
Journal of Science and Technique - Le Quy Don Technical University - No. 210 (9-2020)

SEMANTIC APPROXIMATION
BASED OPERATOR FOR REDUCING CODE

BLOAT IN GENETIC PROGRAMMING

Chu Thi Huong1

Abstract

In Genetic Programming, code bloat is a well-known problem that is the increase in the
average program size without a corresponding improvement in fitness. In order to address
this problem, we proposed a new operator called Prune and Plant based on Approximate
Terminal (shortened as PP-AT). PP-AT aims at reducing GP code bloat. It replaces a random
subtree in a parent by an approximate tree of semantics to obtain the first offspring. This
subtree is also added to the population as the second offspring. PP-AT is tested on fifteen
regression problems and compared to standard GP and three recent bloat control methods.
The experimental results demonstrate that PP-AT outperforms standard GP and other bloat
control methods under comparison.

Index terms

Genetic Programming, Semantic Approximation, Code Growth, Code Bloat

1. Introduction

Genetic programming (GP) is an evolutionary computation technique that automati-
cally solves problems without requiring users to know or specify the form or structure
of the solution in advance [1]. GP has been successfully applied to a wide variety
of problems in many fields. However, GP has three clearly identified challenges, code
bloat, huge search space and problem difficulty [2]. In these challenges, code bloat
is one of the most important pragmatic limitations in the development of real-world
GP solutions. In GP, code bloat is a well-known phenomenon in which the average
size and depth of trees grow during the evolution without a corresponding increase
in fitness [3]. There are three common theories that try to explain bloat including
the replication accuracy theory, the introns theory and the remove bias theory [4], [5].
Theory replication accuracy theory argues that the success of an individual is to generate
offspring being functionally similar to it. This is achieved by reproducing the important
pieces of code of this individual during evolution to increase replication accuracy. The
intron theory explains that GP code bloat is caused by the existing pieces of code that
can be removed without changing the fitness value of the solution. The remove bias

1Faculty of Information Technology, Le Quy Don Technical University

39



Section on Information and Communication Technology (ICT) - No. 15 (9-2020)

theory has another argument that redundant codes tend to be lower subtrees of the tree,
and applying genetic operators such as crossover to these subtrees does not modify
the fitness. Moreover, the evolution will naturally favor the replacement of these small
subtrees, and the replacement subtrees are often bigger leading consequently to bigger
trees.

Code bloat negatively affects the GP performance: the evolutionary process is more
time consuming, it is harder to interpret the solutions, and the larger solutions are prone
to overfitting. There are a number of approaches that have been carried out to overcome
this problem. Most common approaches consist of setting the size or depth limits [6],
[7], punishing the largest individuals in the fitness function [8], [9] or adjusting the
population size distribution at each generation [10], [11].

Recently, we proposed a technique to grow an approximate tree so that its semantics
is the most semantically similar to the semantics of a given subtree [12]. In this paper,
we apply this technique for Prune and Plant operator [13] to propose a new bloat control
operator. The operator is called Prune and Plant based on Approximate Terminal and
shortened as PP-AT. PP-AT selects a random subtree in a parent and replaces it by
an approximate tree of semantics. Moreover, this subtree is also planted as a second
offspring. The performance of PP-AT is evaluated via fifteen regression problems with
comparison to standard GP, neat-GP [14], Prune and Plant [13] and SAT-GP [12].
The experimental results are encouraging, the new proposed operator achieved better
performance than other tested systems. Especially, PP-AT improves the performance of
Prune and Plant operator.

The remainder of this paper is organized as follows. We briefly review the related
works in Section 2. After that, Section 3 presents a new proposed operator. The experi-
mental settings are presented in Section 4. Next, the results are presented and discussed
in Section 5. Finally, Section 6 concludes the paper.

2. Related Work

There are several approaches to control code bloat in GP. Setting size or depth limits
to control the size of individuals is an earlier approach [6]. Any offspring with its size
or depth above the limits is rejected and replaced by one of its parents. Later, methods
use dynamic limits that have been proposed. The dynamic limits are assigned at each
generation and are derived from the size of the best-so-far individual [7]. This approach
has succeeded in controlling bloat code. However, if the limits are set at too small
values, the improvement of fitness values may be prevented.

