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Abstract

In this work, we were successfully synthesized Na,TisO; material by solid state reaction
method which used NaOH and TiO, as the precursors. Structural and morphological
characterization of synthesized materials were confirmed by X-ray diffraction (XRD) and
scanning electron microscopy (SEM). The XRD results indicated that, the Na,Ti;O; material
with single crystal structure is formed at a reaction temperature of 900°C. The
electrochemical performance of Na,TisO7 material is evaluated by performing galvanostatic
charge-discharge (GCD) analysis on the CR2032 cells at different rates. The Na,TizOy
material delivered a specific capacity of 189 mAh/g at 0.1C within the potential range from
0 to 2.5 V. The results suggest that the Na,TizO- is a promising material as anode electrode
for sodium ion batteries.
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1. Introduction

Though sodium ion batteries (SIBs) were researched in tandem with lithium ion
batteries (LIBs) from the late 1970s and early 1980s, its inferior performance in
comparison with LIBs was the main reason for the decline of the SIBs [1]. Recently,
research on SIBs has been gaining interest due to the explosive growth in the exploitation
and use of renewable energy and especially, the rapid development of electric vehicles
that have raised concerns about the shortage of lithium in the near future [2]. Among
anode materials for SIBs that have been studied, Na2TisO7 attracts attention due to its
high capacity and low working potential. It has reported that the theoretical capacity of
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Na2TisO7 can reach 354 mAh/g [3, 4]. In fact, several groups have announced that the
experimental capacity of the material can exceed 200 mAh/g [4], which is higher than
most intercalation anode materials [5]. In addition, its working potential of about 0.3 V is
not only beneficial for the voltage of the SIBs but also helps to avoid the plating of Na
metal on the electrode surface that takes place at around 0 V vs Na/Na* [6]. Despite these
advantages, a serious problem that hinders the applicability of Na2TisOz is its short cycle
life. Generally, this issue is often attributed to the volumetric expansion and the formation
of the solid electrolyte interphase (SEI) layer on the surface of the material during
charge/discharge. A volumetric expansion of about 30% during charge/discharge has
estimated for Naz2TisO~7 by in-situ X-ray diffraction analyses [7]. The formation of the SEI
layer on the surface of the Na2Ti3O anode has also investigated [8]. However, so far only
studies so far have assessed the prolonged degradation of the anode during cycle test [9].

Several methods have been used to synthesize Na2TisO7 materials including solid
state reaction method [10, 11], sol-gel method [12, 13], hydrothermal method [14, 15],
spray-drying method [16], sonochemical method [17], etc. Among them, the solid state
reaction method was widely used due to its simplicity and the well crystallization of the
product. However, while most authors used Na2COs and TiO2 as the precursors for the
NazTisO7 synthesis [18-20], very few groups were interested in the solid state reaction of
NaOH and TiOa.

In this work, Naz2TisO7 was synthesized by solid state reaction method which used
NaOH and TiO2 as the precursors. The effects of the calcination temperature on the
morphology and the composition of the products were investigated. Electrochemical
performance of the Na:TisOz anode was studied based on the galvanostatic
charge/discharge measurements. By studying the transformation of the voltage profiles
during cycling test, the degradation behaviour of the anode was also mentioned.

2. Experiment

Na2TisO7 materials have synthesized by solid state reaction method. The mixture
consisted of 4.792 g of anatase TiO2 (analytical grade, Sigma Aldrich) and 1.6 g NaOH
(analytical grade, Sigma Aldrich) were ball milled in acetone at a speed of 200 rpm for
4h. The received slurry was then dried at 120°C for 4h. Finally, the mixture was calcined
in air at 700, 800 and 900°C for 16h to obtain the materials.

The morphology of the materials was observed by Hitachi S-4800 FESEM. The
X-ray powder diffraction analyses were performed by Siemens D5000 X-ray diffractometer
using CuKoa radiation at room temperature. The 2-theta angle of diffraction (20) was
scanned from 5° to 70° at a step of 0.03%sec. The Rietveld refinement of X-ray diffraction
data was conducted by the FullProf software package [21]. The electrochemical
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characteristics of Na2TisO7 material is evaluated by performing galvanostatic charge-
discharge analysis on the CR2032 cells. Galvanostatic charge-discharge analysis was
measured by a battery test system (AcuTech Systems, BAT-750B) at room temperature
in the potential range of 0-2.5 V (vs. Na/Na*) at 0.1C (10 mA/g), 0.2C (18 mA/g),
1C (80 mA/g) and 5C (400 mA/g).

