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Abstract

The paper aims to present a numerical simulation for fluid-structure interaction (FSI) of a
blood flow over the aortic valve. The finite element discretization is adopted both for fluid
and solid domains. The monolithic scheme is used for the strong coupling of fluid and
structure to satisfy kinematic and dynamic equilibrium conditions at the interface. The
Navier-Stokes equations of an incompressible flow are solved by using the integrated
method based on the ALE formula for the moving grid, and the total Lagrangian
formulation is used for the non-linear hyper-elastic material of the aortic valve with the
Mooney-Rivlin material model adopted as a constitutive equation for the solid domain. The
monolithic FEM method is validated by solving a 3D pressure wave problem and the results
are compared to the previous solutions. And then, the present method is employed to
investigate blood flow through the aortic valve with a complex geometry. The simulation
results can be used for predicting the risk of aortic valve diseases...
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1. Introduction

The aortic valve consists of three leaflets that open when the left ventricle of the
heart is in the systole phase (contraction) to push out blood to the aorta. The main
function of the aortic valve is to close and avoid backflow when the left ventricle is in a
rest state (diastole phase). Diseased valves can develop a leak and may have to be
replaced [1]. Recently, transcatheter aortic valve (TAV) implantation has been carried
out as an alternative to patients with severe aortic stenosis, who are at high risk for
surgical therapy. The biomechanical environment of TAV is closely related to the
interaction of the motion of the aorta as well as leaflets with the aortic hemodynamics of
incompressible flow. Therefore, fluid-structure interaction (FSI) simulation together
with an accurate prediction of blood flow is essential. Numerical simulations of FSI for
blood vessels such as aortic bifurcation, carotid artery, and aortic valve have received
much attention in the last several decades. An accurate simulation of the FSI problems
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plays an important part in the diagnosis and treatment of cardiovascular diseases.
However, FSI simulation of a blood flow interacting with an aortic valve remains a
challenging problem.

The main challenging problem of FSI for blood flow in the aortic valve comes
from the nonlinearity behaviour of fluid and solid domain at the interface. Moreover, the
complex geometry of the aortic valve and large deformation of the leaflets also make
the FSI problem far more complex. There are numerous studies on the FSI of the blood
flow in the aortic valve in literature. Labrosse et al. [1] used a finite element model of a
typical human aortic valve with modeling leaflets correction technique. The study aimed
to investigate the stress on the valve for the purpose of valve repairing. The FSI of
blood flow overs the aortic valve is also simulated by Yao et al. [2]. The authors
employed the immersed smoothed finite element method with partitioned FSI coupling
to investigate the characteristics of unsteady blood flow. Jeannette et al. [3] used the
unified continuum Arbitrary Lagrangian-Eulerian (ALE) FEM model to simulate a
native valve and a Bileaflet Mechanical Heart VValve in a 3D problem.

In this study, we present a FSI algorithm based on the monolithic algorithm with
the full coupling of fluid and structure domain, and the system of FEM discretization is
solved simultaneously in one matrix. The rest of the paper is organized as follows: Part
2 gives a brief description of the governing equation of fluid and structure and
corresponding FEM formula for the monolithic FSI problem. Part 3 details the
numerical solution of a benchmark problem and the aortic valve simulation. Lastly,
some conclusions are drawn in Part 4.

2. Numerical methods

2.1. Governing equations

The blood flow in the vessel wall is assumed as an incompressible flow of a
Newtonian fluid, and the governing equations are the incompressible Navier-Stokes
equations which can be written as follows in the arbitrary Lagrangian-Eulerian (ALE)
framework [4]:

V.v=0 in Q'

1)
pf |:2—\t/+(v_\/m)-VVj|=V'0'f in Qf

where p',v,v™"and o' denote the fluid density, the fluid velocity, the grid velocity,
and the fluid stress tensor, respectively. The body force is neglected in present work.
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Fluid domain and its boundary are denoted by Q", I'". The corresponding constitutive
equations for fluid flow in Eq. (1) are written as follows:

f —
c =-pl+r, @
T=u[Vv+ (VV)T]

where P, u, T, 1and T indicate the pressure, the fluid dynamic viscosity, the shear

stress tensor, the second-order identity tensor, and the transposition, respectively. The
boundary conditions are described as follows:

L (3)

where n' denotes the outward unit normal vector to the fluid boundary, F\';

and th are the boundaries on which the velocity (V) and traction (t') are imposed
on the Dirichlet and Neumann boundary conditions, respectively. The governing
equation for solid domain in the Lagrangian framework is written as follows:

o’u :
*—=V-c'in Q° 4
P o (4)

with boundary conditions:
v ()

where p°,uand o® denote the solid density, the displacement of solid, and the solid
stress tensor, respectively. The solid domain is denoted by Q° with a boundary T"°.
The constitutive equation of the solid domain is written as follows [5]:
o' =J'FSF'; T=SF'; S=C"E, (6)

where € denotes a fourth-order tensor representing the material behavior. T and S are
the first and second Piola-Kirchhoff stress tensor, respectively, and F and J denote the
deformation gradient tensor and its Jacobian. € can be a linear or nonlinear (Mooney-
Rivlin) model. More detailed description of the constitutive equation is described in [4].

Let T'"'® be the interface between the fluid/structure domains (F/S interface). For
non-slip condition, both the velocity and traction of fluid domain are equilibrium with
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those of the solid at the F/S interface. The two conditions are described by the
following formula:

v=a—u on I''’®
ot

()

c''n"+c°-n°=0o0nTr'"
2.2. Finite element formulation for monolithic FSI coupling

The integrated formulation in which the pressure and velocity of fluid flow are
solved simultaneously in one system is adopted in this work. The pressure/velocity
variable is linearly/quadratically interpolated in a finite element. Fig. 1 shows a P2P1
finite element for the fluid domain (tetrahedral grid), where the pressure variable is
allocated on the vertices and the velocity variables are on both vertices and mid-nodes.
Finite element formulation of the governing equation for unsteady incompressible fluid
flow is written as follows [4, 6, 7]:

(u, v, w, p)

» (1. v. w, p)
(u: 1": H"lJ p:]

(u: V. W, p:]

Fig. 1. Degrees of freedom assigned for the P2P1 finite element

Find V € Hﬁ(Q), pe Lﬁ(Q), such that

_[ qV-vdQ =0
of (8)

I{W-pf {g—\t/+(v_vm)-Vv+VW:cf}}dQ= j[w~(csf n"y]dr

for all admissible functions w €V, , q € B,, where
V, ={w|weHy(Q),w=0o0n T/}, R ={qlqge (@)}

The generalised-o. method [8] is adopted for an implicit temporal discretization, and the
Newmark approximation is employed to obtain the acceleration of fluid from velocity variables:
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. 1 1-y .
Vn+1:_ nl ]2 Vn 9
At [Vt —v"] y 9)
where V" and y denote the velocity of fluid flow at n" time-step and the coefficient of
the the generalised-a method, respectively.

In a solid domain, the displacement variable is quadratically interpolated in an
unstructured finite element. Its formulations for the solid domain are written as follows [4]:

Find U e H;(Q), such that

J[ng%JrVW:T}dQ:[[W-(T-ng)]dr (10)

Qp
for all admissible functions w €V,, where
V, ={w|weH(Q), w=0 on I'}}.
The generalized-o method is also adopted for a solid domain, and the Newmark method

- used to compute the acceleration and the displacement of solid from the velocity variable [4].

The strong coupling of fluid and structure equations is accomplished based on the
ALE framework in present work. For the monolithic algorithm, velocity variables are
shared at the fluid-structure interface so that the kinematic constraint is satisfied
automatically by sharing the velocity field at the interface. Summation of fluid and
structure equations at the interface cancel out the stress terms of both sides, satisfying
the equilibrium constraint. Therefore, the system of FEM discretization for the
monolithic coupling FSI problem is shown as follows:

[G IV +[H ](p")+[Gs]v° =P +P°,
[H' T (v)=0
Or in the matric form:

Lff HOM_[P 0 Ps} "

where V denotes velocity filed for both fluid and solid domain, and G is general

(11)

stiffness calculated for the whole simulation; G and H'are the stiffness matrices of
velocity and pressure variables of fluid flow are constructed by FEM descretization,

respectively. (The details of these matrices and force vectors P, P°* are discussed in
[6, 7]). In the monolithic approach, the velocity variables of both fluid and solid domain
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as well as the pressure of fluid flow are obtained together by solving the system (12) in
each time-step.