Parsimony pressure technique is another approach that aims at punishing the large
individuals. The fitness function was suggested restructuring as a linear combination
between the individual size and its fitness [8], [9]. Another way, the fitness function
is assigned a very bad fitness for individuals whose size above the average size of the
population [4]. Based on genetic operators, Alfaro-Cid et al. [13] proposed Prune and
Plant operator that splits a tree into two subtrees to reduce GP code bloat. The operator

40



Journal of Science and Technique - Le Quy Don Technical University - No. 210 (9-2020)

selects a random subtree in a parent and replaces this subtree by a terminal. The selected
subtree is also added to the population as a new tree.

Another approach is to redistribute the population size distribution aiming to reduce
code bloat including Operator Equalization, Dynamic Operator Equalisation, Mutation-
based Dynamic Operator Equalisation and FlatOpEq [10], [11], [15]. These operators
calculate the histogram of the individual size and control the population to a target dis-
tribution by accepting or rejecting each newly created individual into its corresponding
bin. Inspired by FlatOpEq method, Trujillo et al. [14] proposed a bloat control method
called neat-GP. The main genetic operator in neat-GP is Neat-crossover operator. The
operator first identifies the shared topological structure Sij between parents, and then
swaps of a single internal node within Sij . In this way, offspring maintain the topological
structure of their parents. Thus, the size of the resultant tree does not increase when
doing crossover.

Incorporating semantic information into GP is another recent approach to address the
code bloat problem. Chu et al. [12] proposed a semantic-based method for reducing
GP code bloat that is called SAT-GP. In each generation, SAT-GP selects a portion of
the largest individuals and then replace a random subtree in every individual in this
portion by an approximate tree. The approximate tree is grown from a terminal so that
its semantics is the most similar to the semantics of this subtree. Then, SAT-GP is
extended to SAS-GP [16]. In SAS-GP, the approximate tree is grown from a small tree
taken from a predefined library instead of the terminal set.

3. Proposed method

In this section, we first present the technique of constructing an approximate tree
derived from SAT-GP method [12], followed by Prune and Plant operator [13], and
finally a proposed new operator, PP-AT, is presented.

The idea of SAT-GP [12] is to replace a random subtree in the several largest individu-
als by an approximate tree of similar semantics. The approximate tree is constructed from
a random terminal. For the semantic concept, we use a popular defining semantics of a
(sub)tree in the previous research [17], [18]. Let K = (k1, k2, ...kN) be the fitness cases
of the problem, then the semantics of a (sub)tree is the vector of output values obtained
by running that sub(tree) on all fitness cases. Following this definition, the semantic
distance may be calculated by Euclidean or Manhattan distance. In this research, we
use Euclidean distance.

Let X be a random terminal selected from the terminal set and let T1 be a random
subtree selected in an individual. From X , T2 is grown in the form of T2 = θ ∗ X
(where θ be a parameter) so that the semantics of T2 is the most semantically similar
to the semantics of a given subtree T1. Let S = (a1, a2, ..., aN) and S1 = (b1, b2, ..., bN)
be the semantics of terminal X and of subtree T1 then S2 = (θa1, θa2, ..., θaN) will
be the semantics of T2. The objective is to find θ that minimizes semantic distance
between S1 and S2. This means that minimizes function f(θ) =

∑N
i=1(aiθ − bi)2. The

41



Section on Information and Communication Technology (ICT) - No. 15 (9-2020)

quadratic function f(θ) reaches the minimum value at the vertex, θop as in Equation 1.
T2 = θop ∗X is called the approximate tree of X .

θop =

∑N
i=1 aibi∑N
i=1 a

2
i

(1)

Prune and Plant [13] selects a random subtree in the parent and substitutes this subtree
by a terminal. The subtree will be planted in the population as a new tree.

The new proposed operator is an extension of Prune and Plant that is called PP-AT.
PP-AT selects a random subtree in a parent and replaces it by an approximate tree of
semantics to obtain the first offspring. Additionally, this subtree is also added to the
population as the second offspring. Algorithm 1 presents this operator in detail.

