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Abstract

This paper introduces some traditional and modern cutting parameters optimization (CPO)
methods, specifically applied for the Ti-6Al-4V alloy, the most common material in the
Ti-alloys, that also belong to the group of typically difficult-to-machine materials. The
single and multi-objective optimization models have been mathematically rigorously built,
using the reliable experimental data set according to the full factorial model. Five
optimization methods were used for comparison. They give quite similar and realistic
solutions. The average value of the calculated results only deviates (0.2 + 2.3)% from the
confirmation test. In the case study, the economic benefit from optimization is significant,
the machining cost is only 56% of the average value of the experimental options; the cost
for cutting tools accounting for about (17 + 45)%, which cannot be ignored as in the case of
conventional structural steel. Similar results can be predicted for the materials in the same
group, such as stainless steel, Ni, or Co-based alloys.
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1. Introduction

Ti-alloys have many excellent mechanical, physical, and chemical properties. They
are still difficult to replace in many industries, such as aerospace, automobile, food,
chemical, medicine, etc. [1]. However, Ti-alloys are well known as difficult-to-machined
materials because of their high strength, high toughness, strong chemical activity, strong
adhesion, poor thermal conductivity, causing high cutting force, high energy
consumption, high temperature in the cutting zone, poor surface roughness, and extremely
fast tool wear [2]. For machining such difficult-to-machine materials, where it is difficult
to determine what is a reasonable technology regime, CPO is increasingly urgent.

Unfortunately, few optimization models satisfy both mathematical rigor and
practical application. Reviewing published works on CPO we can see two opposing
trends. Traditional optimization models are more mathematically complete, mostly
multi-variable models (usually cutting speed, feed rate, and depth of cut), using
economic or productivity objective function (OF) with constraints [3]. In contrast, all
the "new" models use a simple OF, without constraints [4].
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Looking beyond the wider scope of the literature, we can see a similar picture. In
many studies, models without constraints are also encountered, with an OF of
material removal rate [5], surface roughness [6-8], or cutting force [9]. About OF, the
model in [10] takes into account multiple objectives (maximum tool life, minimum
cutting force, and minimum roughness) but they were separated into single-objective
problems. A few authors choose more complete models, using an OF of total machining
cost or total machining time with constraints on surface roughness, cutting force, and
cutting power, but described them rather faintly [11, 12]. The model in [13], has up to 3
OF: highest productivity, lowest machining cost, minimum surface roughness with the
constraints of the spindle power, and cutting force but it was converted back to the
single-objective optimization problem using the weighted sum as the only OF.

The choice of the CPO model depends on the research purpose and actual
conditions of the authors, it is difficult to judge it is right or wrong, good or
bad. However, there are a few comments as follows:

- Manufacturers often have to trade-off between three conflicting requirements of
the machining process: productivity, quality, and cost. They usually try to achieve the
highest productivity, lowest cost but just satisfactory quality. Accordingly, the
optimization objective may be the lowest machining cost, and/or the highest machining
productivity, but should not be a quality criterion. In other words, the quality criteria such
as surface roughness, dimension accuracy, etc. should be constraints rather than OFs.

- Constraints ensure that the optimization results are suitable for practice. Surface
roughness, allowable deformation of parts, cutting force, tool life,... are factors that
ensure product quality or the normal operation of the system. But if many constraints
are considered, the problem will be quite complicated. It may be the reason why many
authors prefer CPO models without constraint.

- The choice of problem solving method depends first of all on the model. For
simple models with no constraints, simple methods, such as Taguchi, RSM can be used
[7-9]. Complicated models with constraints require more "professional™ tools. Traditional
methods including the class of mathematical programming usually give stable, accurate
results but are algorithmically complicated. They are gradually being combined with or
replaced by heuristic methods that are based on evolutionary computing and artificial
intelligence. The most commonly used methods of this type are GA [7, 9], particle
swarm optimization (PSO) [5, 6, 10], etc. They are quite simple and easy to implement
even with complicated, nonlinear problems.

To fully reflect the economic and technical aspects of the CPO problem, in this
paper we introduce the models for optimization of the cutting parameters with the OF of
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total machining cost and total machining time, taking into account the technological
factors as the basic constraints: cutting force, spindle power, surface roughness, tool
life, and boundary conditions. The model will be established for the turning process of
the Ti-6Al-4V alloy. Such a complicated CPO model is verified by different solution
methods, both the traditional and the modern ones. The article will present in turn, from
setting up the problem, applying algorithms and solving methods, and finally, analyzing
the results.