2.3. Flow characteristics calculation

In order to investigate the blood flow through the aortic valve, some flow
characteristics are measured. The Wall Shear Stress (WSS) and Oscillating Shear Index
(OSI) are calculated in this work. The WSS is the shear stress in the layer of fluid next
to the wall of a pipe. The WSS components are calculated by [9]:

r, =t—(t-n)n, (13)

and the traction vector of the surface, t, is defined as t = o-n. The WSS is an important
quantity for the prediction of hemodynamic disorders. The low WSS region appears to
be at high risk of atherogenesis because the stationary blood flow causes the
deformation of atheroprotective endothelial cells. The time-averaged WSS is also one of
the risk factors for atherogenesis and is defined as:

l T
?J‘det

0

r - (14)

w,mean )

where T is one cardiac period. The OSI indicates the degree of the cyclic departure of
the WSS vector and is defined by a ratio of the mean WSS and the absolute WSS:

1 TW mean
0S| = 5[1—*—], (15)

2-w, abs

where the absolute WSS is defined by:
1 T
T, ... =— ||z,|dt. 16
w,abs T .(‘).| w| ( )

The OSI is a measure of the WSS considering acting direction on the endothelial
cell during a cycle. A high OSI means that the magnitude of the WSS with opposite
direction from its averaged direction is large whereas the low OSI indicates small
magnitude of the WSS with opposite direction [9].

3. Results and discussions

In this section, the accuracy of the monolithic FEM method was confirmed by
comparing with the previous studies. And then, the present method was employed to
simulation the blood flow interacting with an aortic valve. The program was written in
the FORTRAN language on a single-core machine of a desktop. The mesh smoothing is
required for each time step because of the large deformation of the wall. A Laplace
equation was solved with a Drichlet boundary condition at the interface for smoothing
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mesh [4], and a remeshing procedure was used whenever the skewness of element is
bigger than 0.9 (see Section 3.2). As discussed in [4], although a brick element is known
to provide a more accurate solution than the tetrahedral element (especially for the case
of hyperelastic materials), a tetrahedral element is used in this study because of easier
mesh generation for complex geometry (the aortic valve). From our experience, a
second order is required for the tetrahedral element (P2) of the solid domain to get an
accurate solution. It is also noted that the present method can be implemented on the
brick element without any additional complexity.

3.1. 3D flow in a straight flexible tube

The first simulation is a pressure wave propagation of incompressible fluid in a
3D flexible tube. The problem was reported in the previous works [4, 10] and has been
employed for validation of the present monolithic FEM code. The schematic is shown in
Fig. 2, and the dimensions and the material property of the simulation domain are
illustrated in Table 1. Both fluid and solid are initially at rest and the tube is fixed in all
directions at the two ends. A pressure pin is set at the inlet of the tube depending on the
time simulation as follows:

1333.2Pa t<3x107°s:
P (1) = (17)

0 Pa t>3x1073s.

Table 1. Dimensions of the simulation domain and material property

Parameter Symbol Value
Tube length L 5.0cm
Tube diameter D 1.0cm
Wall thickness ) 0.1cm
Fluid density P 1.0 g/cm®
Solid density p° 1.2 g/lem?®
Dynamic viscosity U 0.03 Poise
Young’s modulus of solid E 3x10° Pa
Poisson ratio v 0.3

At the outlet of the tube, a zero-pressure boundary condition is set for the whole
simulation. A P2P1 tetrahedral mesh is used for both fluid and solid domains as shown
in Fig. 3. The meshes were generated by using software ICEM/ANSYS with the
skewness of element is controlled to be less than 0.5 for both domains. The numbers of
elements of fluid and solid are 28,800 and 19,200, respectively. Time step size At was
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set to 10 s in this benchmark, the relative error of the nonlinear treatment by Newton-
Raphson approach was set to 10, The simulation was done for 100 time-steps and the
solution was obtained after approximately half an hour.