Algorithm 1: PP-AT

Input: A parent: P .
Output: Two offspring.
T1 ←− Select_Child(P );
X ←− Select_Terminal();
S ←− Caculate_Semantics(X);
S1 ←− Caculate_Semantics(T1);
θop ←− Caculate_Theta(S, S1);
T2 ←− θop ∗X
return T1, T2;

In Algorithm 1, functions Select_Child(P ) and Select_Terminal() select randomly
a subtree from the parent P and a terminal from the terminal set, respectively. Func-
tion Caculate_Semantics(X) calculates the semantics of subtree X . Next, function
Caculate_Theta(S, S1) estimates the optimal parameter theta, θop, from two semantics
S, S1 using Equation 1.

(a) Parent (b) Child 1 (c) Child 2

Fig. 1. An example of PP-AT.

Figure 1 demonstrates an example of PP-AT. In this figure, PP-AT selects a random
subtree T1 and then replaces it with an approximate tree T2. T2 is grown so that the

42



Journal of Science and Technique - Le Quy Don Technical University - No. 210 (9-2020)

semantics of T2 and T1 are the most semantically similar. Moreover, T1 is grown
in the population as a new another child. Similar to Prune and Plant, PP-AT is an
unusual operator since it creates two offspring from a single parent. We follow the
implementation of Prune and Plant [5]: when an offspring is generated by crossover or
reproduction, PP-AT occurs with a certain probability.

4. Experimental Settings

We compared PP-AT with standard GP (referred to as GP) and three recent bloat
control methods, including neat-GP [14], Prune and Plant (PP) [13] and SAT-GP [12].
The probability of PP is set to 0.5, and k% the largest individuals of SAT-GP is set 10%1.
PP-AT is tested with three probabilities as 0.1, 0.2 and 0.5, and three configurations
corresponding to these values are shortened as PP-AT0.1, PP-AT0.2 and PP-AT0.5. We
tested these methods on fifteen regression problems including seven GP benchmark
problems recommended in the literature [19] and eight problems taken from UCI
machine learning dataset [20]. The detailed descriptions of the tested problems including
its name, its abbreviation, number of features, number of training and testing samples
are shown in Table 1.

Table 1. Problems for testing PP-AT

Shorthanded Name Features Training Testing

F1 Korns-1 5 1000 1000
F2 Korns-2 5 1000 1000
F3 Korns-4 5 1000 1000
F4 Korns-11 5 1000 1000
F5 Korns-12 5 1000 1000
F6 Korns-14 5 1000 1000
F7 Korns-15 5 1000 1000
F8 airfoil_self_noise 5 800 703
F9 ccpp 4 1000 1000
F10 wpbc 31 100 98
F11 Protein_Tertiary_Structure 9 1000 1000
F12 slump_test_Compressive 7 50 53
F13 slump_test_FLOW 7 50 53
F14 slump_test_SLUMP 7 50 53
F15 concrete 8 500 530

The experimental GP parameters are shown in Table 2. These are the typical settings
often used by GP researchers. The raw fitness is the root mean squared error on all
fitness cases. Therefore, smaller values are better. For each problem and each parameter
setting, 30 runs were performed.

For statistical analysis, Kruskal-Wallis test with a confident level of 95% is used on
the results in all result tables. If the result of Kruskal-Wallis test shows that at least
one method is significantly different from the others, a post hoc analysis with Dunn’s

1This value is selected for the best performance of PP and SAT-GP.

43



Section on Information and Communication Technology (ICT) - No. 15 (9-2020)

Test is conducted. p-values adjusted with the Benjamini-Hochberg method. In all result
tables, if the test shows that the tested system is significantly better than GP, this result
is marked + at the end 2. Conversely, the result is marked - at the end. Furthermore,
if the result of the tested system is better than that of GP, it is printed bold face. In
addition, if the result is the best (the lowest), it is printed underline.

