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Abstract

This paper presents the nonlinear static bending analysis of variable thickness microplates
by using the finite element method and modified couple stress. The present theory and
mathematical model are confirmed by comparing the numerical data with those of open
literatures. A parameter study is carried out to investigate the mechanical behavior of the
structure, especially, the effect of nonlinearlity. The computed data can be used as a good
reference in the use and design of these types of structures in engineering practice.
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1. Introduction

Nowadays, with the great development of materials technology, materials with micro
and nano size have been studied and widely used in modern industries [1-4]. Therefore, the
study of the mechanical behavior of these structures plays an extremely important role. The
theories that calculate beams, plates and shells for traditional structures are no longer
suitable to accurately describe the mechanical behavior relationships of micro and
nanostructures. Therefore, many different theories have been developed to study the
mechanical response of micro and nano structures. Along with that, the research
achievements on this structure have also achieved many rich results [5-9].

In fact, the structure often undergoes large deformation, so the views about the
linear relationship between the mechanical components will sometimes be incorrect.
Therefore, calculating the nonlinear mechanical behavior of the structure is very
important. Chen et al. [10] investigated size-dependent nonlinear bending behavior of
porous FGM quasi-3D microplates with a central cutout based on nonlocal strain
gradient isogeometric finite element modelling. Nonlinear analysis of size-dependent
annular sector and rectangular microplates under transverse loading and resting on
foundations based on the modified couple stress theory was carried out by
Alinaghizadeh and Shariati [11]. Ghayesh and colleages [12] studied nonlinear
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oscillations of functionally graded microplates. Askari and Tahani [13] introduced size-
dependent dynamic pull-in analysis of geometric non-linear micro-plates based on the
modified couple stress theory. Simsek et al. [14] explored size-dependent vibration of a
microplate under the action of a moving load based on the modified couple stress
theory. Farokhi and his co-workers [15] investigated nonlinear oscillations of
viscoelastic microplates. Thai and Choi [16] presented size-dependent functionally
graded Kirchhoff and Mindlin plate models based on a modified couple stress theory.

It can be seen that, researches on the mechanical nonlinear behavior of
microstructures have obtained great achievements. Therefore, this paper contributes a
little to understanding the mechanical behavior of this structure.

2. Finite element formulations

Consider a homogeneous variable microplate with the length a, the width b, and
the variable thickness h (x, y) as shown in Fig. 1.

Fig. 1. The model of a microplate.
The displacement field of every point in the microplate is expressed as follows
using Mindlin's first-order shear deformation theory [14]:

u=u,+z.p,
V=V, + 20, 1)
W=Ww,
in which u,v, and w are the displacements along the x- y-, and z-directions,
respectively; u,,v,, and w, are the displacements of the point in the neutral surface
along the x- y-, and z-directions, respectively; ¢, and ¢, are the rotations of the cross-
area around y- and x-axes, respectively.

According to the modified couple stress theory with only one material length scale
parameter, the strain energy of the plate element is calculated as [16]:

U, = I(aijgij +M;. % )dVe (2)
Ve
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where summation on repeated indices is implied; o; are the components of the stress

tensor; ¢; are the components of the strain tensor; m; are the components of the

deviatoric part of the symmetric couple stress tensor; and y; are the components of the
symmetric curvature tensors, which are defined as:

06, 00, . .
. — |, L]=XYV,2 3
Xi = 2£ax ax) I=xy 3)

and &, are the components of the rotation vector expressed as:

QXZE %_q)y ;QVZE(_%-F(DXJ;
2\ oy 2\ oX

1({ov © 0 0 )
L2,

ox oy X oy

The bending strain is depended nonlinearly on the displacement field as follows [14]:

ou 1(ew) au, 1(owY) _ dg,
gX:—-{-— [ = + - — + 7. —=
oX 2\ ox OoX 2\ oX OX

v 1 aw) _av, 1faw) 9,
E,=—+= +=| — | +z.—= (5)
8)/ 2loy) oy 2loy oy
a_u@c’)waw 6u0+8v0 awawz%+%
Py T Tk ey Loy ox )T ax ey Clay | ax
Equation (5) is divided into the following components:
;
ou, ov, oau, ov, | 1(owY 1(ow) ow ow
{EL}: A ’{gNL}: S5 A S = A
ox oy oy ox 2\ 0Ox 2\ oy ox oy
(x) = 6% 20, o9, %9,
"oy ay OX
Therefore, the bendmg strain can be written as follows:
T
{gb}={gx,gy,7/xy} ={€N}+{8NL}+Z.{K‘} (6)
The shear strain vector is defined in the following equation:
ou ow
ve| |72 o ow ow)’
=4 ={p,+— @, +— 7
(&) {m} v ow {(px x 7 ay} 0
oz oy
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The components of the symmetric curvature tentors are expressed as follows [14]:

l={r 2, 2 xy) =2 Za) 8)