2. Setting up the problem
As the general optimization problem, the CPO one is stated as follows:
Minimizing the OF (a) subject to (b) in (1):
y:[yl(x)...yz(x)]T — min (@)
9=[9:00--9, (9] <0
) ={h=[hx)..h, (9] =0 (b)

Xmin S X< X o

min —

@)

where X = [X1 ... Xi ... Xn]" is the vector of input variables,y = [y1... yj...y:]" is the
objective vector representing optimization criteria; in (b) are the mz vectors representing
the constraints of the inequality form and m; vectors for the equality, and the boundary
conditions respectively.

2.1. Objective functions
In the CPO models, the OFs should be the machining productivity (highest) and/or
the machining cost (lowest).

2.1.1. Objective function of highest machining productivity

The highest machining productivity is usually represented by minimum operation
time. That is the time required to machine one workpiece at the given operation.

T =Ty +T, + T +TLk—>min 2
n

where To, Tph, Tmd, Tck are basic time, auxiliary time, tool sharpening time, time for
preparation and end of machining series respectively, n is the number of the machined
workpiece in a series. Since Tph and Tek do not depend on the cutting parameters, they
can be ignored in this case. Then (2) becomes

T Vo, ot .
T.=T,+T., =TO+?°tmd =E(1+?“)—>m|n (3)
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where tmg (min) is the time for one tool sharpening, T (min) is tool life, V (cm®) is the
volume of material removed from the workpiece, Z = vsa (cm®min) is the material
removal rate (MRR).

Instead of Tne, it is common to use the machining time per unit of volume of
material removed from the workpiece

Toe _ 1+tLd — min 4)
vV Z ZT

Tool life is calculated using Taylor's formula
T — CTthSntakt (5)

where Cr is coefficient; v (m/min), s (mm/rev) and a (mm) are cutting speed, feed rate,
and depth of cut respectively; mt, nt, kt are their corresponding exponents.

This formula is valid only when the exponents are negative, and usually |mt| >>
| nt| > |kt|, thus the effect of s and a can be ignored.

Substituting (5) into (4) and notice that Z = vsa, we get the OF

T 1 t
nc — md H
N + mt+1 nt+1 4 kt+1 —Mmin (6)

vV vsa C,v's"ra

2.1.2. Objective function of lowest machining cost
Machining cost is the one required to perform the operation, expressed in
monetary units, in this case, is thousand VND (written as “10° VND”).

K = K+ Kg + Kma (L0°VND) (7
where Kmis the cost of the machine operation, including the machine tool related to cost
and the salary of the machinist

K, =AT, = ﬂ,

Z

where A is the cost for one minute of the machine operation (103VND/min).

The cost of tool buying for the whole operation, Kd s calculated as follows:
BT _gh_BV

z T T ZzT

where z is the number of sharpening during the entire cycle life of the tool, B, (103VND)
is the cost of buying tool, B=B:/z is the average tool buying cost per sharpening;

The cost of tool sharpening for the whole operation, Kmd is calculated as follows:

AT, AV, oV

md tmd =
T ZT ZT
where tmd (Min) and C = A.tmd are the time and the cost for one sharpening respectively.
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Substitute the components Km, Kg, Kmd into (7), we get the OF
AV BV CV

K= + +
Z ZT ZT

— min (8)

Since B and C are both constants and have the same dimension, they can be lumped
together into the constant C4 =B + C = B + A.tmg, CoOllectively called the tool cost, to
obtain the OF in a simpler form:

K:ﬂ+CLV—>min 9)
Zz 7T

It is also common to use the standard of the machining cost of 1cm®materials

E=é+&—>min (10)
vV zZ 7T
Substituting the tool life from (5) into (10) we get the final OF
K 1 C,/ A :
v ™A ) M -

From (6) and (11) we can see that the OFs have 2 components. The first is the
basic one which is related only to Z. The second is related to the T. If only the first
component is taken into account, the model is very simple but incomplete, leading to
erroneous results, especially when cutting difficult-to-machined materials, the tool is
expensive, and when the tools wear quickly. It is also obvious that the first components
of the OFs (6) and (11) differ only in the constant A, so if we ignore tool wear, the
productivity problem and the economic problem are the same. If we ignore the
constraints again as mentioned in many works in section 1, we can easy to see that the
optimal value of v, s, a will coincide with their upper bound (Vmax, Smax, @max). In other
words, if the tool wear and the constraints are not taken into account, the scientific and
practical significance of the CPO problem will be very low. Conversely, if the above
factors are fully calculated, the problem will be difficult to solve, so many authors
erroneously avoid them.

The OFs (6) and (11) can be used directly in nonlinear models, but they are
difficult to solve with traditional methods. With the linear model, their sum form is an
obstacle to logarithmic linearization. The way to overcome this one is converting them
into a product.

According to (4) and (10) both OFs depend on the tool life, T. If T is constant, then
the optimal criteria Tne/V—min and K/V—min have the same form as the criterion

Z—max or 1/Z — min. The value of T giving the highest productivity is called the
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productive tool life Tns. The one giving the lowest cost is called the economic tool
life Te. In the following, we will see that Tns and Te are both constant, independent of
cutting parameters, and can be calculated independently before solving the CPO problem.