For the preparation of Na2TisO7 electrodes, 0.5 gram of slurry consisted of the
Naz2TizO7 material, carbon black and polyvinylidene fluoride (PVDF) at a mass ratio of
70:20:10 was casted onto a copper foil, and then dried at 80°C in a vacuum oven for
12 h. The resulted tape was rolling pressed to increase the density and cut into 16 mm
diameter circles for using as the positive electrode, the mass loading of materials was about
8-12 mg. Half-cells (CR2032) were fabricated in a dry glove box, including the Naz2TisOr
electrodes as the working electrodes, polyethylene as the separator, and sodium metal foils
as counter electrodes. The liquid electrolyte was 1 M NaClOzs in ethylene carbonate (EC),
ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) (1:1:1 volume ratio).

3. Results and Discussion

The structure of the synthesized materials was investigated by XRD analyses.
Fig. 1a showed the X-ray diffraction patterns of the materials that were synthesized at
different calcination temperatures. As seen in the figure, three components including
Na2TizO7 (space group P21/m - JCPDS 72-0148), Na2TisO13 (space group C2/m - JCPDS
73-1398) and NazTi7O1s (space group C2/m [22]) have indexed in the XRD patterns of
the samples synthesized at temperatures of 700-900°C.
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Fig. 1. (a) X-ray powder diffraction patterns of the materials that were synthesized at different
calcination temperatures (the calculated powder diffraction patterns of Na,TizO1s, Na;TisO13 and
Na;TisO; were also inserted); (b) X-ray diffraction and Rietveld refinement patterns of the
Na,TizO7 that was synthesized at 900°C.
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The crystal structures of these phases were illustrated in Fig. 2. No fingerprints of
the TiOz2 precursor were detected on the diffraction patterns. Table 1 shows the detail of
the product compositions which were calculated by Rietveld refinement method. The
calculated results revealed that NazTisO7 accounts for about 31 wt% of the sample
composition at 700°C. When the temperature was raised to 800°C, about 85.5 wt% of the
Na2Ti7O13 phase was observed in the synthetic material. At 900°C, diffraction pattern
showed the presence of only Na2TisO7, which also confirmed by the overlab between
X-ray diffraction and Rietveld refinement patterns of the Na2TizO7 that was synthesized
at 900°C (Fig. 1b).

Fig. 2. llustrations of the crystal structures of Na,TizO1s, Na;TisO13 and Na,TizO.

The process of changing from a phase with a low sodium concentration at 700°C
(NazTizO15, NazTisO13) to Na2TisO7 phase at 900°C showed that Na® ions were
continuosly intercalated into the solid phases to form higher sodium concentration phase
at higher temperature. The phase transformation from NazTisO13 to Naz2Ti3O7 due to the
intercalation of Na* ion into TiOz in a NaOH solution was observed during hydrothermal
synthesis of the materials [7]. It also should be noted that though Na2Ti3O7 and NazTisO13
phases have often mentioned, NazTi7O1s is rarely found in the products of sodium
titanium oxides which were synthesized by solid state reaction method. The detail of
refinement structure of Na2TisOy7 is shown in the Table 2. The calculated results are good
agreement with the literature data [23].

Table 1. Structural parameters as refined based on X-ray powder diffraction data for the
NaNiosTio502 material that was synthesized with the pre-milling time of 16 hours.

Components (% wt.)
Annealing NazTi7015 NazTi6013 NazTi307
temperatures
700°C 314 % 37.6 % 31%
800°C - 145% 85.5%
900°C - - 100 %

19



Journal of Science and Technique - ISSN 1859-0209

Table 2. Structural parameters as refined based on X-ray powder diffraction data
for the Na,TizsO7 material that was synthesized at 900°C.