_1fo'w, o). _ 1w, dp, ).
Yo ayax T ox )P T 2laxey oy )

ZZ:_;(_%Jragoxj; ; 1(@2\% acﬂyj_%

in which

2\ ax oy Y 4l ey oy
9
__ L[ %o &g |, 1, ). ©)
e =70 Taxoy  oyoy ) 4\ oxay ayey )
82 2 2 2
sz:_lz_ ¢y+a¢x '|'1 6V0_8U0 .
4 OXOX oxoy | 4\ oxox oxoy
Then, equation (8) can be expressed clearly as follows:
o P 09y
OyoxX  OX
_Z(E_%]
1 oxoy oy
{Zb}z_ ’{Z}s ={Zsm}+z'{;(55} (10)
4 6¢y aq)x
2| ——L 4+ —1X
ox oy
aZW0 _ 8¢)y _ 62Wo 0P,
oy> oy ox>  ox
(82vo ~ azuoj oo, %,
X Xy Oyoy
where { Sm}zl oy oyoy o SS}_E 26y Yoy
41( %, &u, 410%, do,
OXOX  OXoy OXOX  OYyOX
Now, the stress fields are calculated as follows:
- The normal stress field:
GX 8X
{Gb}: o, :[Db]. &, :[Db]{gN}+[Db]{gNL}+Z.[Db].{K} (11)
TXY j/xy
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in which
. 1 u O
[Db]=l ~x 1 0 | isthe constant material matrix;
—u
0 1=#
L 2 ]

E and u are the Young’s modulus and Poisson’s ration, respectively.

- The shear stress field:

{T} =[DS]{‘95} (12)

in which [DS]:{E CO;}G :ﬁ.

- The components of the deviatoric part of the symmetric couple stress tensor [14]:

{m}=[D,]{z}:{n} =[Du {2} (13)
where
1 0 0O
[D,]= El, 100100 and [D,, | = Ely { O} are the constant material matrices;
1+u[0 0 1 0 2(1+1)| 0
0 001

|, is the length-scale parameter, which depends on materials.

Then, the strain energy is now expressed as:

) {en} [AMen)+eaw) [Al{ew)+{x) [B]{x)
UeZEJ e [Alat+{n) [Cl{n)+{n) [H]{x) |dxdy (14)
) Y e+ ) X))

where

(15)
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A four-node quadrilateral element is utilized in this paper, with each node having
five degrees of freedom:

)={a) (&) (@) @) fa)={u o W o o)

4(-1,1) 9ZA 3(1,1)
® ®
»77 X
([ @
1(-1,-1) 2(1,-1)

Fig. 2. A four-node quadrilateral element.

Then, the components of the strain tensor and the components of the symmetric
curvature tensors are expanded by the Lagrange shape functions and the element
displacement vector as follows:

[B ] Hew ) [ | ] A biixy =[B {aefi i =[B: ) (16)
{Zb}—[ B, {a.}; {Zsm} [B;]{a }{Zss} [Bs]{a.}.

in which
% 0O 0 0O @ 0 N
4axaN 16X8W4006—XiOO
B = 0O —/ 0 0 O[|B“|==| 0 —/—
3 o )3 aygooﬁoo
NN oo w ow 2!
| oy OX | | oy  OX |
OOO% 0 N
) oX i 00 10
[B,]=2/0 0 0 0 —Li[B]=2, oN
i=1 ay i=1OOEi01
000 M oN
i oy O |
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B 2
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Substituting into equation (14), one gets:

([T [l [e ]+ e T Al e])
oLy B BHBFEI AT |l
g Sje+[B][C][ B,]+[B,] [H].[,]
| (#[B] [X][B] |
Therefore, the element stiffness matrix of the microplate element is obtained as:
[KJ=[Ke J+ K] (18)

where the linear and nonlinear element stiffness matrices are expressed as follows:

K- | (8] .[A][B]+[B,] .[B].[B,]+[B.] .[A][B,]
+[8,] [C)[B.]+[B.] [H][B:]+[B;] [X][Bc]

[k = (e T (AL B oy

Se

dxdy

The work done by the external forces is calculated as:
A =[{u}' {f}ds, (19)
SS

where
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W=l v, w o of={a} [N]:{f}={0 0 q(xy) 0 o}’

Equation (19) becomes:

A={a.} [[N] {f}dxay (20)

Se

Thus, one gets:
F= ([N {F})axay (21)

The static equilibrium equation for the entire microplate is derived after
assembling the components of element matrices and vectors:

([K-J+[K™]){Q}={F) (22)
To solve equation (22), the Newton-Rapshon method is used.
3. Numerical results and discussions

3.1. Verification example

This section carries out a verification example to confirm the present theory and
mechanical model. Consider a fully simply supported square homogeneous microplate
with dimensions and material properties [16]: h = 17.6-10° m (h is unchanged),
a="b = 20h, lo = 0.2h, Young’s modulus E = 1.44 GPa, Poisson’s ratio g =0.38. The

sinusoidally distributed load is applied as follows:
a(xy) =0, sin(%x)sin[% yj (23)

in which g, can be found in the normalized force as follows:

. g,a*
=20 24
4 =g (24)
The non-dimensional maximum deflection is defined as:
3
W= 100E4h W(E,Ej (25)
g,a 2 2

The following Fig. 3 presents the comparative non-dimensional maximum
deflections between this work and Thai et al. [16]:
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Fig. 3. a) Comparative non-dimensional maximum deflections;
b) The convergence of the nondimensional maximum deflection.

