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Abstract

Determination of the location and orientation of objects in the robot workspace is a
fundamental function of manufacturing automation. This problem is solved by using a robot
vision system with a camera mounted on the robot end-effector with a known hand-eye
transformation. In this case, a viable solution to deal with the complexity of calibration is
of necessity, including the calibration of internal and external parameters associated with
the camera as well as the calibration of the hand-eye parameters. To this end, the paper
presents a simple and efficient method of calibration for a camera-on-hand system, where
the internal and external parameters of a 2D camera as well as the hand-eye parameters are
simultaneously calibrated. The method is based on the 3D-to-2D projections of a calibration-
block with minimum two pure translations and two pure rotations of hand motions. Being
evaluated on simulation data and real robot vision system indicate that our method can work
stably with different noise and number of stations.

Index terms

Camera Calibration, Hand-Eye Calibration.

1. Introduction

The robot vision system consists of one or more cameras and a robot or robots
in industry field for various applications such as bin picking, modeling [1], robotic
grasping [2] and medical procedures [3]. The measurement accuracy of the robot vision
system relies on each component in the system containing camera parameters, hand-
eye parameters and the hand’s repeatability accuracy, obviously. Usually, the calibration
process for the robot-vision system is done separately in turn, camera calibration first
and then hand-eye calibration later. Especially, the images used for camera calibration
are not reused for hand-eye calibration process.

Camera calibration is a necessary process in 3D computer vision in order to solve the
unknown parameters of the camera model. It is performed by observing a calibration
object whose geometry in 3D space is known with the high precision. The calibration
object usually contains one, two or three planes perpendicular to each other. Much work
has been done, for example [4], [5], [6]. The approaches using one plane, named planar
chessboard, usually require an expensive apparatus and an elaborate setup.
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Usually, the hand-eye calibration problem is formulated as solving homogeneous
transformation equations of the forms AX = XB [7] (*), where X is the 4 homogeneous
transformation from the robot hand coordinate frame to the sensor coordinate frame, A
and B are the measurable 4 homogeneous transformations of the robot hand and camera
from its first to second position. Several closed-form solutions were proposed to solve for
X such as [7] and [8]. The unknown hand-eye transformation also can be estimated by
solving AX = ZC where A is the known homogeneous transformation from hand pose
measurements, C is computed using the calibrated manipulator internal-link forward
kinematics, X is the unknown transformation from the robot hand frame to sensor
frame, and Z is the unknown transformation from the world frame to the robot-base
frame. Such problem has been solved in [9] and [10]. This hand-eye calibration process is
independent to camera calibration. Hand-eye calibration by teaching pendant moving the
robot hand to a sequence of location repeatedly also has been used for several decades.
This teaching robot moving to pick chessboard corner was known as to be dangerous for
operators and time consuming. Any incorrect operation could cause severe injury people
close to the robot. Note that, for above-mentioned approaches, to successfully obtain
the unknown transformation X accurately, it is necessary to solve a non-linear system
obtaining from multiple hand motions and images captured by camera. Additionally, the
camera should be calibrated previously and separately. Recently, simultaneous hand-eye
calibration was done by using chessboard corners at multiple hand positions [11]. This
methodology requires multiple hand motions so it shares the same manner with teaching
pendant method.

Fig. 1. The proposed simultaneous hand-eye calibration.

In this paper, we focus on reducing the elaborating time by introducing an approach
which simultaneously calibrates camera and camera-hand using 3D calibration-block by
minimum two pure hand translations and two pure hand rotations, meaning four hand
motions in total. Firstly, the camera was calibrated successfully at each robot stations
by taking advantage of 3D calibration-block which contains two orthogonal planes.
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Secondly, hand-eye rotation is estimated by minimum two pure hand translations and
then the hand-eye translation was obtained by minimum two pure hand rotations with
the pre-estimated hand-eye rotation. Fig. 1 summarizes the step-by-step procedure of
the proposed approach.

The remaining of this paper is organized as follows. In Section II, background of cam-
era model and traditional hand-eye calibration are summarized. In Section III, a process
of camera calibration is estimated by finding projection matrices and decomposing into
internal and external parameters. Hand-eye calibration based on pure hand translation
and rotation motions is described in Section IV. Experimental results on simulated and
real data are shown in Section V.