Table 2. Evolutionary Parameter Values

Parameter Value

Population size 1024
Generations 200
Selection Tournament
Tournament size 3
Crossover, mutation probability 0.9; 0.1
Function set +,−, ∗, /, sin, cos
Terminal set X1, X2, ..., Xn

Initial Max depth 6
Max depth 17
Max depth of mutation tree 15
Raw fitness root mean squared error on all fitness cases
Trials per treatment 30 independent runs for each value
Elitism Copy the best individual to the next generation.

5. Results and Discussion

This section analyses the GP performance of the proposed method using four popular
metrics in GP research that are training error, testing error, solution size and running
time. Performance on the training data is a popular metric to provide some useful

Table 3. The mean best fitness on all training data

Pro GP neat-GP PP SAT-GP PP-AT0.1 PP-AT0.2 PP-++A+T0.5

F1 0.106 0.232– 0.143 0.000+ 0.001+ 0.001+ 0.001+

F2 0.068 0.648– 0.105– 0.006+ 0.074 0.055+ 0.048
F3 0.003 0.006– 0.003 0.000+ 0.001+ 0.001+ 0.002
F4 0.244 0.255– 0.247– 0.244+ 0.247– 0.245 0.245–

F5 0.034 0.034– 0.034+ 0.033 0.033 0.033 0.034+

F6 4.024 11.951– 5.493– 3.866 3.839 4.617 5.367–

F7 0.219 0.466– 0.341– 0.206 0.202 0.191 0.275
F8 0.229 0.686– 0.380 0.134+ 0.136+ 0.120+ 0.133+

F9 0.252 0.430– 0.315– 0.159+ 0.152+ 0.150+ 0.160+

F10 2.722 3.070– 3.278– 3.163– 2.694 2.777 3.136–

F11 0.164 0.170– 0.169– 0.166 0.164 0.164 0.169–

F12 0.452 0.704– 0.572– 0.392 0.433 0.415 0.545–

F13 1.188 1.561– 1.548– 1.403– 1.222 1.212 1.514–

F14 0.643 0.840– 0.877– 0.746– 0.632 0.667 0.831–

F15 0.410 0.548– 0.483– 0.401 0.365+ 0.358+ 0.440

2The p_values of the Kruskal-Wallis test with the post hoc analysis are presented in the supplement 1 of the paper
at https://github.com/chuthihuong/PP-AT.

44



Journal of Science and Technique - Le Quy Don Technical University - No. 210 (9-2020)

awareness into the learning process. Thus, it is first analysed in this section. The mean
of the best fitness values across 30 runs is presented in Table 3. The table shows that
SAT-GP and PP-AT probably performed better than GP. The training error of SAT-GP,
PP-AT0.1 and PP-AT0.2 is smaller than that of GP on 11, 12, and 10 problems out of
15 tested problems, respectively. PP-AT0.5 is roughly equal to GP. Conversely, neat-GP
and PP are significantly worse than GP on all tested problems.

The semantic distance between parents and their children of GP, SAT-GP and PP-AT 3

is also measured. These values aim to analyse the ability of an algorithm to discover
different areas in the search space. The semantic distance between a pair of individuals
(a parent and its offspring) on four typical problems, F1, F6, F8 and F15, over the
evolutionary process is presented in Figure 2 4.

0 25 50 75 100 125 150 175 200
Generations

0

100

200

300

400

M
ea

n 
of
 S
em

an
tic

 D
ist

an
ce
s

F1

GP
SAT-GP
PP-AT0.1
PP-AT0.2
PP-AT0.5

0 25 50 75 100 125 150 175 200
Generations

20

40

60

80

100

120

M
ea

n 
of
 S
em

an
tic

 D
ist

an
ce
s

F6

GP
SAT-GP
PP-AT0.1
PP-AT0.2
PP-AT0.5

0 25 50 75 100 125 150 175 200
Generations

50

100

150

200

250

M
ea

n 
of
 S
em

an
tic

 D
ist

an
ce

s

F8

GP
SAT-GP
PP-AT0.1
PP-AT0.2
PP-AT0.5

0 25 50 75 100 125 150 175 200
Generations

50

100

150

200

250

M
ea

n 
of
 S
em

an
tic

 D
ist

an
ce

s

F15

GP
SAT-GP
PP-AT0.1
PP-AT0.2
PP-AT0.5

Fig. 2. Semantic distances over the generations

This figure shows that both SAT-GP and PP-AT often maintained higher semantic
diversity compared to GP. Moreover, PP-AT often maintained better diversity than that
of SAT-GP during the evolutionary process. These results demonstrate that PP-AT has
enhanced the semantic diversity of GP population.