The pressure contours in the F/S interface with different time instants are shown
in Fig. 4, in which the wall deformation is enhanced by a factor of 10 for clarity. The
deformation of the tube in the radiation director is approximately around 2% of the
diameter. The results obtained from the present monolithic FEM method are in a good
agreement with those provided in [10]. Fig. 5 plots the evolution of movement (axial
and radiation displacement) at the centre point of the inner tube wall (point M in Fig. 2)
for a quantitative comparison. It can be seen that the present results agree well with
those obtained by Eken and Sahin [10]. A difference of less than 1% may be due to
insufficient mesh resolution.

I . {

- L -
™ 1

Fig. 2. Schematic of flow in a straight flexible tube [4]

Fig. 3. Grid of fluid and solid domains
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Fig. 4. Pressure contours on the fluid-structure interface at different time
(The wall deformations were enhanced by a factor of 10 for clarity)
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Fig. 5. Comparison of the movement of point M obtained from present work
and results by Eken and Sahin [10]
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3.2. Blood flow through the aortic valve

In this section, the monolithic FEM is applied for simulation a pulsatile blood
flow interacting with an aortic valve. Because we are interested only in the motion of
the valve interacting with blood flow, the aortic artery is assumed as a rigid wall with a
simple shape. The aortic domain and the valve are chosen from the model in [11].
ANSA software was used to generate meshes on the faces and Tgrid/ICEM was used to
generate volume meshes based on meshes on the faces. The skewness of the mesh is
less than 0.7 at initial for both domains and a remeshing procedure will be conducted
whenever the skewness is bigger than 0.9. Fig. 6 shows the geometry of the valve inside
an aortic artery and the corresponding tetrahedral mesh for fluid and solid domains. The
numbers of elements at initial are 111,426 and 16,763 for fluid and solid domains,
respectively. The boundary condition for the inlet is a pulsatile flow rate as shown in
Fig. 7 for one period of T = 1.1 s. At the end of systole (~0.35T), the direction of the
inflow is inverted to create a backflow that is physiologically consistent and helps the
valve close. Diastole starts when the valve is closed and the inflow is set to zero (see
Fig. 7). A zero-pressure is set at the outlet [3]. The blood density and dynamic viscosity

are given p" =1.05 g/cm?® and ¢ = 0.004 Pa.s as provided in [12]. The density of the
aortic valve is set of o =1.0 g/cm® at the reference configuration. The stress-strain

relation of the aortic valves is assumed as the Mooney-Rivlin model with the material
parameters are given in [13, 14]. The present code was fistly validated for Mooney-
Rivlin model in a simple geometry of a beam under a unit tension as described in [15].
Fig. 8 shows the benchmark problem and the comparison of displacement of beam at
the end is listed in Table 2. The present results are in a good agreement with those
provided in [15] for the Mooney-Rivlin model of solid domain.

Aortic wall 30 r
Inlet
Outlet
=
E
=
= Diastole
. L
Aortic valve
5L - | IR |
"0 0.2 0.4 0.6 0.8 1
t/T
Fig. 6. The geometry and mesh generation Fig. 7. Flow rate at the inlet
of valve inside an aortic artery [11] of aortic valve [3]
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a) Schematic of benchmark problem [15] b) Displacement of beam with tension of 40 kPa

Fig. 8. A beam loaded by unit tension for validation Mooney-Rivlin model

Table 2. Comparison of displacement of beam at the end (mm)

Tension p, kPa Reference [15] Present code
5 0.5 0.5
10 0.95 0.96
40 3.55 3.6

Now the code is employed for simulation of the aortic valve, and the time step
size At was set to 5x10° s to get an accurate solution. The simulation results of one
period (T) were obtained after one week by using a desktop machine (single-core). We
only consider the two major phases, systole (valve opened) and diastole (valve closed),
and numerical results are examined at the two different instants: t1 = 0.18T and
t2 = 0.6T. The deformations of the valve at the two instants are illustrated in Fig. 9. The
valve is fully opened at the systolic phase (Fig. 9a), where the flow rate reaches the
maximum value (~25 I/min). The valve is closed when the flow rate is zero at the
diastolic phase (Fig. 9b). Fig. 10 shows the streamlines of blood flow through the valve at
the two instants. Blood velocity reaches the maximum value (~1.4 m/s) at the peak flow-
rate (. = 0.18T) of the systole and then decreased to ~0.3 m/s at the diastole (t2 = 0.6T).
Some vortices appear in the region between the aortic wall and the valve at the systolic
phase (Fig. 10a), and backflow is found with many vortices in the aortic artery at the
diastolic phase (Fig. 10b). According to the flow through the valve, there is a rapid
increase in WSS on the inner wall of the valve at the peak flow-rate as shown in Fig. 11.
WSS is then decreased as the flow-rate goes to zero when the valve is closed (t2 = 0.6T).
Fig. 12 shows that the OSI value is higher near the edge of the valve.
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a)t=0.18T b) t=0.6T

