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Abstract 

The paper aims to present a numerical simulation for fluid-structure interaction (FSI) of a 

blood flow over the aortic valve. The finite element discretization is adopted both for fluid 

and solid domains. The monolithic scheme is used for the strong coupling of fluid and 

structure to satisfy kinematic and dynamic equilibrium conditions at the interface. The 

Navier-Stokes equations of an incompressible flow are solved by using the integrated 

method based on the ALE formula for the moving grid, and the total Lagrangian 

formulation is used for the non-linear hyper-elastic material of the aortic valve with the 

Mooney-Rivlin material model adopted as a constitutive equation for the solid domain. The 

monolithic FEM method is validated by solving a 3D pressure wave problem and the results 

are compared to the previous solutions. And then, the present method is employed to 

investigate blood flow through the aortic valve with a complex geometry. The simulation 

results can be used for predicting the risk of aortic valve diseases… 

Keywords: Fluid-structure interaction; finite element method; aortic valve; monolithic formulation. 

1. Introduction  

The aortic valve consists of three leaflets that open when the left ventricle of the 

heart is in the systole phase (contraction) to push out blood to the aorta. The main 

function of the aortic valve is to close and avoid backflow when the left ventricle is in a 

rest state (diastole phase). Diseased valves can develop a leak and may have to be 

replaced [1]. Recently, transcatheter aortic valve (TAV) implantation has been carried 

out as an alternative to patients with severe aortic stenosis, who are at high risk for 

surgical therapy. The biomechanical environment of TAV is closely related to the 

interaction of the motion of the aorta as well as leaflets with the aortic hemodynamics of 

incompressible flow. Therefore, fluid-structure interaction (FSI) simulation together 

with an accurate prediction of blood flow is essential. Numerical simulations of FSI for 

blood vessels such as aortic bifurcation, carotid artery, and aortic valve have received 

much attention in the last several decades. An accurate simulation of the FSI problems 
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plays an important part in the diagnosis and treatment of cardiovascular diseases. 

However, FSI simulation of a blood flow interacting with an aortic valve remains a 

challenging problem. 

The main challenging problem of FSI for blood flow in the aortic valve comes 

from the nonlinearity behaviour of fluid and solid domain at the interface. Moreover, the 

complex geometry of the aortic valve and large deformation of the leaflets also make 

the FSI problem far more complex. There are numerous studies on the FSI of the blood 

flow in the aortic valve in literature. Labrosse et al. [1] used a finite element model of a 

typical human aortic valve with modeling leaflets correction technique. The study aimed 

to investigate the stress on the valve for the purpose of valve repairing. The FSI of 

blood flow overs the aortic valve is also simulated by Yao et al. [2]. The authors 

employed the immersed smoothed finite element method with partitioned FSI coupling 

to investigate the characteristics of unsteady blood flow. Jeannette et al. [3] used the 

unified continuum Arbitrary Lagrangian-Eulerian (ALE) FEM model to simulate a 

native valve and a Bileaflet Mechanical Heart Valve in a 3D problem. 

In this study, we present a FSI algorithm based on the monolithic algorithm with 

the full coupling of fluid and structure domain, and the system of FEM discretization is 

solved simultaneously in one matrix. The rest of the paper is organized as follows: Part 

2 gives a brief description of the governing equation of fluid and structure and 

corresponding FEM formula for the monolithic FSI problem. Part 3 details the 

numerical solution of a benchmark problem and the aortic valve simulation. Lastly, 

some conclusions are drawn in Part 4. 

2. Numerical methods 

2.1. Governing equations 

The blood flow in the vessel wall is assumed as an incompressible flow of a 

Newtonian fluid, and the governing equations are the incompressible Navier-Stokes 

equations which can be written as follows in the arbitrary Lagrangian-Eulerian (ALE) 

framework [4]: 
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where , , andf m fv v  denote the fluid density, the fluid velocity, the grid velocity, 

and the fluid stress tensor, respectively. The body force is neglected in present work. 
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Fluid domain and its boundary are denoted by ,f f  . The corresponding constitutive 

equations for fluid flow in Eq. (1) are written as follows: 

T[ ( ) ]

f p
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 

I

v v

 
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    (2) 

