kinect view 3 contains 1,963 action samples. As the CMDFALL
dataset focuses on falling actions, there exists serious noise in skeletal data. The reason
is that the Kinect sensor is designed for video gaming so its skeleton tracking algorithm
only works well for subjects in standing poses. CMDFALL focuses on falling actions
with many different non-standing poses.

Table 2. List of actions in CMDFALL dataset

Action ID  Action name Action ID  Action name
1 walk 11 right fall
2 run slowly 12 crawl
3 static jump 13 sit on chair then stand up
4 move hand and leg 14 move chair
5 left hand pick up 15 sit on chair then fall left
6 right hand pick up 16 sit on chair then fall right
7 stagger 17 sit on bed and stand up
8 front fall 18 lie on bed and sit up
9 back fall 19 lie on bed and fall left
10 left fall 20 lie on bed and fall right

MICA-Action3D dataset: The dataset data are collected by a Kinect sensor [8]. The
dataset is built by ourselves based on the list of 20 action classes in MSR-Action3D
[9] as shown in Table 3. These actions are the interactions between humans with game
consoles. There are 20 subjects, each subject performs one action two or three times.
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There are 1,196 action samples in total. A sample frame from the MICA-Action3D
dataset is shown in Fig. 4 with color, depth, and skeletal data.

Fig. 4. Sample frame in MICA-Action3D.

Table 3. List of actions in MICA-Action3D dataset

Action ID  Action name Action ID  Action name
1 high arm wave 11 two-hand wave
2 horizontal arm wave 12 side boxing
3 hammer 13 bend
4 hand catch 14 forward kick
5 forward punch 15 side kick
6 high throw 16 jogging
7 draw X 17 tennis swing
8 draw tick 18 tennis serve
9 draw circle 19 golf swing
10 hand clap 20 pick-up and throw

4.2. Experimental results

As shown in Table 4, performance is significantly improved by introducing a Feature
Fusion module for data pre-processing. Our proposed method achieves an Fl-score of
up to 70.68% on the CMDFALL dataset while the F1-score of ST-GCN is only 51.16%.
The confusion matrix on the CMDFALL dataset is shown in Fig. 5. Confusion on the
CMDFALL dataset mainly happens to right fall and left fall actions. In these actions,
subjects lie on the ground after falling so serious noise occurs in skeletal data. As
shown in Fig. 7, skeletal data contains serious noise inherently for non-standing human
poses. Such serious noise degrades action recognition performance. Besides, an action
can be observed from different views and directions to the Kinect sensor. For instance,
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Table 4. Performance evaluation on CMDFALL dataset

No. Method Precision (%) Recall (%) F1 (%)
1 Res-TCN, CVPRW 2017 [22] - - 39.38
2 CNN, 2019 [19] 48.68 41.78 40.34
3 CNN-LSTM, 2018 [23] 45.24 40.58 39.24
4 CNN-Velocity, MAPR 2019 [19] 49.97 47.89 46.13
5 CNN-LSTM-Velocity, MAPR 2019 [19] 47.64 46.51 45.23
6 RA-GCN, ICIP 2019 [24] 61.18 59.28 58.63
7 CovMIJ, KSE 2018 [18] - - 62.5
8 CovAMIJ, MTAP 2021 [8] - - 64
9 ST-GCN, AAAI 2018 [4] 52.33 53.99 51.16
10  Proposed 72.05 70.57 70.68

Table 5. Performance evaluation on MICA-Action3D dataset

No. Method Precision (%) Recall (%) F1 (%)
1 ST-GCN, AAAI 2018 [4] 83.64 83.41 82.82
2 Proposed 96.70 96.65 96.62

recognizing action by left hand or right hand can easily be confused. Similarly, the
definition of left/right in right fall and left fall is to the subject, not to Kinect sensor’s
viewpoint. It can be seen that the CNN-LSTM-Velocity method only achieves an F1
score of 45.23% on CMDFALL. To apply CNN to HAR, the skeletal data are converted
into images. Some relations between joints in the skeletal structure are lost during this
conversion process. ST-GCN-based methods show superior performance to CNN-based
methods since ST-GCN can represent the skeletal structure as graphs, not as images
for CNN-based methods. To further confirm the robustness of the proposed method,
evaluation is performed on our newly-built dataset MICA-Action3D as shown in Table
5. MICA-Action3D is constructed based on the actions defined in MSR-Action3D [9].
The confusion matrix on the MICA-Action3D dataset is shown in Fig. 6. Fl-scores of
ST-GCN and the proposed method are 82.82% and 96.62%, respectively. As can be
seen in the confusion matrix of MICA-Action3D, recognition results are comparatively
high among all action classes. The reason is that action classes in MICA-Action3D are
more discriminate than in CMDFALL. By using the proposed method, the inter-class
similarity can be resolved. As shown in Fig. 9, similar actions such as high arm wave,
draw X, draw circle can be separated. Also, some actions with noise in MICA-Action3D
as shown in Fig. 8 still achieves good performance. As shown from the confusion matrix
for MICA-Action3D, the accuracy rate is 100% for bend and tennis swing actions, while
it 18 92% for high arm wave. In terms of handling noise issues on skeletal data, the
CMDFALL dataset mainly focuses on falling actions so noise in skeletal data is very
serious, which leads to poor classification results. It requires more investigation on
correcting skeletal data on actions with the complex shape of the skeleton model. This
suggests future research direction. The proposed method includes feature fusion between
joint velocity and RJP with hyperparameter optimization to ST-GCN. To examine the
contribution of every single step in the proposed method, evaluation is performed on
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True label

the CMDFALL dataset by applying every single step separately as shown in Table 6.
For the original ST-GCN using absolute joint positions, the F1 score is 51.16%. By
using RJP and joint velocity separately instead of absolute joint positions, the F1 scores
are 53.05% and 54.87%, respectively. By fusing RJP and joint velocity, the system
achieves an F1 score of 59.47%. It can be seen that hyperparameter optimization also
plays an important role in the proposed method. However, introducing hyperparameter
optimization alone to ST-GCN achieves an Fl-score of 55.05% while combining with
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Fig. 5. Confusion matrix on CMDFALL dataset.