To calculate the productive tool life Tns, we take the derivative of both sides of (6)
concerning v (ignoring the weak influence of s and a) and solve the equation with the
right side equal to zero, getting the formula

Tns =ty (mt+1) (12)
Thus Tns is proportional to the sharpening time and depends on the exponent of vin
Taylor’s formula.

Same with (11) we get the formula for economic tool life
_ .G
T, = -K(mt+1) (13)

Note that the formulas for Tnsand Teare valid only when mt < -1.
Substituting Tns from (12) into (4) and Te from (13) into (10), we get the OFs:
- Minimum total machining time (maximum productivity)

Te o igaty & i (14)
v z7 T, Z

- Minimum total machining cost
5=1(A+&)=i—>min (15)
vV Z T z

e

The OFs (14) and (15) are equivalent to (4) and (10) respectively, but (14), (15)
have product form, which can be taken logarithmic to form a linear function.

2.2. Constraints and boundary conditions

Constraints ensure that the machining process meets technical requirements,
ensuring the model is realistic. In metal cutting theory, relationships between output
quantities and the cutting parameters are usually expressed in exponential form. The
following are common constraints. By meaning, they are classified into 3 groups.

2.2.1. The group describing the technical conditions
- The constraint that the surface roughness does not exceed the allowable limit:
R, =Rv™s"a“ <R __ (16)

- The constraints on size and shape errors, if any, have similar forms.
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2.2.2. The group ensuring the normal working conditions of the system
- The constraint that the cutting force does not exceed the allowable threshold:
F=Fv"s"a“ <F_, 17)

This condition ensures that there is no excessive deformation of the workpiece,
the safety of the system, etc. In the same type, there are constraints on workpiece
deformation, vibration, cutting zone temperature, and so on.

- Constraints that the tool life is equal to the productive tool life (Tns) or the
economic one (Te) used in the OF (14) or (15) as the linear models:

T in(14
T=Cv"s"a" =4 "™ !n( ) (18)
T, in(15)
2.2.3. The group depending on the features of the technological system
- The condition cutting power does not exceed the spindle motor power (Pm):
Fl (mf +1) onf . kf
=—2L1 _ymogNad <p 19
60.1000 ' (19)

- The range of cutting speed, feed rate, depth of cut, called boundary conditions:
VminS \" S Vmax; SminS S S Smax; amins a S amax (20)
3. Problem solution methods

The CPO problems in section 2 are traditional ones. Since the forms of the
productivity problem and the cost problem are similar, only the cost problem is solved
as the case study, using the OF (11).

3.1. Experimental model

The experimental study is based on the Design of Experiment (DoE) model with 3
factors (v, s, a) and 3 levels, whose values are selected in accordance with the pair of the
workpiece and tool materials, that is Ti-6Al-4V alloy — BK6 in Tab. 1.

Tab. 1. Factors and their levels

B Levels (L = 3)
Factor (k= 3) Level 1 | Level2 | Level3
v (m/min) 20 35 50
s (mm/rev) 0.10 0.20 0.30
a (mm) 0.50 1.00 1.50

The experiment conditions are as follows: CNC lathe EMCO-E25 with spindle
power 5.5 kW, maximum spindle speed 6300 rev/min, maximum spindle torque 35 Nm.
Workpiece material is Ti-6Al-4V alloy, size DXL = 50x300 (mm). The tool nose
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material is BK6. The measured parameters include the cutting force F by the Kistler’s
(Switzerland) 3-component force sensor 9257BA, the surface roughness Ra by the
Mitutoyo’s (Japan) roughness tester SJ-201. The tool life T is defined as the continuous
cutting time from the moment the tool is newly sharpened until the height of the flank
wear reaches h = 0.3 mm. Carrying out 27 experiments according to the full factorial
design Loz, we get the experimental data in Tab. 2.