 

where , d T, anp  I     indicate the pressure, the fluid dynamic viscosity, the shear 

stress tensor, the second-order identity tensor, and the transposition, respectively. The 

boundary conditions are described as follows: 
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where nf denotes the outward unit normal vector to the fluid boundary, 
fv   

and 
ft are the boundaries on which the velocity ( )v  and traction ( )ft  are imposed 

on the Dirichlet and Neumann boundary conditions, respectively. The governing 

equation for solid domain in the Lagrangian framework is written as follows: 
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where , ands su     denote the solid density, the displacement of solid, and the solid 

stress tensor, respectively. The solid domain is denoted by
s  with a boundary

s . 

The constitutive equation of the solid domain is written as follows [5]: 

1 T T;  = ; =s J  FSF T SF S ˸ ,E    (6) 

where  denotes a fourth-order tensor representing the material behavior. T and S are 

the first and second Piola-Kirchhoff stress tensor, respectively, and F and J denote the 

deformation gradient tensor and its Jacobian.  can be a linear or nonlinear (Mooney-

Rivlin) model. More detailed description of the constitutive equation is described in [4]. 

Let 
/f s  be the interface between the fluid/structure domains (F/S interface). For 

non-slip condition, both the velocity and traction of fluid domain are equilibrium with 
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those of the solid at the F/S interface. The two conditions are described by the  

following formula: 

/

/

on 

0 on

f s

f f s s f s

t


 


    

u
v

n n  

   (7) 

2.2. Finite element formulation for monolithic FSI coupling 

The integrated formulation in which the pressure and velocity of fluid flow are 

solved simultaneously in one system is adopted in this work. The pressure/velocity 

variable is linearly/quadratically interpolated in a finite element. Fig. 1 shows a P2P1 

finite element for the fluid domain (tetrahedral grid), where the pressure variable is 

allocated on the vertices and the velocity variables are on both vertices and mid-nodes. 

Finite element formulation of the governing equation for unsteady incompressible fluid 

flow is written as follows [4, 6, 7]: 

 

 

 

 

 

 

 

 

 

Fig. 1. Degrees of freedom assigned for the P2P1 finite element 
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for all admissible functions , ,h hV q P w  where 

   1 2( ), 0 on , ( )f

h h h hV H P q q L       vw | w w | . 

The generalised-α method [8] is adopted for an implicit temporal discretization, and the 

Newmark approximation is employed to obtain the acceleration of fluid from velocity variables: 
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where 
nv
 
and  denote the velocity of fluid flow at nth time-step and the coefficient of 

the the generalised-α method, respectively. 

In a solid domain, the displacement variable is quadratically interpolated in an 

unstructured finite element. Its formulations for the solid domain are written as follows [4]: 

Find 
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for all admissible functions ,hVw  where 

 1( ), 0 on s

h hV H    uw | w w . 

The generalized-α method is also adopted for a solid domain, and the Newmark method 

- used to compute the acceleration and the displacement of solid from the velocity variable [4]. 

The strong coupling of fluid and structure equations is accomplished based on the 

ALE framework in present work. For the monolithic algorithm, velocity variables are 

shared at the fluid-structure interface so that the kinematic constraint is satisfied 

automatically by sharing the velocity field at the interface. Summation of fluid and 

structure equations at the interface cancel out the stress terms of both sides, satisfying 

the equilibrium constraint. Therefore, the system of FEM discretization for the 

monolithic coupling FSI problem is shown as follows: 
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Or in the matric form: 
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where v  denotes velocity filed for both fluid and solid domain, and G  is general 

stiffness calculated for the whole simulation; 
fG and f

H are the stiffness matrices of 

velocity and pressure variables of fluid flow are constructed by FEM descretization, 

respectively. (The details of these matrices and force vectors ,f sP P  are discussed in  

[6, 7]). In the monolithic approach, the velocity variables of both fluid and solid domain 
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as well as the pressure of fluid flow are obtained together by solving the system (12) in 

each time-step. 