The second metric, used to analyse the performance of the tested methods, is their
ability to generalise beyond the training data. In each run, the best solution was selected

3We focus on analysing SAT-GP and PP-AT since these are the bloat control methods based on semantics.
4The results on the other problems are shown in the supplement 2 of the paper at https://github.com/chuthihuong/PP-

AT.

45



Section on Information and Communication Technology (ICT) - No. 15 (9-2020)

and evaluated on the testing data (an unseen data set). The mean of these values across
30 runs was calculated, and the results are shown in Table 4.

Table 4. The mean of testing error

Pro GP neat-GP PP SAT-GP PP-AT0.1 PP-AT0.2 PP-AT0.5

F1 0.134 0.239 0.151 0.000+ 0.001+ 0.001+ 0.001+

F2 1.266 0.740 0.532 0.021+ 0.483+ 0.468+ 0.182+

F3 0.003 0.006– 0.004 0.000+ 0.002 0.001+ 0.002
F4 0.263 0.262+ 0.257+ 0.259 0.261 0.261 0.256+

F5 0.035 0.034+ 0.034 0.034 0.037 0.034 0.034
F6 73.279 74.857 53.436 53.427 74.084 64.118 45.451
F7 2.400 2.402– 3.384 2.976 2.294 2.965– 2.286
F8 17.510 1.670 1.635 0.249+ 0.597+ 0.424+ 0.399+

F9 0.689 0.552 0.371 0.192+ 0.347+ 0.372+ 0.281
F10 42.192 12.854 6.138 4.078+ 6.924+ 4.975+ 3.973+

F11 0.276 0.176+ 0.172 0.169+ 0.173+ 0.170+ 0.199
F12 25.824 12.853 5253.643 2.291+ 567.005– 5.593+ 25.088+

F13 4616.189 4.01E+05 1.16E+07 1.12E+04– 516.014 8157.943 17.992+

F14 52.203 5142.130 5124.724 9.206+ 30.753 45.744+ 4139.477–

F15 2.500 0.869 0.881 0.578+ 2.438+ 0.577+ 0.573+

This table highlights that SAT-GP and PP-AT consistently outperformed GP on the
unseen data. In fact, the testing error of SAT-GP, PP-AT0.1, PP-AT0.2 and PP-AT0.5
is better than that of GP on 13, 12, 13 and 14 problems, respectively. For neat-GP and
PP, they are slightly better than GP. The testing error of both neat-GP and PP is better
than that of GP on 9 problems.

In terms of statistical comparison, the results of Kruskal-Wallis test again confirm
the good generalization of both SAT-GP and PP-AT. The testing error of SAT-GP is
significantly better than that of GP on 10 problems. PP-AT0.1, PP-AT0.2 and PP-AT0.5
are significantly better than that of GP on 7, 10 and 8 problems, respectively. Conversely,
GP is only significantly better than SAT-GP and PP-AT on one problem. For PP, it
is marginally better than GP. PP is significantly better than GP on only one problem.
Similarly, neat-GP is significantly better than GP on 3 problems, but it also significantly
worse than GP on 2 problems.

To compare among the bloat control methods, the results of the post hoc analysis of
the Kruskal-Wallis test on testing error are summarised in Table 5. In this table, if a

Table 5. Summary of the post hoc analysis of the Kruskal-Wallis test on testing error. Each cell presents
the number of problems that the method in a column is significantly better than the method in a row

neat-GP PP SAT-GP PP-AT0.1 PP-AT0.2 PP-AT0.5

neat-GP 1 11 8 12 10
PP 0 9 6 7 10
SAT-GP 1 0 0 1 0
PP-AT0.1 3 3 3 1 0
PP-AT0.2 0 2 1 0 3
PP-AP0.5 2 0 2 2 0

46



Journal of Science and Technique - Le Quy Don Technical University - No. 210 (9-2020)

method in the columns is significantly better than a method in the rows on k problems,
k is presented in the corresponding cell. For example, SAT-GP is significantly better
than neat-GP on 11 problems, 11 is presented in the cell at column “SAT-GP” and row
“neat-GP”.