Tab. 2. Experimental data

. Coded variables | Cutting Conditions Measurement data
Experiments KV
v S T v S t F Ra T
1 -1 ] -11]- |20 010 | 050 | 183.11 | 0.69 | 1110.91 | 2.532
2 -1 -1 ] 0 |20 010 | 1.00 | 246.69 | 0.75 | 438.83 | 1.290
3 1] -1 1 | 20| 010 | 1.50 | 293.68 | 0.79 | 254.88 | 0.879
4 -1 ] 0 | -1 |20 020 | 050 | 287.33 |1.88 | 308.16 | 1.307
5 110 0 |20 ) 020 | 1.00 | 387.10 | 2.05 | 121.73 | 0.697
6 1] 0 1 | 20| 020 | 1.50 | 460.84 | 2.16 70.70 | 0.499
7 -1 1 | -1]20] 030 | 050 | 373.98 |3.38| 145.55| 0.913
8 -1 1 0 | 20] 030 | 1.00 | 503.83 | 3.70 57.49 | 0.518
9 -1 1 20 | 0.30 | 1.50 | 599.80 | 3.90 33.39 | 0.394
10 0 | -1]-1]35]010| 050 | 311.60 | 0.88 | 281.99 | 1.499
11 0 | -1 ] 0 |35] 010 1.00 | 419.80 | 0.97 | 111.39 | 0.804
12 0 | -1 1 | 35| 010 | 1.50 | 499.76 | 1.02 64.70 | 0.579
13 0 0 | -1 |35 020 | 050 | 488.96 | 2.41 78.22 | 0.842
14 0 0 0 | 35| 020 | 1.00 | 658.74 | 2.64 30.90 | 0.519
15 0 0 1 | 35| 020 | 150 | 784.21 | 2.78 17.95 | 0.424
16 0 1 | -1 |35 030 | 050 | 636.40 | 4.34 36.95 | 0.657
17 0 1 0 | 35]030 | 1.00 | 857.38 |4.75 14.59 | 0.466
18 0 1 35 | 0.30 | 1.50 | 1020.69 | 5.01 8.48 | 0.421
19 1 |-1]-11|50)| 010 | 050 | 437.28 | 1.04 | 117.69 | 1.119
20 1 ]-1] 0 |50 010 | 1.00 | 589.12 | 1.13 46.49 | 0.651
21 1| -1 1 |50 | 010 | 150 | 701.33 | 1.20 27.00 | 0.506
22 1 0 | -1 |50 020 | 0.50 | 686.16 | 2.83 32.65 | 0.714
23 1 0 0 | 50| 020 | 1.00 | 924.42 | 3.10 12.90 | 0.521
24 1 0 1 |50 | 0.20 | 1.50 | 1100.50 | 3.27 7.49 | 0.478
25 1 1 | -1 |50 030 | 050 | 893.07 | 5.10 15.42 | 0.636
26 1 1 0 | 50| 030 | 1.00 | 1203.18 | 5.58 6.09 | 0.550
27 1 1 50 | 0.30 | 1.50 | 1432.35 | 5.88 3.54 | 0.551

Average KIV  0.777
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The limit values of the parameters are as follows: cutting force
Fmax= 800 N, spindle power Pmax = 5.5 kW, surface roughness Rmax = 2.5 um, the ranges of
cutting parameters are: v = [20 +50] m/min, s = [0.10 + 0.30] mm/rev, a = [0.5 + 1.50] mm.
From reality, these constants have been determined: Ca = 35 (10°VND),
A = 2.5 (10°VND /min).

Using the linear regression method, the empirical relationships are determined:

F — 64V0.9550.65a0.43 (21)

Ra — 5.5\/0.4531.45&0.13 (22)

T — 9546V—2.45371.85a71.34 (23)
From (19) and (21), we get

P =0.0013v**s%%%* (24)

Substituting all relations (21), (22), (24) and limiting values (20) into (1), we get
the nonlinear single objective CPO (NS-CPO) model as follows:
2.5 35
y= + - . =
v.s.a 9546V( 2.45+1)S( 1.85+1)a( 1.34+1)

— min @)

64V0.9580.65a0.43 < 800
0.0013v**s**a** <55
0.45.1.45,0.13 (25)
5.5v""s™a <25
f(x)= (b)
20<v<50
0.1>s<0.3
0.5<a<15

As known, the OF (a) in (25) consists of two components: the direct machining
cost and the tool cost. The influence of the cutting parameters on each one is the
opposite. In rough machining (productivity Z = v.s.a is high), the first component
decreases while the second one increases (due to rapid tool wear). In finishing, the
opposite trend happens. The investigation of these trends allows the manufacturer to
choose a suitable machining plan. In this case, each cost component is examined as an
independent OF, thus obtaining a nonlinear multi-objective CPO (NM-CPO) model
with the same constraint system (b) in (25), only the OF (a) is decoupled into y; and yo:

25
hi=Vsa (26)
35

Y, = - - _
2 9546V( 2A45+1)S( 1.85+1)a( 1.34+1)
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For the linear model, from (13) and (15) we get Te = 20.3 min, Azs= 4.22
(10°VND), and OF (27) respectively:

y=——-—min (27)