2.3. Flow characteristics calculation 

In order to investigate the blood flow through the aortic valve, some flow 

characteristics are measured. The Wall Shear Stress (WSS) and Oscillating Shear Index 

(OSI) are calculated in this work. The WSS is the shear stress in the layer of fluid next 

to the wall of a pipe. The WSS components are calculated by [9]: 

( )w  = t t n n , (13) 

and the traction vector of the surface, t, is defined as t = n . The WSS is an important 

quantity for the prediction of hemodynamic disorders. The low WSS region appears to 

be at high risk of atherogenesis because the stationary blood flow causes the 

deformation of atheroprotective endothelial cells. The time-averaged WSS is also one of 

the risk factors for atherogenesis and is defined as: 

,mean

0

1
T

w wdt
T

   ,                              (14) 

where T is one cardiac period. The OSI indicates the degree of the cyclic departure of 

the WSS vector and is defined by a ratio of the mean WSS and the absolute WSS: 
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


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where the absolute WSS is defined by: 

,abs

0

1
T

w w dt
T

   . (16) 

The OSI is a measure of the WSS considering acting direction on the endothelial 

cell during a cycle. A high OSI means that the magnitude of the WSS with opposite 

direction from its averaged direction is large whereas the low OSI indicates small 

magnitude of the WSS with opposite direction [9]. 

3. Results and discussions 

In this section, the accuracy of the monolithic FEM method was confirmed by 

comparing with the previous studies. And then, the present method was employed to 

simulation the blood flow interacting with an aortic valve. The program was written in 

the FORTRAN language on a single-core machine of a desktop. The mesh smoothing is 

required for each time step because of the large deformation of the wall. A Laplace 

equation was solved with a Drichlet boundary condition at the interface for smoothing 
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mesh [4], and a remeshing procedure was used whenever the skewness of element is 

bigger than 0.9 (see Section 3.2). As discussed in [4], although a brick element is known 

to provide a more accurate solution than the tetrahedral element (especially for the case 

of hyperelastic materials), a tetrahedral element is used in this study because of easier 

mesh generation for complex geometry (the aortic valve). From our experience, a 

second order is required for the tetrahedral element (P2) of the solid domain to get an 

accurate solution. It is also noted that the present method can be implemented on the 

brick element without any additional complexity. 

3.1. 3D flow in a straight flexible tube 

The first simulation is a pressure wave propagation of incompressible fluid in a 

3D flexible tube. The problem was reported in the previous works [4, 10] and has been 

employed for validation of the present monolithic FEM code. The schematic is shown in 

Fig. 2, and the dimensions and the material property of the simulation domain are 

illustrated in Table 1. Both fluid and solid are initially at rest and the tube is fixed in all 

directions at the two ends. A pressure pin is set at the inlet of the tube depending on the 

time simulation as follows: 

3

3

1333.2 Pa 3 10 ;
( )

0 Pa 3 10 .
in

t s
p t

t s





  


 
=  (17) 

 

 

 

 

 

 

 

 

 

 

At the outlet of the tube, a zero-pressure boundary condition is set for the whole 

simulation. A P2P1 tetrahedral mesh is used for both fluid and solid domains as shown 

in Fig. 3. The meshes were generated by using software ICEM/ANSYS with the 

skewness of element is controlled to be less than 0.5 for both domains. The numbers of 

elements of fluid and solid are 28,800 and 19,200, respectively. Time step size t was 

Table 1. Dimensions of the simulation domain and material property 

Parameter Symbol Value 

Tube length L 5.0 cm 

Tube diameter D 1.0 cm 

Wall thickness  0.1 cm 

Fluid density ρf   1.0 g/cm3 

Solid density ρs 1.2 g/cm3 

Dynamic viscosity μ   0.03 Poise 

Young’s modulus of solid E 3×105 Pa 

Poisson ratio   0.3 
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set to 10-4 s in this benchmark, the relative error of the nonlinear treatment by Newton-

Raphson approach was set to 10-4. The simulation was done for 100 time-steps and the 

solution was obtained after approximately half an hour. 

The pressure contours in the F/S interface with different time instants are shown 

in Fig. 4, in which the wall deformation is enhanced by a factor of 10 for clarity. The 

deformation of the tube in the radiation director is approximately around 2% of the 

diameter. The results obtained from the present monolithic FEM method are in a good 

agreement with those provided in [10]. Fig. 5 plots the evolution of movement (axial 

and radiation displacement) at the centre point of the inner tube wall (point M in Fig. 2) 

for a quantitative comparison. It can be seen that the present results agree well with 

those obtained by Eken and Sahin [10]. A difference of less than 1% may be due to 

insufficient mesh resolution.  