Space group P21/m (11)
a; b; c (A) 0.9134; 0.3803 ; 0.8571
B (°) 101.603

Nal (x,Y, 2) (0.5932, 1/4, 0.6957)
Na2 (x, Y, ) (0.1535, 1/4, 0.4950)
Til (x,y,2) (0.9837, 1/4, 0.1432)
Ti2 (x,y, 2) (0.6767, 1/4, 0.2466)
Ti3 (x, Y, 2) (0.2793, 1/4, 0.0309)
01 (x,y,2) (0.1823, 1/4, 0.2120)
02 (x,v,2) (0.4657, 1/4, 0.1416)
03 (x,Y,2) (0.6464, 1/4, 0.4472)
04 (x,y,2) (0.9054, 1/4, 0.3108)
05 (x,Y,2) (0.7512, 1/4, 0.0084)
06 (x,Y,2) (0.3175, 1/4, 0.8007)
o7 (x,y,2) (0.0401, 1/4,0.9132)

The SEM images of the NazTisOz powders that were calcined at different
temperatures were showed in Figures of 3a, 3b and 3c, respectively. As seen in the
Fig. 3a, the material that was calcined at 700°C had poor crystallinity. The SEM image
showed clusters of granules of less than 100 nm in size that stick together in unclear
shapes. When the calcination temperature was raised to 800°C, the small granules grew
into larger grains with clearer grain boundaries. At the temperature of 900°C, the grains
size increased sharply up to 1 um. Based on the comparison of SEM images, it seems that
only the grains grow, while the shape of the clusters is almost unchanged at different
reaction temperatures. This observation is consistent with the prediction above that Na*
ions intercalated into TiO2 during the reaction to form NazTisOy.

The electrochemical characteristics of the Na2TisO7 material that were synthesized
at 900°C were shown in Fig. 4. As seen in Fig. 4a, the first, second and third discharge
capacities of the electrode at a rate of 0.1C (10 mA/g) were 189.5, 107.4 and
94.7 mAh/g, respectively. At the first cycle of charge and discharge, the discharge profile
showed three voltage plateaus Di, D2 and Ds respectively at 0.79, 0.18 and
0.11V, and the charge profile showed two voltage plateaus C1 and C: respectively at 0.94
and 0.42V. There voltage plateaus were later confirmed by three reduction peaks R1, Rz,
Rs and two oxidation peaks O1, Oz in the plot of differential capacity in Fig. 4c. At
subsequent cycles, only four plateaus which correspond to the reduction peaks of R, Rz
and the oxidation peaks of O1, Oz were observed in the profiles of charge-discharge.
Origin of these redox peaks was mentioned in the literature by many authors. Most of
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them agreed that the redox couples of R1/O1 peaks can be assigned for the intercalation
/de-intercalation processes of Na* ions into/out of black carbon in the cathodes [3].

7 SR : ; \ 2 um
Fig. 3. SEM images of the materials that were ynthesized
at 700 (a), 800 (b), and 900°C (c).
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Fig. 4. Electrochemical characteristic of the Na,TizO- electrode:
(a) Profiles of voltage versus capacity for the electrode during three initial cycles,
(b) Cycling behavior and coulombic efficiency of the electrode,
(c) Differential capacity curves of the electrode at the three initial cycles,
(d) Rate capability of the electrode.
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However, the redox reactions related to the R2/O2 peaks were in controversial.
J. M. Tarascon et al., via in-situ XRD analyses, claimed that the R2/O2 peaks originated
from the transformations of Na2Ti3O7/NasTizO7 phases [3]. X. D. Guo et al., based on
in-situ synchrotron XRD results, proved that these redox peaks were related to the phase
transformations of layered Na2Ti3Oz and tunnel NaTi1.2503 [7]. About reduction peak Rs,
J. M. Tarascon et al. suggested that it might be assigned to the formation of NaisTi1002s
phase at the end of the discharge [3]. The cycling performance of the Na2TizO7 cathode
was presented in Fig. 4b. The capacity of the cathode decreased rapidly with only ca. 32%
capacity compared to the second cycle remained after 100 cycles of charge-discharge. As
seen in Fig. 4d, the cathode also exhibited a poor rate capability with 34 mAh/g and
4.25 mAh/g remained at the rates of 1C and 5C, respectively. However, it can be seen that
the cathode seems to have better cycling performance at higher charge-discharge rates.