Substituting Te into (18), we get the constraint of economic tool life as follows:
9546V 2*s a1 =20.3 (28)
Finally, substituting (27) into (a) and adding (28) into (b) of (25), then taking the
logarithm of the obtained equations and setting x, = In(v), x> = In(s), Xs = In(t), we get the
linear single objective CPO (LS-CPO) model as follows:
y=144 -x, -X, -X; — min (a)
4.16+0.95x, +0.65x, +0.43x, <6.68
—6.62+1.95x, +0.65x, +0.43x, <1.70
1.70+0.45x, +1.45x, +0.13x, <0.92
f(x)=49.16—2.45x, —1.45x, -1.34x, =3.01 (b)
3.0<x <391
-2.3<x,<-1.20
-0.69<x,<041
Similarly, we get the linear multi-objective (LM-CPQO) model with the same
constraints as in (29), and the OFs are obtained by taking the logarithm (26) as follows:

y, =0.92-x - X, — X, (30)
Yy, =—5.61+1.45x, +0.85x, +0.34x,

(29)

3.2. Solving the CPO problem

In this section, the CPO problem will be solved by using two different methods: by
Excel’s Solver, and GA in Matlab. There are 8 model-method combinations, but based on
the capacity of the software, only five of them are implemented, as shown in Tab. 3.

Tab. 3. CPO problem-solving methods

Models Linear (L) Non-linear (N)
Methods Single obj. (S) Multi-obj. (M) Single obj. (S) Multi-obj. (M)
Solver - Excel LS-Solver - - -
GA - Matlab LS-GA LM-GA NS- GA NM-GA

The following summarizes the steps to solve the problem according to the above
methods. The results will be compared to evaluate the performance of each method and
the effectiveness of the CPO. Detailed information on methods can be found in [14].
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3.2.1. Solving LS-CPO problem using Simplex LP method

Linear programming (LP) is a classic optimization model based on linear
algebra. It is usually solved by the so-called “Simplex LP” method, which is
supported by most of the computing platforms, from Microsoft’s Excel to specialized
technical software, such as Matlab. To increase the visibility for readers, this paper
introduces Excel's Solver.

For the LS-CPO problem, the model (29) is imported into Excel’s spreadsheet
asin Tab. 4: the OF is in array L50:050; initially, x1, X2, x3(M50:050) are assigned
arbitrarily, for example with [1 1 1], which will be updated during solution. The
constraints and boundary conditions are in L40:049 and their limit values in Q40:Q49.

Tab. 4. LP problem solving with Excel's Solver

J K L M N O P Q R S
39 Constraints Yo X1 Xo X3 y Limit value Opt. value
40| F<=Fpa N 416/ 095 065 043 6.62] 6.68 800.00] 751.48
41 P<=P, kW -6.62| 1.95 0.65 0.43| -0.59 1.70 5.50 0.55
42| R,;<= R pm 1.70| 045 145 013 092 092| 2.50 2.50
43| V<=V | mmin 1 356| 3.91| 5000 3526
44 S <= Smax mm/rev 1 -1.69] -1.20 0.30 0.19
45| a<=amy mm 1| 041 041 150 1.50
46| v>=vy, | m/min 1 356| 3.00] 2000 3526
47 S >= Spin mm/rev 1 -1.69] -2.30 0.10 0.19
48 a>= anin mm 1 041 -0.69 0.50 1.50
49 T=T, min 9.16| -2.45| -1.85| -1.34 3.01 3.01] 20.30 20.30
50 Objective function 1.44] 356] -1.69 041 -0.84| KIV= 04310
51| Confirmation test with v S a Z A/Z | CyZT | K/V pin
52 | the optimal parameters 35.26| 0.19 1.50 9.800 | 0.255 | 0.176 0.431
53 Cutting cost A (10°VND) 25 Tool cost Cd (10°VND) 35.0 |Te(Tns)| 20.30

Follow the instructions on the software interface, then press the "Solve" command,
the array M50:050 will be updated with the optimal values: x; = 3.56, xo = -1.69,
x3 = 0.41, corresponding to v = 35.26 m/min, s = 0.19 mm/rev, a = 1.5 mm. The OF
value is -0.84, corresponding to the lowest machining cost K/V = exp(-0.84) = 0.431
(10°VND/cm?), which equals only 56% in comparison to the average value of all the
experimental ones.
3.2.2. Solving LS-CPO problem using GA

Genetic algorithm is a branch of evolution computing. The theory of GA was first
published in 1975 by Holland, inspired by the laws of nature "Survival of the
Fittest". The laws of evolution in nature are inherited and simulated by GA as follows:
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1- The living environment is always changing. In order to survive and thrive, beings

must constantly adapt;

2- The well-adapted individuals will survive, while the less-adapted ones will be
eliminated or not selected to continue the lineage;

3- Characteristics of the best
individuals will be passed on to the
offspring. Selection and inheritance for
the next generation is continued in
loops, making the next generations have
better characteristics than their parent;

4-  Sometimes mutations
occur, making the evolution faster.

The essence of the above selection
and inheritance process is optimization,
called the Genetic Algorithm (GA),
which is depicted in Fig. 1.

can

New population

| Generate initial population |

_.|

No Best individual

Result output

Evaluate fitness |

Fig. 1. Optimization with GA.