 

 

 

 

 

 

 

 

 

Fig. 2. Schematic of flow in a straight flexible tube [4] 

  

Fig. 3. Grid of fluid and solid domains 
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Fig. 4. Pressure contours on the fluid-structure interface at different time  

(The wall deformations were enhanced by a factor of 10 for clarity) 

 
(a) Axial displacement 

 
(b) Radial displacement 

Fig. 5. Comparison of the movement of point M obtained from present work  

and results by Eken and Sahin [10] 
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3.2. Blood flow through the aortic valve 

In this section, the monolithic FEM is applied for simulation a pulsatile blood 

flow interacting with an aortic valve. Because we are interested only in the motion of 

the valve interacting with blood flow, the aortic artery is assumed as a rigid wall with a 

simple shape. The aortic domain and the valve are chosen from the model in [11]. 

ANSA software was used to generate meshes on the faces and Tgrid/ICEM was used to 

generate volume meshes based on meshes on the faces. The skewness of the mesh is 

less than 0.7 at initial for both domains and a remeshing procedure will be conducted 

whenever the skewness is bigger than 0.9. Fig. 6 shows the geometry of the valve inside 

an aortic artery and the corresponding tetrahedral mesh for fluid and solid domains. The 

numbers of elements at initial are 111,426 and 16,763 for fluid and solid domains, 

respectively. The boundary condition for the inlet is a pulsatile flow rate as shown in 

Fig. 7 for one period of T = 1.1 s. At the end of systole (~0.35T), the direction of the 

inflow is inverted to create a backflow that is physiologically consistent and helps the 

valve close. Diastole starts when the valve is closed and the inflow is set to zero (see 

Fig. 7). A zero-pressure is set at the outlet [3]. The blood density and dynamic viscosity 

are given 
3=1.05 g / cmf  and μ = 0.004 Pa.s as provided in [12]. The density of the 

aortic valve is set of 3

0 = 1.0 g / cms  at the reference configuration. The stress-strain 

relation of the aortic valves is assumed as the Mooney-Rivlin model with the material 

parameters are given in [13, 14]. The present code was fistly validated for Mooney-

Rivlin model in a simple geometry of a beam under a unit tension as described in [15]. 

Fig. 8 shows the benchmark problem and the comparison of displacement of beam at 

the end is listed in Table 2. The present results are in a good agreement with those 

provided in [15] for the Mooney-Rivlin model of solid domain.  

 

Fig. 6. The geometry and mesh generation  

 of valve inside an aortic artery [11] 

 

Fig. 7. Flow rate at the inlet  

 of aortic valve [3] 
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a) Schematic of benchmark problem [15] 

 

b) Displacement of beam with tension of 40 kPa 

Fig. 8. A beam loaded by unit tension for validation Mooney-Rivlin model  

 

 

 

 

 

 

Now the code is employed for simulation of the aortic valve, and the time step 

size t was set to 5×10-5 s to get an accurate solution. The simulation results of one 

period (T) were obtained after one week by using a desktop machine (single-core). We 

only consider the two major phases, systole (valve opened) and diastole (valve closed), 

and numerical results are examined at the two different instants: t1 = 0.18T and 

t2 = 0.6T. The deformations of the valve at the two instants are illustrated in Fig. 9. The 

valve is fully opened at the systolic phase (Fig. 9a), where the flow rate reaches the 

maximum value (~25 l/min). The valve is closed when the flow rate is zero at the 

diastolic phase (Fig. 9b). Fig. 10 shows the streamlines of blood flow through the valve at 

the two instants. Blood velocity reaches the maximum value (~1.4 m/s) at the peak flow-

rate (t1 = 0.18T) of the systole and then decreased to ~0.3 m/s at the diastole (t2 = 0.6T). 

Some vortices appear in the region between the aortic wall and the valve at the systolic 

phase (Fig. 10a), and backflow is found with many vortices in the aortic artery at the 

diastolic phase (Fig. 10b). According to the flow through the valve, there is a rapid 

increase in WSS on the inner wall of the valve at the peak flow-rate as shown in Fig. 11. 