2. Preliminaries

2.1. Camera model

In pinhole camera system, the relation between a 3D world point WX = [x, y, z, 1]T and
a 2D point in image plane is known as the full perspective camera model [12].
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This includes a homogeneous transformation matrix which transforms the 3D world
point to camera coordinate and a projection matrix from camera coordinate to image
co-ordinate in pixel. Equation (1) can be rewritten in a compact way

Cp = CK[ C
WR

C
W t]

WP (2)

or be compacted as
Cp = C

WM
WP (3)

where matrix 3 × 3 CK is intrinsic matrix or camera matrix contains the internal
parameters of camera, rotation matrix 3 × 3 CR and translation matrix 3 × 1 C

W t are
external matrix represent the transformation from world coordinate to camera coordinate.
Matrix 3× 4 C

WM is called as projection matrix. In this case, the pair 2D point Cp and
3D point WP is called a 2D−3D correspondence. The calibration process is to estimate
intrinsic matrix CK from 2D − 3D correspondences.
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Fig. 2. Camera Calibration Process using Calibration-Block (left) Captured Image (middle) 7× 7 line
detection, (right) 7× 7 line intersections with sub-pixel refinement.

2.2. Hand-eye calibration

In a vision system with camera mounted on hand, the well-known hand-eye calibration
equation is expressed as AX = XB where A is hand motion, B is camera motion and
X is transformation from the camera to the end-effector that is necessary to estimate
correctly. From equation (∗), two following constraints should be satisfied the

RARX = RXRB (4)

(I −RA)tX = tA −RXtB (5)

Several approaches have been proposed for the estimation of RX from equation (4),
for instance, using the rotation axis and angle [13], quaternions [14] and canonical
matrix representation [9]. After that, the estimation of translation is done by solving
the Pseudo-Inverse and then can be refined by nonlinear optimization [8]. For these
approaches, the hand motions include both translation and rotation components.

3. Camera Calibration

3.1. Calibration-block and corner detection

Calibration-block contains two orthogonal planar chessboards 8×8 with 20 mm square
size. That means there are 7 × 7 = 49 inner corners in each surface and 98 corners
in total. To detect these corners, consecutively, we performed Hough Line Transform
method to extract lines, then the initial location of inner corners are determined by
line intersections, and finally the sub-pixel process was performed to accurately detect
location inner corners. These main steps to detect chessboard corners are summarized
in Fig. 2.

3.2. Camera calibration

At each robot station, the camera was calibrated; 3 × 4 projection matrix was esti-
mated from solving linear equations then was decomposed into intrinsic and extrinsic
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parameter. Specifically, equation (3) can be written detailed as
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Equations (7) and (8) are written in compact way as[
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i vi

WP T
i

]
m = 0 (9)

where m = [m11m12m13m14m21m22m23m24m31m32m33m34]. To find each element of
matrix M , it is necessary to solve the linear equation Am = 0. The simple way to solve
(9) is to find the minimum eigenvector by minimizing the following objective function

min‖Am̄‖ (10)

with a constraint ‖m̄‖ = 1. The solution of m vector is normalized, however matrix
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33 = 1. For that reason, we have
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And then intrinsic parameters and rotation matrix from world to camera are obtained
by QR decomposition. Finally, the translation from world to camera is calculated by
solving

CKC
W t =

m14

m24

m34

 (13)
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Fig. 3. Robot vision system with a camera mounted on hand.

4. Hand-eye Calibration

In this section, we propose a simplifying hand-eye calibration using at least two
pure hand translations to estimate the hand-eye rotation and two pure hand rotations to
obtain hand-eye translation with known hand-eye rotation. Fig. 3 shows two positions
of the robot vision system. Hand position is so called a station. For other approaches,
the hand motions including both translation and rotation components. However, the
proposed approach takes advantage using special motions: pure translation and pure
rotation.