In this section, GA is used to solve the same LS-CPO problem with the model (29)
A program is written in Matlab with the number of populations (PopulationSize: 40), and
the number of generations being 40 (Generations: 40).

Best: -0.842066 Mean: -0.842017

©
3

a:) « Bestfitness
§_0_75 . *  Mean fitness
2]
3
< -0.8
LL—0.85 R N R O PP
0 5 10 15 20 25 30 35
Generation

S Current Best Individual

S 4r

=

el

£ 2+

?

1}

Q0

€

e, ‘ ‘ ‘

a3 1 2 3

Stop | [Pause Number of variables (3)

= OPTIMAL CUTTING PARAMETERS BY LINEAR GA =
Cutting speed ;v =35.07 (m/min)
Feed rate :5$=0.19 (mm/rev)

Depth of cut :a=1.50 (mm)
Cutting productivity  :Z=9.99 (cm”3/min)
Surface roughness : Ra =2.50 (um)
Cutting force :F=751.21 (N)
Spindle motor power :P =0.55 (kW)

Tool life : T=20.28 (min)

Economic tool life
Direct cutting costs
Tool costs

Total machining costs
Calculation time

: Te = 20.30 (min)

: K1 =0.255 (103VND/cm3)
: K2 =0.176 (103VND/cm?3)
: K/V=0.431 (103VND/cm3)
11=3.107 (s)

Fig. 2. Results of the CPO with linear GA.

The progression of the CPO is shown in the upper-left of Fig. 2 whereby after about

10 generations the OF has reached the optimal value of -0.84, which approximates the

smallest value of In(K/Z), ie. K/Zmn = 0.431.The lower-left graph shows the optimal

parameters: x; = 3.56, X2 = -1.69, x3 = 0.41, corresponding to v = 35.07 m/min, s = 0.19 mm/rev,
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a = 1.5 mm. This result is also printed on the computer screen like the right part of
the figure.

3.2.3. Solving NS-CPO problem using GA

For the NS-CPO problem, the model (25) is used. The solving process is shown in the
upper-left part of Fig. 3. Similarly, the lower-left part plot and onscreen information show
the optimal cutting parameters: v =35.26 m/min,s =0.19 mm/rev, a = 1.5 mm
corresponding to the minimum cost K/V = 0.431 (10° VND/cm?®). We can see that the
non-linear GA shows a similar result as linear, but the computing time is longer.

Best: 0.429744 Mean: 0.430622 OPTIMAL CUTTING PARAMETERS BY N-LINEAR GA
0.8 . o )
o Best fithess Cutting speed :v =35.26 (m/min)
IS Mean fitness Feed rate :5$=0.19 (mm/rev)
a 0.6 Depth of cut :a=1.50 (mm)
é Cutting productivity  :Z=9.800 (cm3/min)
0.4 5 ; ; ; : : : ; Surface roughness :Ra =2.50 (um)
0 5 015 200 253035 40 Cytting force . F=751.48 (N)
Generation . o
E Current Best Individual Spindle motor power :P =0.55 (kW)
230 Tool life : T=20.30 (min)
2 % Economic tool life : Te = 20.30 (min)
3 Direct cutting costs ~ : K1 =0.255 (103VND/cm3)
=1 Tool costs : K2 =0.176 (103VND/cm3)
2, ‘ Total machining costs : K/V=0.431 (103VND/cm3)
3
o 1 2 3 Calculation time 11=4.684 (s)
Stop | | Pause Number of variables (3)

Fig. 3. Results of the CPO with non-linear GA.

3.2.4. Solving LM-CPO problem using GA

Multi-objective optimization Multi-Objective CPO by Linear-GA

presents a set of options, allowing 02 o

the user to choose the most ”g 0.18 o

suitable one in his particular g O_OY:‘”G”

production context. For the LM- o o o

CPO problem, the model (29), in = o4 %o

which (30) is used as the OFs. 2’” - %

Using GA, a Pareto solution setis & Oooo

represented in Fig. 4. Thereare 21 & o1/ °5

options are  shown, each 008 ‘ ‘ ‘ °q
corresponding to a point on the 0.2 0-25 03 0.35 04 0.45

. Cutting Cost A/Z (103 VND/cm3)
graph. The coordinate axes

represent the two objective
functions respectively.

Fig. 4. Pareto set in multi-objective CPO.
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Their values are directly exported to an Excel spreadsheet as in Tab. 5 with some
rows hidden for compactness.