The results of the post hoc analysis again confirm the good generalization ability of
PP-AT. Table 5 shows that PP-AT is often significantly better than neat-GP and PP. For
example, PP-AT0.2 is significantly better than neat-GP and PP on 12 and 7 problems,
and the vice versa is not true on any problem with neat-GP and 2 problems with PP.
Comparing with SAT-GP, PP-AT is roughly equal to SAT-GP.

One of the main reasons for performing bloat control is to help the algorithm find
good and small solutions. We thus conducted an analysis of the size of solutions. To do
this, we recorded the size of the selected solution (the number of nodes of this solution)
in each run. These values are then averaged over 30 runs and presented in Table 6.

Table 6. The average of solution size

Pro GP neat-GP PP SAT-GP PP-AT0.1 PP-AT0.2 PP-AT0.5

F1 348.9 176.5+ 173.6+ 64.2+ 160.1+ 137.7+ 86.3+

F2 294.4 92.8+ 142.9+ 82.7+ 248.9 218.4 148.9+

F3 196.7 58.6+ 139.7+ 86.1+ 195.2 180.5 116.4+

F4 379.6 88.2+ 202.3+ 112.0+ 342.6 329.3 184.9+

F5 259.9 83.6+ 137.3+ 89.8+ 255.6 240.5 170.9+

F6 252.8 91.3+ 129.2+ 96.4+ 273.8 232.2 131.8+

F7 315.7 98.3+ 165.3+ 94.6+ 270.6 221.8+ 131.9+

F8 288.1 173.6+ 158.1+ 83.6+ 280.7 219.8+ 135.1+

F9 287.3 154.7+ 130.9+ 95.7+ 198.8+ 180.6+ 116.4+

F10 326.2 210.5+ 171.4+ 37.0+ 277.0 250.6+ 109.1+

F11 271.9 144.4+ 122.5+ 83.1+ 216.2+ 209.7+ 123.7+

F12 280.8 138.9+ 155.2+ 94.1+ 220.2+ 222.6+ 105.7+

F13 336.1 143.1+ 154.4+ 93.4+ 284.2 286.9 135.1+

F14 320.6 156.2+ 139.5+ 102.6+ 295.6 276.4 129.8+

F15 265.5 149.5+ 152.8+ 72.9+ 200.9+ 196.6+ 96.8+

Table 6 shows that all control bloat methods help to find simple solutions. The size
of solutions found by them is significantly smaller than that of GP on most tested
problems. Apparently, the size of solutions created PP-AT reduces when the probability
of this operator increases, and PP-AT achieved its objective to reduce code bloat.

The last metric we examine is the average running time of all tested GP systems. The
total time needed to complete a GP run is recorded, and these values are then averaged
over 30 runs. The results are shown in Table 7. It can be observed from this table
that the average running time of PP, SAT-GP and PP-AT are smaller than that of GP.
Comparing between PP and PP-AP0.5, although both of them use the same probability as
0.5, PP-AP0.5 often run fatter than PP. For neat-GP, since we used its implementation
in Python 5 while others in Java, so they cannot directly compare. However, it also

5http://www.tree-lab.org/index.php/resources-2/downloads/open-source-tools

47



Section on Information and Communication Technology (ICT) - No. 15 (9-2020)

requires a much longer time to run compared to others.