WSS is then decreased as the flow-rate goes to zero when the valve is closed (t2 = 0.6T). 

Fig. 12 shows that the OSI value is higher near the edge of the valve. 

Table 2. Comparison of displacement of beam at the end (mm) 

Tension p, kPa Reference [15] Present code 

5 0.5 0.5 

10 0.95 0.96 

40  3.6 
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Fig. 9. Deformation of aortic valve at systolic phase (a) and diastolic phase (b) 

 

  

 

 

Fig. 10. Streamlines of blood flow through aortic valve at systolic phase (a) and diastolic phase (b) 

 
 

Fig. 11. WSS distribution on the aortic valve at systolic phase (a) and diastolic phase (b) 

a) t = 0.18T b) t = 0.6T 

a) t = 0.18T b) t = 0.6T 

a) t = 0.18T b) t = 0.6T 



 

 

 

 

Journal of Science and Technique - ISSN 1859-0209 

 

 

 58 

 

Fig. 12. OSI distribution 

4. Conclusion 

In this paper, we solve the FSI problem of unsteady blood flow over the aortic 

valve. The monolithic is used for the FSI coupling of an incompressible fluid with a 

large displacement of the solid wall. The Mooney-Rivlin model is adopted for the 

material of the valve to improve the accuracy of the simulation. A P2P1 tetrahedral grid 

is employed for finite element discretization of the 3D domain. The method is validated 

by solving the pressure wave in a 3D straight tube. The solution obtained by the present 

approach is in a good agreement with the previous studies. The simulation results show 

that the aortic valve is fully opened at the systolic phase corresponding with the 

maximum flow rate through the valve. At this phase, the peak-flow rate is achieved at 

time 0.18T with a maximum of wall shear stress (WSS). At the diastolic phase (0.6T), 

the backflow is found with many vortices in the aortic artery. For the whole period, the 

WSS at the inside of the leaflets is found to be bigger than that at the outside, and the 

OSI value is higher near the edge of the valve. The flow characteristics may be strongly 

affected by the geometry of individual aortic valve, therefore, in the future, the patient 

specific models will be considered to improve the accuracy for predicting the risk of 

aortic valve diseases. 
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MÔ PHỎNG SỐ SỰ TƯƠNG TÁC CHẤT LỎNG-CẤU TRÚC CỦA 

DÒNG MẠCH MÁU VỚI VAN ĐỘNG MẠCH CHỦ BẰNG PHƯƠNG 

PHÁP PHẦN TỬ HỮU HẠN VÀ CÔNG THỨC ĐƠN KHỐI 

Hà Trường Sang, Vũ Văn Chiên,  Nguyễn Mạnh Hùng, Nguyễn Mạnh Đức 

Tóm tắt: Bài báo trình bày mô phỏng số sự tương tác giữa chất lỏng và cấu trúc của 

dòng mạch máu qua van động mạch chủ. Phương pháp rời rạc sử dụng phần tử hữu hạn được 

áp dụng cho cả hai miền chất lỏng và cấu trúc. Công thức đơn khối được dùng cho sự kết hợp 

của pha cấu trúc và lỏng nhằm thỏa mãn các điều kiện động học và động lực học tại các biên. 

Phương pháp tích phân dựa trên lưới di động Euler-Largrange được áp dụng để giải hệ phương 

trình Navier-Stokes cho dòng chất lỏng không nén được và công thức tổng hợp Lagrange được 

dùng cho trạng thái phi tuyến theo mô hình Mooney-Rivlin của van. Phương pháp được kiểm 

chứng bằng cách so sánh kết quả thu được với các nghiên cứu trước đó cho bài toán truyền áp 

suất trong ống thẳng ba chiều. Sau đó, phương pháp được sử dụng để mô phỏng dòng mạch 

máu qua van động mạch chủ. Kết quả mô phỏng số thu được có thể dùng trong việc dự đoán 

nguy cơ các bệnh về tim mạch... 

Từ khóa: Tương tác chất lỏng-cấu trúc; phương pháp phần tử hữu hạn; van động mạch chủ; 

công thức đơn khối. 
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