Tab. 5. Linear Multi-objective CPO results with GA

vim/min)|smmjrev)| amm) | Az [C/AZ| KV | Zmm) [ Tmin [ Raum) | B | Pacw) [Ko/K(9)
35.52 0.18 1.49 | 0.265 | 0.171 | 0.437 | 9.420 | 21.613 | 2.345 [735.542| 0.544 | 39.22
22.91 0.20 1.49 | 0.367 | 0.100 | 0.467 | 6.809 | 51.232 | 2.274 [522.337| 0.249 | 21.40
38.28 0.18 150 | 0.241 | 0.194 | 0.435 | 10.376 | 17.293 | 2.498 |800.765| 0.639 | 44.64
27.71 0.19 149 | 0321 | 0.126 | 0.446 | 7.797 | 35.586 | 2.286 |603.821| 0.349 | 28.16
30.37 0.19 1.49 | 0.286 | 0.146 | 0.432 | 8.740 | 27.263 | 2.463 [668.518| 0.423 | 33.84
33.18 0.19 1.49 | 0.269 | 0.163 | 0.431 | 9.310 | 23.011 | 2.468 |715.154| 0.494 | 37.74
32.44 0.18 149 | 0.282 | 0.154 | 0.436 | 8.853 | 25.607 | 2.345 |687.401| 0.465 | 35.26
19 21.59 0.19 149 | 0.403 | 0.089 | 0.492 | 6.203 | 63.156 | 2.103 |482.702| 0.217 | 18.09
20 28.49 0.19 149 | 0.315 | 0.130 | 0.445 | 7.925 | 33.957 | 2.278 |615.367| 0.365 | 29.11
21 20.19 0.20 149 | 0.417 | 0.083 | 0.500 | 6.001 | 69.837 | 2.149 |463.201| 0.195 | 16.65

| |
o |Qfa|B|w (N[22

The upper-left point on the graph and row 3 in the table represent the minimum
cutting cost (A/Z), corresponding to maximum tool cost (C4/AZ), highest productivity
(2), shortest tool life (T), maximum cutting force (F) and maximum power consumption
(P). In contrast, the lower-right point on the graph and row 21 in the table show the
opposite situation. The overall optimal solution is the one with the lowest total cost
(K/V) in row 17 of the table and the black square on the graph. This trade-off the cutting
and tool costs, and uses resources (reflected in constraints and boundary conditions)
harmoniously. In addition to the three special options mentioned above, the user can
choose any option according to his/her preference, such as cutting productivity, surface
roughness, or tool life.

3.2.5. Solving NM-CPO problem using GA

Similarly, for the NM-CPO problem, a model (25) with the OF replaced by (26) is
used. The Pareto set of solutions is summarized in Tab. 6. As shown in the table, the
overall optimal solution is the one with the lowest total cost (K/V) in row 17.

Tab. 6. Non-linear Multi-objective CPO results with GA

v(m/min)|s(mm/rev)| amm)| A/Z |C/AZ| KN |Zmm’)| T(min) | R(um)| FON) | PW)
2355 | 0.8 | 1.40 | 0.415 | 0.094 | 0510 | 6.020 | 61.595 | 2.015 [492.134| 0.241
3872 | 018 | 1.47 | 0.244 | 0.195 | 0.440 | 10.234 | 17.506 | 2.499 |798.992] 0.644
2357 | 019 | 1.41 | 0402 | 0097 | 0499 | 6.214 | 58.265 | 2.088 [501.744] 0.246
3459 | 018 | 1.47 | 0.271 | 0.167 | 0.438 | 9.212 | 22.780 | 2.395 |721.046] 0.520
3803 | 018 | 1.44 | 0.252 | 0.190 | 0.442 | 9.926 | 18.533 | 2.499 |782.550] 0.620
15 | 2598 | 019 | 1.49 | 0339 | 0.116 | 0.455 | 7.376 | 41.046 | 2.276 [571.250| 0.309
16 | 26.04 | 019 | 1.43 | 0.354 | 0.114 | 0468 | 7.060 | 43.551 | 2.246 [560.506]| 0.304
17 | 2985 | 019 | 1.49 | 0202 | 0.143 | 0.435 | 8565 | 28.644 | 2.460 |656.283| 0.408
18 | 3682 | 018 | 147 | 0259 [0.180 | 0.440 | 9,637 | 20.158 | 2.410 [756.974] 0.581
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4. Summary and discussion on the results

Tab. 7 synthesizes the results of the 5 different methods. It can be seen that the
first three, i.e. the single-objective models give the closest results, fully satisfying the
requirements on Ra= Ramax= 2.5 um, the tool life is approximately the economic value
T ~ Te = 20.30 minutes. The minimum machining cost is K/V = 0.431 (103VND). The
results of the two multi-objective models are slightly different from the others. The
deviations arise from two main sources. Firstly, GA is an approximation method that
only guarantees a near-optimal solution. Secondly, the Pareto solution sets are discrete,
the truly optimal solutions may not coincide with the output points. In return, users can
flexibly choose a certain solution from the Pareto set, although this solution may not be
optimal, but suitable for their requirements.