Table 7. The average of running time in seconds

Pro GP neat-GP PP SAT-GP PP-AT0.1 PP-AT0.2 PP-AT0.5

F1 815.6 25 772.6– 224.2+ 70.3+ 162.8+ 144.7+ 102.1+

F2 1094.0 6842.0– 318.0+ 110.6+ 287.4+ 217.5+ 141.8+

F3 1097.7 3140.9 482.3+ 217.1+ 362.2+ 288.6+ 189.2+

F4 1617.3 6672.2– 685.3+ 217.3+ 524.1+ 517.1+ 263.7+

F5 1247.4 3772.2 416.7+ 188.7+ 416.7+ 438.1+ 243.6+

F6 1321.9 4388.9– 391.9+ 173.2+ 416.0+ 440.1+ 248.9+

F7 1237.5 4617.1 367.5+ 141.9+ 343.8+ 332.1+ 174.5+

F8 1040.6 14 313.6– 247.0+ 54.9+ 183.2+ 168.6+ 98.3+

F9 706.7 7933.8– 252.1+ 76.1+ 186.7+ 200.9+ 94.8+

F10 366.9 12 453.2– 29.4+ 8.8+ 55.2+ 45.2+ 17.2+

F11 790.2 5798.4– 254.7+ 93.2+ 267.2+ 271.5+ 122.8+

F12 280.4 6526.6– 16.8+ 9.4+ 28.6+ 20.0+ 8.3+

F13 316.9 6246.6– 17.1+ 10.8+ 31.0+ 25.4+ 10.0+

F14 306.1 6747.4– 19.6+ 11.5+ 33.9+ 24.7+ 9.3+

F15 508.7 6705.9– 129.4+ 36.3+ 102.4+ 102.2+ 46.9+

6. Conclusions

In this paper, we used the technique of growing an approximate tree in the previous
research [12] to improve Prune and Plant [13]. The new proposed operator, PP-AT,
selects a random subtree in a parent and replaces this subtree by an approximate tree.
The subtree is also added to the population as a second offspring. Experimental results
showed that PP-AT boosted the performance of Prune and Plant, reduced GP code bloat
and achieved significantly better performance compared to GP and other tested systems.

Acknowledgment

This research is funded by Vietnam National Foundation for Science and Technology
Development (NAFOSTED) under grant number 102.05-2019.05

References
[1] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, A field guide to genetic programming. Lulu. com,

2008.
[2] M. A. Haeri, M. M. Ebadzadeh, and G. Folino, “Statistical genetic programming for symbolic regression,”

Applied Soft Computing, vol. 60, pp. 447–469, 2017.
[3] A. Purohit, N. S. Choudhari, and A. Tiwari, “Code bloat problem in genetic programming,” International

Journal of Scientific and Research Publications, vol. 3, no. 4, p. 1612, 2013.
[4] R. Poli, “A simple but theoretically-motivated method to control bloat in genetic programming,” Genetic

programming, pp. 43–76, 2003.
[5] E. Alfaro-Cid, J. J. Merelo, F. F. de Vega, A. I. Esparcia-Alcázar, and K. Sharman, “Bloat control operators

and diversity in genetic programming: A comparative study,” Evolutionary Computation, vol. 18, no. 2, pp.
305–332, 2010.

48



Journal of Science and Technique - Le Quy Don Technical University - No. 210 (9-2020)

[6] P. Martin and R. Poli, “Crossover operators for a hardware implementation of gp using fpgas and handel-c,”
in Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation. Morgan Kaufmann
Publishers Inc., 2002, pp. 845–852.

[7] S. Silva and E. Costa, “Dynamic limits for bloat control in genetic programming and a review of past and
current bloat theories,” Genetic Programming and Evolvable Machines, vol. 10, no. 2, pp. 141–179, 2009.

[8] T. Belpaeme, “Evolution of visual feature detectors,” in University of Birmingham School of Computer Science
technical. Citeseer, 1999.

[9] M. J. Cavaretta and K. Chellapilla, “Data mining using genetic programming: the implications of parsimony
on generalization error,” in Proceedings of the 1999 Congress on Evolutionary Computation, vol. 2, 1999, p.
1337 Vol. 2.

[10] S. Dignum and R. Poli, “Operator equalisation and bloat free gp,” Lecture Notes in Computer Science, vol.
4971, pp. 110–121, 2008.

[11] S. Silva, S. Dignum, and L. Vanneschi, “Operator equalisation for bloat free genetic programming and a survey
of bloat control methods,” Genetic Programming and Evolvable Machines, vol. 13, no. 2, pp. 197–238, 2012.