The hand can be controlled by human so hand motion is obtained by
H1
H2
T = H1

BT
H2
BT

−1 (14)

When camera is calibrated to world coordinate so camera motion also easily obtained
C1
C2
T = C1

WT
C2
WT

−1 (15)

The hand motion and camera motion share a constraint AX = XB. This constraint is
rewritten as

H1
C2
T = H1

H2
T H2

C2
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C1
T C1
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or in detail as [
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H2
R H1
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t
] [

H2
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]

=
[
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The rotation constraint is
H1
H2
R H2

C2
R = H1

C1
R C1

C2
R (18)

HR H
CR = H
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CR (19)

and, the translation constraint is
H1
H2
t+ H1

H2
R H2

C2
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Finally, the translation component is described by hand motion and camera motion as
Ht+ HR H

Ct = H
Ct+ H

CR
Ct (21)

In case of pure translation motion, there is no change in rotation that means HR = I
and then equation (21) becomes Ht = H

CR
Ct(∗∗). Many authors noticed that at least three

pairs of (Ht,C t) are necessary in order to uniquely determine C
HR. However, rotation

C
HR is orthogonal matrix so cross vector two hand motions and two camera motion has
relationship

Ht1 ×H t2 = H
CR(Ht1 ×H t2) (22)

For that reason, we need at least two pairs of hand motion to obtain the hand-eye rotation.
Assume there are N pair of hand motion and camera motion. Matrix Λ is collection
of hand motions and matrix Ψ is collection of camera motions. From equation (22),
relationship between Λ and Ψ is written in a closed-form as

Λ3×N = H
CRΨ3×N (23)

In case N = 2, the third column of matrix Λ and Ψ is replaced by cross product of
two hand motions and camera motions. Otherwise, in case number of stations is larger
than 2, rotation H

CR is easily obtain by using SV D

[U, S, V ] = SV D(Ψ3×NΛT
3×N) (24)

H
CR = V UT (25)

Until now, the hand-eye rotation is estimated, it is necessary to estimate the hand-eye
translation. With known hand-eye rotation we can rewrite equation (21) as

Ht− H
CR

Ct = (I − HR) H
Ct (26)

For each hand rotation, we can have equation (26) with three linear equation, but
matrix (I − HR) has rank 2 so we need at least two hand motion in pure rotation to
estimate translation H

Ct.

5. Experimental Results

To verify the proposed method, we do experiment on both simulation data and real
data which are captured by a robot vision system including a Computar camera with
focal length 12 mm resolution 1280×960 mounted on Schunk LWA3 robot. Simulation
data contained 20 pairs of hand-eye motion including 10 motion in pure translation and
10 motions in pure rotation. The hand motion is in a limitation 100 mm for translation
direction, 20 degrees for rotation components. Noise level for rotation and translation
were set to 0.05 degree and 0.05 mm, respectively. To verify our approach in real
situation, we choose randomly a small number of motions from a dataset containing 60
pure translations and 50 pure rotations captured from above-mentioned system.
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Fig. 4. Configuration of our robot vision system.

The configuration of our robot vision system is shown in Fig 4.

Firstly, we considered the hand error. There are two errors related to hand: physical
error and repeatability error. The repeatability error can be roughly estimated by moving
the hand from fixed positions to different positions. The arm controller can provide the
joint information and the hand location in Base coordinate. By controlling the hand
from the default position to a chosen position 60 times and measuring the standard
deviation of transformation from Hand (H) to Base (B) B

HT , the repeatability is around
0.2 mm for translation and 0.05 degree for rotation. It is summarized in Table 1.

Table 1. Statistic Hand Repeatability Error

Rx (deg) Ry (deg) Rz (deg) Tx (mm) Ty (mm) Tz (mm)
B-H 0.047 0.02 0.037 0.14 0.1 0.12

However, it is not easy to measure the physical error directly. To measure this error
roughly, we evaluated the hand-eye system by evaluating the relative translations of pure
hand translation and corresponding camera motion instead. In ideal cases, the relative
motions of hand and camera are identical. Due to the mechanic error, two motions
are different with a very small change. This difference indicates the error of hand-eye
system. To this end, we measured the hand motion and camera motion by moving hand
60 times in pure translation and then created a histogram of difference between two
motions is shown in Fig. 5. It shows the mean and standard deviation of this difference
to be 0.94± 0.65.

Fig. 5 indicates that the physical error of robot hand is around 0.9 mm. The system was
evaluated on accuracy and precision for camera calibration and hand eye calibration. To
make the evaluation understandable, we introduced the evaluation methodology which
was used for evaluating camera calibration and hand-eye calibration, consecutively.
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Fig. 5. Difference of hand and camera relative translation histogram.