Tab. 7. Summary of the results with different methods

Method | v(m/min) | s(mm/rev)| a(mm) Z T Ra Alz | Cd/ZT KN
LS-Solver | 35.26 0.19 150 | 9.80 | 20.30 | 250 | 0.255 | 0.176 | 0.431
LS-GA 35.07 0.19 150 | 9.99 | 20.28 | 250 | 0.255 | 0.176 | 0.431
NS-GA 35.26 0.19 150 | 9.80 | 20.30 | 250 | 0.255 | 0.176 | 0.431
LM-GA 33.18 0.19 149 | 931 | 23.01 | 247 | 0.269 | 0.163 | 0.431
NM-GA | 29.85 0.19 149 | 857 | 2864 | 246 | 0.292 | 0.143 | 0.435

Average (A) 9.86 | 20.29 | 250 | 0.255 | 0.176 | 0.431
Confirm. (B) | 35.20 0.19 150 | 10.03 | 20.25 | 255 [ 0.249 | 0.172 | 0.422
|A-BJ/A (%) 1.7% | 02% | 2.0% | 23% | 2.1% 2.2%

The calculation results have been verified as shown in the last 3 rows of Tab. 7.
Firstly, assuming that the first 3 methods are the most accurate, the average of the
calculated criteria from only 3 top rows is taken. Next, do 3 confirmation tests with the
same optimal cutting parameters, measure the quantities T and Ra, calculate the
remaining quantities following (21) to (24), and then also take the average. Finally,
calculate the error between the actual values and the calculated ones. We can see, the
maximum error is 2.3%, which is acceptable.

From the multi-objective CPO data in Tab. 5, in addition to the value of the total
machining cost, it is possible to evaluate the portion of the components.
Column Kz/K records the percentage of the tool cost (Cq/ZT) in the total cost (K/V),
which is the smallest (16.65%) in the lightest cutting option (maximum tool life), and
the largest (44.64%) in the heaviest cutting option (minimum tool life). With the
optimal parameters, this percentage is 37.74%. Obviously, with this distribution of tool
cost, it cannot be ignored in any situation.
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5. Conclusions

- By taking into account tool wear and tool life, and considering practical
constraints, the CPO problems are acceptable in both mathematics and practical
applications despite the complexity of models and solutions.

- This paper presents 3 models and 5 solving methods to compare their
capabilities and results. The LS model is simple, gives accurate and reliable results but
requires many manual processing steps, while the NS, LM and NM models give less
accurate results but are more flexible in practical applications.

The above CPO models and their solutions have been applied to Ti-6Al-4V
Titanium alloy, a typical difficult-to-machine material. The results show that:

- The economic benefits of CPO are significant: the machining cost with optimal
cutting parameters equals only 56% in comparison to the average of the values under
non-optimal cutting conditions.

- The tool cost contributes significantly to the total machining cost, which is about
(17+45)%, cannot be ignored in the CPO models as in the case of conventional
materials.

Based on the static CPO problem presented above, our further research will focus
on dynamic problems to meet the needs of online monitoring and adaptive control of the
machining process.
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CAC GIAI PHAP SO SANH CHO TOI UU HOA CHE PO CAT

KHI TIEN HOP KIM TITAN Ti-6Al-4V

Pao Van Hiép

Tém tit: Bai bdo gidi thiéu mét s6 phwong phdp truyén thong va hién dai trong toi uu

héa ché dé cat, ung dung cu thé cho hop kim Ti-6Al-4V, mét trong nhitng vdt liéu thong dung

nhat trong sé cdc hop kim Ti, ciing thuéc nhém cdc vit liéu dién hinh khé gia cong. Cdc mé

hinh #6i wu héa mét muc tiéu va da muc tiéu da dwoc xdy dung mot cach chat ché vé todn hoc,

st dung bo 6 lidu thuc nghiém tin cdy theo moé hinh quy hoach thuc nghiém da yéu 16 toan

phan. Niam phirong phap t6i wu héa da dwoc sir dung dé so sanh. Ching cho oi giai khd tuwong

dong va sdt thuc té. Gid tri trung binh ciia cdc két qua tinh todn chi sai léch (0,2+2,3)% so voi

két qua thi nghiém kiém chimg. Véi truong hop nghién ciru, loi ich kinh té tir t6i wu héa la dang

ké, chi phi gia céng chi bang 56% gid tri trung binh ciia cdc phirong én thi nghiém; chi phi cho

dung cu cat chiém khodang (17+45)% la khong thé bé qua nhw voi thép két cau thong thuong.

Két qua twong tir c6 thé duw dodn & cdc vit liéu ciing nhém, nhw thép khéng gi, cdc hop kim nén
Ni hodac Co.

Tir khéa: T6i uu hoa ché do cit; giai thuat di truyén; quy hoach tuyén tinh; hop kim titan.
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