Fig. 9. Deformation of aortic valve at systolic phase (a) and diastolic phase (b)

b) t=0.6T

a)t=0.18T

Velocity magnitude [m/s]

0103050709 1.113

Fig. 10. Streamlines of blood flow through aortic valve at systolic phase (a) and diastolic phase (b)

O &&

WSS [Pa]

WSS [Pa]
o | B n

Il =
0.5 1.6 2.7 3.8 49 6.0 0 0.05 0.1 0.15 0.2
a)t=0.18T b)t=0.6T

Fig. 11. WSS distribution on the aortic valve at systolic phase (a) and diastolic phase (b)
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OSI
| I
0.1 0.1 0.2 0.2

Fig. 12. OSI distribution

4. Conclusion

In this paper, we solve the FSI problem of unsteady blood flow over the aortic
valve. The monolithic is used for the FSI coupling of an incompressible fluid with a
large displacement of the solid wall. The Mooney-Rivlin model is adopted for the
material of the valve to improve the accuracy of the simulation. A P2P1 tetrahedral grid
is employed for finite element discretization of the 3D domain. The method is validated
by solving the pressure wave in a 3D straight tube. The solution obtained by the present
approach is in a good agreement with the previous studies. The simulation results show
that the aortic valve is fully opened at the systolic phase corresponding with the
maximum flow rate through the valve. At this phase, the peak-flow rate is achieved at
time 0.18T with a maximum of wall shear stress (WSS). At the diastolic phase (0.6T),
the backflow is found with many vortices in the aortic artery. For the whole period, the
WSS at the inside of the leaflets is found to be bigger than that at the outside, and the
OSI value is higher near the edge of the valve. The flow characteristics may be strongly
affected by the geometry of individual aortic valve, therefore, in the future, the patient
specific models will be considered to improve the accuracy for predicting the risk of
aortic valve diseases.
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MO PHONG SO SU TUONG TAC CHAT LONG-CAU TRUC CUA
DONG MACH MAU VOI VAN PONG MACH CHU BANG PHUONG
PHAP PHAN TU HUU HAN VA CONG THUC BPON KHOI

Ha Truong Sang, Vii Vin Chién, Nguyén Manh Hung, Nguyén Manh Pic

Tém tit: Bai bdo trinh bay mé phong sé sw twong tdc giita chdt long va cdu triic cia
dong mach mdu qua van dong mach chii. Phirong phdp roi rac sir dung phan tir hitu han dwoc
dp dung cho ca hai mién chdt long va cdu triic. Cong thirc don khoi dwege ding cho sw két hop
cua pha cau tric va long nham théa mén cac diéu kién dong hoc va dong luc hoc tai cac bién.
Phuwong phdp tich phin dwa trén hedi di dong Euler-Largrange dwoc dp dung dé gidi hé phwong
trinh Navier-Stokes cho dong chat long khéng nén dwoc va cong thirc tong hop Lagrange duwoc
ding cho trang thai phi tuyén theo mé hinh Mooney-Rivlin ciia van. Phwong phdp dwoc kiém
chitng bang cdach so sanh két qua thu dwoc véi cac nghién cieu triede dé cho bdi todn truyén dp
sudt trong ong thang ba chiéu. Sau dé, phwong phdp dwoc sir dung dé mé phéng dong mach
madu qua van dong mach chii. Két qua mé phong sé thu dwoc cé thé ding trong viéc du dodn

nguy co Cac bénh vé tim mach...

Tir khoa: Tuong tac chat long-cau trdc; phuong phap phan tir hitu han; van dong mach chu;
cong thac don khdi.
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