5.1. Evaluation Methodology

This section introduces how the system was evaluated and the metric used to evaluate
performance. For camera calibration, we measured precision of intrinsic and extrinsic
parameters by measuring distribution of 20 calibration times at the same position. For
hand-eye calibration, the performance was evaluated in both simulation and the real data.
For accuracy evaluation, it is necessary to have metrics. We took advantage of metric of
rotation and translation proposed in [7]. Assume there are two measurements of same
transformation

H0

H1
T̃ and

H0

H1
T̂ where

H0

H1
T̃ is calculated from two robot hand location, and

H0

H1
T̂ estimated from camera motions. Residual error rotations such as Re =

H0

H1
R̃

H1

H0
R̂.

The rotation error can be expressed as

Orot = ± arccos(
trace(Re)− 1)

2
) (27)

And the metric for translation error is expressed as

Otranl =
‖H0

H1
t̃− H0

H1
t̂‖+ ‖H1

H0
t̃− H1

H0
t̂‖

2
(28)

From multiple pair of hand-cam motion, the error is measured as the variance

σ2
rot =

1

N

N∑
i=1

O2
rot (29)

σ2
transl =

1

N

N∑
i=1

O2
transl (30)

Precision of our system is evaluated on both simulated and real data. For simulated data,
there is a hand-eye transformation ground-truth that is obviously used for evaluating.
There is no ground-truth for real data, so it is necessary to measure the distribution of
estimation.
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5.2. Camera Calibration Evaluation

At a fixed hand position, we captured calibration-block images 20 times, did cali-
bration, and then measured the distribution the intrinsic and extrinsic parameters. In
addition, we measured the distribution of re-projection error which was the distance
between observation and projected points. The result is summarized in Table 2.

Table 2. The accuracy of camera intrinsic parameters

Camera Calibration (pixel)
Focal length fu 2544.05 ± 2.07
Focal length fv 2554.3 ± 2.14
Skew −4.7 ± 0.13
Principal Cu 599.5 ± 1.9
Principal Cv 500.3 ± 1.6
Re-projection error 0.26 ± 0.04

Each row of in Table 2 includes the mean and variance. The first two rows indicate
that the variance of intrinsic parameters were less than 2 pixels. Finally, we measured
the extrinsic parameters from calibration-block to camera C

WT by measuring their dis-
tribution.

Table 3. The accuracy of camera extrinsic parameters

Rx (deg) Ry (deg) Rz (deg) Tx (mm) Ty (mm) Tz (mm)
C-W 103.7± 0.07 −50.9± 0.03 168.3± 0.07 27.5± 0.61 −44.7± 0.53 810.4± 0.71

Additionaly, we make a comparison our approach to the one in [4] which used
the planar chessboard instead of using calibration-block as we used by measuring the
reprojection errors. For method in [4], we measured the reprojection with different
number of images. For our method we use only one image. The results shown in Fig.
6 indicate that the reprojection error of chessboard’s method reduces gradually and
converges around 10-20 images. With only one image, the reprojection error of our
method around 0.26 pixel is equivalent to the reprojection error of chessboard’s method
at around 6 and 7 images.
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Fig. 6. Reprojection errors of two methods: 1) The conventional method using multiple planar
chessboard. The proposed method using 3D calibration-block
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5.3. Hand-Eye Calibration Evaluation

Hand-eye calibration results were compared to other methods on simulation and the
real data. Firstly, we made comparison the proposed algorithm to the traditional methods
listed as follows: 1) using dual-quaternions and Kronecker product proposed in [10], 2)
quaternion presentation proposed by Dormaika [8], 3) Kronecker product proposed by
Shah [15] and 4) solving homogeneous transformation equations [16] .These methods
focused on solving simultaneous hand-eye/robot-world calibration in general case that
means the camera/hand motions are randomly chosen. Because of that our proposed
method took advantage of pure motions in rotation and translation to simplify the hand-
eye calibration process. For that reason, the popular hand-eye dataset with random hand
motions is not suitable for evaluating our method. To fairly compare our proposed
algorithm to four methods mentioned above, the simulation dataset and real dataset
were generated with only pure rotation and translation motions. Note that the inputs of
our method are hand motion and camera motions while that of other methods are camera
motion and transformation from the end-effector to the robot base. The hand motions
were easily converted to that type of transformation by integrating with transformation
of a fixed end-effector position in the robot base coordinate. As mentioned in [17],
methods in [10] and [15] show good performance. We measured rotation and translation
error and the difference of estimated value to the ground-truth. Fig. 7 shows the results
on simulation data. Horizontal axis represents the number of hand motions, each robot
hand position called a station. For our method, the number of pure translation and pure
rotation motion is similar that means if there are total Nsim motions then the number of
pure translation is Nsim/2 + 1 and number of pure rotation is Nsim/2. This assignation
is applied for all evaluations in experiment.
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Fig. 7. Comparison rotation (left) and translation (right) error of the proposed algorithm to the
popular approaches on simulation data

Compare to other methods, the proposed approach has stable rotation error even
though the number of station is smaller. The errors of other methods are reduced since
number of stations increases. However, the translation of proposed method is smallest
compare to the others at almost every station.