It can be seen that, the numerical results of this work meet a good agreement with
those of Thai et al. [16]. Fig. 3 also shows that for the 16x16 mesh size, the result
reaches a convergent value.

3.2. Parameter study
3.2.1. Effects of variable thickness

Firstly, the effects of variable thickness on the static bending of microplates are
investigated. Consider a fully simply supported square homogeneous microplate with
dimensions and material properties as shown in the verification example above. The
sinusoidally distributed load is applied as shown in equations (20) and (21), herein
g =100. Let ho = 17.6.10° m be the base thickness of the plate, four cases of variable

thickness are considered.

- Case 1: Unchanged; h,(x,y)=h. |- en

- Case 2: Linear variable thickness in the

x-direction; hc(x, y):ho (—i+1j_ ””””””””””””””” —1
2a
- Case 3: Linear variable thickness in both the
x- and y-directions; h(x, y):h0 (—ﬁ_ﬂﬂs) I ———
3a 15b
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- Case 4: Parabolic variable thickness in the

A N
x-direction; h(x,y)=h, XL, :l

2a®

The non-dimentional deflection responses of microplates are presented in the
following Fig. 4.
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Fig. 4. The dependence of non-dimentional deflection response (w/h, )
of the microplate on the variable thickness.

3.2.2. Effects of lengh-scale parameter

Next, the effects of lengh-scale parameter on the static respone of microplates are
examined. The microplate (case 1) in the previous subsection is considered again.
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Let the lengh-scale parameter |, change in a range from 0 to 1. The nondimensional
deflection of microplate is presented in Fig. 5 bellow.
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Fig. 5. Effects of length-scale parameter.
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The beam deflection rises as the length-scale parameter |, grows, as seen in Fig. 5.

3.2.3. Effect of external load

Finally, the effects of external load on the static bending behavior of microplates

are explored (Fig. 6). Consider a fully simply supported microplate as shown in the first

subsection. Herein, non-dimensional external load g gets the values from 0 to 100.

Fig. 6. Effect of external load.
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4. Conclusions

This paper presents the nonlinear static bending analysis of variable thickness
microplates by using the finite element method and modified couple stress. The present
theory and mathematical model are confirmed by comparing the numerical data with
those of open literatues. Some novel findings can be summed up as follows:

- The variation of the plate thickness has a significant influence on the static
response of the microplate. A plate with a symmetrical structure and a symmetrical
constainst has a symmetrical deformation. In the case of plates with variable thickness,
the position of the point with the largest deflection tends to shift to the position where
the plate has a small thickness.

- The length-scale parameter also affects the mechanical response of the plate. As
lo increases, beam deflection decreases. The reason is that the stiffness of the plate
decreases as lo increases.

- The applied external load has a great influence on the static response of the plate.
the value of the load increases, the deflection of the plate increases. When the load is
small, there is no big difference between the displacements in the linear and nonlinear
cases. However, as the load increases, this difference increases greatly.

The computed data can be used as a good reference in the use and design of these
types of structures in engineering practice.
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PHAN TIiCH PHI TUYEN UON TINH CUA TAM MICRO
CO CHIEU DAY THAY DOI SU DUNG PHUONG PHAP PHAN TU
HUU HAN VA LY THUYET CAP UNG SUAT CAI TIEN

Nguyén Thi CAm Nhung, L& Minh Hoang, Tran Vin K&,
Nguyén Thi Dung, Phung Viin Minh

Tém tit: Bai béo trinh bay phan tich phi tuyén uén tinh cia tam micro c¢é chiéu day thay
doi sir dung Iy thuyét phan tie hitu han va cdp g sudt cdi tién. Ly thuyét va mé hinh todn hoc
duoc kh(fng dinh bdng cach so sanh két qua $6 Vi cdc tai lidu chinh xdc da dwoc cong bé.
Nghién cieu tham sé dwoc tién hanh dé danh gid cdc ddc tinh co hoc ciia két cau, ddc biét la dnh
hwong ciia tinh phi tuyén. Két qua tinh todn ciia bai bdo c6 thé dwoc tham khao khi tinh todn,
thiét ké cac dang két cau kich ¢& micro trong thue té kyf thudt.

Tir khoa: Phi tuyén; tdm kich thudc micro; 1y thuyét cip ung suat cai tién; ubn tinh;
chiéu day thay doi.
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