feature fusion achieves an Fl1-score of up to 70.68%.
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Fig. 6. Confusion matrix on MICA-Action3D dataset.

Table 6. Performance when applying every single step in the proposed method on CMDFALL

No. Method Precision (%) Recall (%) F1 (%)
1 ST-GCN + Absolute joint positions 52.33 53.99 51.16
2 ST-GCN + Joint velocity 58.27 54.13 54.87
3 ST-GCN + RJP 55.76 54.22 53.05
4 ST-GCN + Hyperparameter optimization 56.56 57.08 55.05
5 ST-GCN + RJP + Joint velocity 61.23 60.35 59.47
6  Proposed 72.05 70.57 70.68
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(a) Left fall (subject ID: 01, event ID: 01)
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(b) Right fall (subject ID: 08, event ID: 01)

Fig. 7. Serious noise in left fall and right fall actions in CMDFALL.
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(b) Pick-up and throw (subject ID: 06, event ID: 01)

Fig. 8. Noise in different actions in MICA-Action3D.
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Fig. 9. Sample frame of (a) high arm wave, (b) draw X, and (c) draw circle in MICA-Action3D.

Experiments are implemented on a server with an Intel 17-8700 CPU, 32 GB memory,
and a GeForce GTX 1080Ti GPU. Time consumption for training and testing is shown
in Table 7. The proposed method outperforms the baseline method ST-GCN while time
consumption for training/testing is of the same order. The reason is that by using RJP
and joint velocity features, computation is mainly performed on sparse matrices so the
computation is even more efficient than using the absolute joint positions. The training
time required for ST-GCN on CMDFALL is 1,067 seconds while it is only 1,033 seconds
for the proposed method.

Table 7. Time consumption for training and testing

Dataset Training time (s) Testing time (s) Number of Testing time/sample (ms)
ST-GCN  Proposed ST-GCN  Proposed samples ST-GCN Proposed
CMDFALL 1,067 1,033 7.4 7.2 792 9 9
MICA-Action3D 244 217 4.4 4.4 478 9 9

5. Conclusions and future works

In this paper, an improved architecture of ST-GCN was proposed by introducing
a Feature Fusion module for data pre-processing and applying hyperparameter opti-
mization. The Feature Fusion module combines RJP and joint velocity as input data.
Experiments on two evaluation datasets show that the proposed method achieves better
performance than ST-GCN on challenging datasets. Future work might focus on noise
reduction and self-correction in data pre-processing. The proposed framework will also
be evaluated on other challenging datasets. We will further investigate the performance
of the proposed method with skeleton data estimated from RGB image sequences.
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NHAN DANG HOAT BONG DUA TREN KHUNG XUONG
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SU DUNG KET HOP CAC PAC TRUNG CHO MANG

TICH CHAP PO THI KHONG GIAN-THOI GIAN
Pham Dinh Tén, Ddng Thi Phugng, Nguyén Piic Quang, Lé Thi Lan, Vi Hdi

Tém tit

Ky thuat nhén dang hoat dong nguci (HAR) la mot bai toan dugc ung dung rong rai
trong nhiéu linh vuc nhu tro choi, y té, gidm sat va diéu khién ro-bdt. Nhidu nghlen cliu
vé nhan dang hoat dong ngudi da dudc dé xuit. Cic phuong phap nay tap trung vao khai
thac dit liéu anh mau, anh do sau va khung xuong nham nang cao hiéu ning nhan dang hoat
dong. So v6i anh mau va anh do sau, dit liéu khung xuong thudng nhd gon, do d6 hiéu qua
hon trong tinh todn va luu trit. Ngoai ra, dif liéu khung xuong bat bién véi su thay dsi vé
trang phuc cla ngu'dl thuc hién hoat dong, moi trudng xung quanh va diéu kién chiéu sang
Cung v6i sy bung nd ctia ky thuat hoc siu, cidc mang tich chip do thi khong gian-thdi gian
(ST-GCN) cho thay hiéu qua trong biu dién va nhan dang hoat dong dya trén khGp xuong.
Tuy nhién, khi lam viéc trén cic di liéu thich thic nhu chia nhiéu nhiéu, thiéu thong tin,
hiéu qud cua phuong phiap ST-GCN giam di dang ké. Trong bai bdo nay, mot phudng phap
méi duge dé xuét dua trén ST-GCN cho nhén dang hoat dong st dung két hOp cac dac trung
va tdi uu céc siéu tham sd. Hiéu nang ctia phuong phdp dé xuét dugc danh gid trén tap dif
liéu c6 nhleu nhiéu 1a CMDFALL va tap du liéu MICA-Action3D. Két qua cho thiy phuong
phép dé xuit c6 hiéu ning tot hon ST-GCN trén céc tap dif liéu thi nghiém.