Fig. 8 proves that the 6DOF estimated by proposed method is closest to the ground-

33



Section on Information and Communication Technology (ICT) - No. 15 (9-2020)

4 6 8 10 12 14 16 18 20

Number of stations

85

85.5

86

86.5

87

87.5

88

88.5
E

s
ti
m

a
ti
o
n
 o

f 
R

x
 (

d
e
g
re

e
)

liang R
x

dornaika R
x

shah R
x

our R
x

GT R
x

4 6 8 10 12 14 16 18 20

Number of stations

-5

-4

-3

-2

-1

0

1

2

E
s
ti
m

a
ti
o

n
 o

f 
R

y
 (

d
e

g
re

e
)

liang R
y

dornaika R
y

shah R
y

our R
y

GT R
y

4 6 8 10 12 14 16 18 20

Number of stations

-81.2

-81

-80.8

-80.6

-80.4

-80.2

-80

-79.8

E
s
ti
m

a
ti
o
n
 o

f 
R

z
 (

d
e
g
re

e
)

liang R
z

dornaika R
z

shah R
z

our R
z

GT R
z

4 6 8 10 12 14 16 18 20

Number of stations

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

E
s
ti
m

a
ti
o
n
 o

f 
T

x
 (

m
)

liang T
x

dornaika T
x

shah T
x

our T
x

GT T
x

4 6 8 10 12 14 16 18 20

Number of stations

-0.1

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

E
s
ti
m

a
ti
o

n
 o

f 
T

y
 (

m
)

liang T
y

dornaika T
y

shah T
y

our T
y

GT T
y

4 6 8 10 12 14 16 18 20

Number of stations

-0.1

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

E
s
ti
m

a
ti
o

n
 o

f 
T

z
 (

m
)

liang T
z

dornaika T
z

shah T
z

our T
z

GT T
z

Fig. 8. Comparison 6DOF estimation of the proposed algorithm, conventional approaches to the
ground-truth on simulation
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Fig. 9. Comparison rotation (left) and translation (right) error of proposed algorithm to popular
approaches on real environment

truth while other methods are more sensitive to the noise.

For the real data, we follow two statistics to evaluate the proposed method: 1) Compare
the accuracy to other methods by a small set of data, and 2) Evaluate detail the accuracy
and precision on a large data set including 60 pure translations and 50 pure rotations.

In order to compare the accuracy of proposed hand-eye calibration with other methods,
we used a real data set including 11 pure translations and 10 pure rotations to evaluate
the two erroneous metric of rotation and translation described in (29) and (30). The
horizontal is the number of stations. If Nreal is the station number then there is are
Nreal/2 + 1 pure translations and Nreal/2 pure rotation. Fig. 9 shows the comparison
results, which indicate that our method has higher rotation error than others but has
less translation error than others. Especially, the proposed method could provide stable
result even though the number of stations is smaller. This small error is obtained due
to the benefit in using pure rotation and pure translation hand motions.
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Note that, in hand-eye calibration process time for controlling robot is far longer than
that for running algorithm. Instead measuring the algorithm running time, we can use the
number of camera/hand motion to evaluate the efficiency of methods. The translation
and rotation error results in Fig. 7 and Fig. 9 indicate our errors with 4 5 stations are
equivalent to other method errors at 8 12 stations. Means that our proposed method is
more efficient to others

Fig. 10. Our system precision, the distribution of rotation and translation components

To evaluate the accuracy and precision of our system in detail, we captured a data con-
taining 60 pure translations and 50 pure rotations. Next, a set with nT pure translations
and nR pure rotations was selected randomly and repeated 100 times. We measured
the distribution of estimated parameters. Firstly, the precision of our hand-eye system
with nT = 8, nR = 8 is shown, for instance, in Fig. 10. And Table 4 shows standard
deviation of hand eye transformation with different number of pure translations nT and
pure rotations nR.