Normalized charge capacity Normalized charge capacity
(a) 10 08 06 04 02 00 (b) 10 08 06 04 02 00
3.0 — : : : : : 3.0 — : : : : :
nd 4™ cycle
—~ 25} —— 2 cycle o) 25+
< ‘ —3d¢ycle 3 cycle + 10, 20", 30" 40", 50" cycles
*o 201 \ ——6M cycle z 20f !
z 3
T 15F Z 15}
Z o
. >
6 10} = 1O
£ o5t : T o0sf
I \-“-?,_,_7_ — E
g 00 /Mg cycles 00T /1ot 20! 30, 40t 50 cycles
05 05}
00 02 04 06 08 10 00 02 04 06 08 10
Normalized discharge capacity Normalized discharge capacity

Fig. 5. (a) Profiles of voltage versus state of charge/discharge for the electrode
at the 2", 3, 4™ 5" and 6" cycles of charge/discharge; (b) Profiles of voltage versus state of
charge/discharge for the electrode at the 10", 20", 30", 40™ and 50" cycles of charge/discharge.

The voltage decay behavior was investigated to study the degradation of the
Na:TisO7 cathode. The profiles of voltage versus state of charge/discharge for the
electrode were shown in Fig. 5. In the first cycle, the voltage variation is negligible
indicating a relatively stable electrode. The potential increase of the discharge profiles in
the first cycle shows that the Na* ions intercalation process is easier with each cycle.
However, the charge profiles have unstable change. In particular, from the 4" cycles
onwards, the charge profiles started to be interference. This instability may be related to
the volumetric shrinkage in the Na* ions de-intercalation. The charge-discharge profiles
of the 10" cycle to 50" cycle is shown in Fig. 5b. It can be seen clearly that, the charge

voltage increases more strongly than the discharge potential, which is due to the structural
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disruption of the material. These observations indicated different voltage decay
characteristics during charge and discharge.

4. Conclusion

The Naz2Ti3O7 material was successfully synthesized by a solid state reaction method
which used NaOH and TiO: as the precursors. The product compositions depend on the
reaction temperature. The calculated results revealed that NazTisO7 accounts for about
31 wit% of the sample composition at 700°C. When the temperature was raised to 800°C,
the component Na2TisO7 phase increases up to 85.5 wt% in the synthetic material and single
phase Na2TisOr7 is formed at 900°C. The Na2Ti3O7 material delivered a specific capacity
of 189 mAh/g at 0.1C within the potential range from 0 to 2.5 V. However, the capacity
of the NazTisO7 material decreased rapidly after 100 cycles of charge-discharge, only
remained 32% capacity compared to the second cycle.
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PHAN UNG TONG HOP TRANG THAI RAN
VA TiINH CHAT DIEN HOA CUA Na;Tiz017 LAM VAT LIEU
CUC DUONG CHO AC QUY NATRI-ION

Nguyén Si Hiéu, I-Ming Hung, Nguyén Vin Ky, Lé Thi Vinh Hanh,
T6 Vin Nguyén, Nguyén Thi Thu Hoa, Hoang Manh Ha, Nguyén Vin Nghia

Tom tdt: Trong nghién cizu nay, ching t6i da tong hep thanh cong vt liéu Na,TisO7 bang
phirong phdp phan g ¢ trang thai ran cd siz dung tien chat 1a NaOH va TiO.. Pdc diém cau
tric va hinh thai cia vt liéu tong hop diroc xac nhdn bang nhiéu xa tia X (XRD) va kinh hién vi
dién tir quét (SEM). Két qua XRD chi ra rang, vdt liéu NazTizO7 Véi cdu triic don tinh thé duoc tao
thanh tai nhiér d@é phan ing 1a 900°C. Hiéu sudt dién hoa cia vat lidu NayTisO7 dugc danh gid
bang cach thuc hién phép do nap - xa dong khéng d@si trén cac dc quy clic 40 CR2032 tai cac toc
@6 nap xa khac nhau. Vit ligu Na,Tiz0; ¢ cong sudt riéng 1a 189 mAh/g tgi toc dé nap - xa 0,1C
trong khodng dién thé tir 0 d@én 2,5 V. Két qua cho thay rang, NagTisO7 1a mét vat lidu day hira
hen lam dién cuc anot cho dc quy ion natri.

Tir khoa: Cuc duong Na,TizO7; 4¢ quy natri-ion; phan tich Rietveld; phan ang pha ran.
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