[12] T. H. Chu and Q. U. Nguyen, “Reducing code bloat in genetic programming based on subtree substituting
technique,” in IES2017. IEEE, 2017, pp. 25–30.

[13] E. Alfaro-Cid, A. Esparcia-Alcázar, K. Sharman, F. F. de Vega, and J. Merelo, “Prune and plant: a new bloat
control method for genetic programming,” in Hybrid Intelligent Systems 2008. IEEE, 2008, pp. 31–35.

[14] L. Trujillo, L. Muñoz, E. Galván-López, and S. Silva, “neat genetic programming: Controlling bloat naturally,”
Information Sciences, vol. 333, pp. 21–43, 2016.

[15] M.-A. Gardner, C. Gagné, and M. Parizeau, “Controlling code growth by dynamically shaping the genotype
size distribution,” Genetic Programming and Evolvable Machines, vol. 16, no. 4, pp. 455–498, 2015.

[16] T. H. Chu, Q. U. Nguyen, and V. L. Cao, “Semantics based substituting technique for reducing code
bloat in genetic programming,” in Proceedings of the Ninth International Symposium on Information and
Communication Technology. ACM, 2018, pp. 77–83.

[17] A. Moraglio, K. Krawiec, and C. G. Johnson, “Geometric semantic genetic programming,” in International
Conference on Parallel Problem Solving from Nature. Springer, 2012, pp. 21–31.

[18] T. H. Chu, Q. U. Nguyen, and M. O’Neill, “Semantic tournament selection for genetic programming based on
statistical analysis of error vectors,” Information Sciences, vol. 436, pp. 352–366, 2018.

[19] D. R. White, J. McDermott, M. Castelli, L. Manzoni, B. W. Goldman, G. Kronberger, W. Jaskowski, U.-M.
O’Reilly, and S. Luke, “Better GP benchmarks: community survey results and proposals,” Genetic Programming
and Evolvable Machines, vol. 14, no. 1, pp. 3–29, 2013.

[20] K. Bache and M. Lichman, “UCI machine learning repository,” 2013, http://archive.ics.uci.edu/ml.

Manuscript received 12-5-2020; Accepted 25-8-2020.
�

Chu Thi Huong received her B. Eng. degree in Applied Mathematics and Informatics from
Hanoi University of Science and Technology and MSc Degree in Computer Science from Le
Quy Don Technical University. She received the PhD degree in Mathematical Foundations for
Informatics from Le Quy Don Technical University, in 2020. Since 2002, she has been teaching
at Faculty of Information Technology, Le Quy Don Technical University. Her research interest
are in the domain of Evolutionary Algorithms, Genetic Programming and Machine Learning.

49



Section on Information and Communication Technology (ICT) - No. 15 (9-2020)

TOÁN TỬ DỰA TRÊN XẤP XỈ
NGỮ NGHĨA CHO VIỆC GIẢM PHÌNH MÃ

TRONG LẬP TRÌNH DI TRUYỀN
Tóm tắt

Trong lập trình di truyền (GP), phình mã là hiện tượng phổ biến được đặc trưng bởi sự
gia tăng kích thước chương trình mà không có sự cải thiện tương ứng về độ thích nghi. Để
giải quyết bài toán này, chúng tôi đề xuất một toán tử điều khiển phình mã mới được gọi
là Prune and Plant based on Approximate Terminal (ký hiệu là PP-AT). PP-AT nhằm mục
tiêu giảm hiện tượng phình mã trong GP. PP-AT thay thế một cây con ngẫu nhiên trên cha
mẹ bằng một cây xấp xỉ ngữ nghĩa để thu được con thứ nhất. Đồng thời, cây con này cũng
được đưa vào quần thể như là con thứ hai. PP-AT được thử nghiệm trên mười lăm bài toán
hồi quy và được so sánh với GP chuẩn và ba phương pháp điều khiển phình mã được đề xuất
gần đây. Kết quả thực nghiệm chứng minh PP-AT vượt trội hơn GP chuẩn và các phương
pháp điều khiển phình mã khác được so sánh.

50