Additionally, we also measured accuracy by measuring the distribution of rotation
and translation error with different number of translations and rotations. Table 4 shows
the statistic the rotation and translation of hand eye calibration with different number of
translations and rotations repeated 100 times. It is visualized by Fig. 10, and indicates
that the error of our system is around 0.8 degree in rotation and 4 mm in translation. This
accuracy is sufficient requirement for several applications such as object recognition and
pose estimation or point cloud registration.

Both translation and rotation errors reduce since the number of stations increases,
however, it takes more time to control arm and do calibration. Because of that reason
we need to trade-off between required accuracy and the number of hand motion.
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Table 4. Accuracy of our system. Standard deviation of hand-eye transformation

nT nR Total Rx Ry Rz Tx Ty Tz

2 2 4 0.86 0.48 0.92 9.60 12.10 10.71
3 2 5 0.85 0.47 0.89 9.27 11.78 10.31
3 3 6 0.86 0.45 1 6.94 8.11 7.01
4 3 7 0.83 0.41 0.9 8.13 7.26 6.71
4 4 8 0.78 0.39 0.79 7.3 6.66 6.2
5 4 9 0.72 0.39 0.69 8.12 6.93 5.36
5 5 10 0.68 0.41 0.85 6.94 6.39 5.34
6 5 11 0.58 0.36 0.64 6.48 6.01 5.13
6 6 12 0.64 0.34 0.76 6.25 5.54 4.86
7 6 13 0.68 0.35 0.68 5.41 5.72 4.81
7 7 14 0.61 0.33 0.58 5.13 5.78 4.68
8 7 15 0.51 0.27 0.6 4.89 4.96 3.66
8 8 16 0.53 0.3 0.59 5.53 3.97 3.94
9 8 17 0.47 0.28 0.55 5.43 4.43 3.55
9 9 18 0.48 0.24 0.54 4.58 4.56 4.29
10 9 19 0.37 0.2 0.42 4.76 4.68 3.94
11 10 20 0.35 0.23 0.4 4.66 4.36 3.52
11 10 21 0.39 0.22 0.39 4.21 3.94 3.17
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Fig. 11. The rotation (left) and translation (right) errors along the number of stations

6. Conclusions

We proposed a calibration solution for a robot vision system with a camera mounted
on robot hand. Evaluation on simulation indicates that the estimation of hand-eye
transformation of the proposed method is closest to the ground-truth than others even
though with higher rotation error and smaller translation error. The results on real system
with robot hand 1.0 mm repeatability indicates that the accuracy of our solution is 0.8
degree in rotation and 4.0 mm. Experiment on simulation and real data also indicates
that our proposed algorithm can work with small number of stations.
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PHƯƠNG PHÁP ĐỒNG THỜI HIỆU CHỈNH THÔNG SỐ
CỦA CAMERA VÀ TAY-MẮT

Tóm tắt

Xác định vị trí và hướng của các vật thể trong không gian làm việc của robot là một
chức năng quan trọng của các hệ thống robot tự động hóa. Vấn đề này được giải quyết bằng
cách sử dụng camera gắn trên cánh tay robot. Trong trường hợp này, một giải pháp khả thi
để hiệu chỉnh hệ thống là cần thiết, bao gồm hiệu chuẩn các thông số camera cũng như hiệu
chỉnh các tham số ma trận dịch chuyển của hệ thống robot-camera. Trong bài báo này, chúng
tôi trình bày một phương pháp hiệu chỉnh hệ thống camera-on-hand một cách đơn giản và
hiệu quả, trong đó các thông số của máy ảnh cũng như các thông số của ma trận chuyển
vị được hiệu chỉnh đồng thời. Phương pháp này dựa trên việc kết hợp các phép chiếu 3D
sang 2D của khối hiệu chuẩn với tối thiểu hai phép tịnh tiến và hai phép quay thuần túy
của chuyển động cánh tay. Phương pháp đề xuất dược đánh giá trên dữ liệu mô phỏng và hệ
thống camera-on-hand thật cho thấy rằng phương pháp của chúng tôi có thể hoạt động ổn
định với nhiều mức độ nhiễu và số lượng vị trí robot khác nhau.
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