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Abstract 

In this paper, a  robust hierarchical  method for  trajectory tracking control of a  quadrotor 
unmanned aerial vehicle (UAV) subjected to parameter uncertainties and external 
disturbances is presented. A robust control scheme based on a fast nonsingular terminal 
sliding mode strategy is designed to achieve fast response and excellent tracking accuracy. 
Moreover, a radial basis function artificial neural network with online adaptive schemes to 
estimate unknown aerodynamic parameters and external disturbances is developed to 
improve the control performance and reduce the chattering phenomenon. Numerical 
simulation and experimental results are used to validate the effectiveness of the proposed 
control method. 

Keywords: Quadrotor unmanned aerial vehicle; trajectory tracking control; terminal sliding 
mode; radial basis function neural network. 

1. Introduction 
In the past decades, researches on quadrotor UAVs have gained significant 

interest due to their wide range of military and civil field applications including 
surveillance, reconnaissance, rescue mission, power plant inspection, agriculture 
services, aerial imagery, mapping, drone delivery and law enforcement [1-3]. 
Trajectories tracking control of quadrotor UAVs is not a straightforward task due to 
underactuated and nonlinear coupled characteristics in dynamics of quadrotor. 
Moreover, the quadrotor dynamics is prone to being affected by external disturbances 
and parameter uncertainties such as wind gusts, drag payload and model uncertainties. 
To deal with these problems, various control strategies have been proposed for the 
quadrotor. Linear control methods have been applied to solve the path following and 
attitude stabilization of quadrotor UAVs such as conventional proportional integral 
derivative (PID) and linear quadratic regulators (LQRs) [4-6]. However, these control 
strategies have limited ability to attenuate the nonlinear coupled behavior among 
variables and they are inadequate to guarantee the robustness of the system in the 
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presence of external disturbances and highly nonlinearities. To eliminate the drawbacks 
of linear control methods, a variety of nonlinear flight control techniques have been 
developed recently such as model predictive control [7, 8], backstepping control [9, 10], 
sliding mode control [11, 12]. However, these works provided asymptotically stable 
control laws, which means the tracking errors reach to zero as time goes to infinity. This 
motivates us to investigate the finite time control method on trajectory tracking of 
quadrotor helicopter. 

Due to finite time convergence property, terminal sliding mode control (TSMC) 
methods [13-15], which employ nonlinear sliding surfaces instead of linear surfaces, 
have been developed recently. To reduce the chattering phenomenon, uncertainty 
estimation methods have been developed to reduce the switching gain of the controller. 
With the advantages of simple structure, fast learning algorithm and better 
approximation ability than conventional neural network, RBFNNs have been employed 
to estimate the uncertainties in the quadrotor dynamics in several works [13, 16]. 
However, to the best of the authors’ knowledge, there is no study in literature  
on the incorporation of the Fast Nonsingular Terminal Sliding Mode Control 
(FNTSMC) and Radial Basis Function Neural Network (RBFNN) method to control 
quadrotor helicopters. 

In light of the significant advantages and drawbacks, this paper investigates a 
finite time trajectory tracking control scheme for position and attitude subsystem of 
uncertain quadrotor helicopter based on FNTSMC combined with a RBFNN estimator 
for uncertainties, modeling errors, and bounded disturbances.  

The remainder of this paper is organized as follows. In Section 2, the 
mathematical model of a quadrotor UAV is described. Section 3 introduces the design 
of position and attitude controller for the quadrotor UAV system and stability analysis 
of the closed loop system. Simulation and experimental results are provided to verify 
the effectiveness and robustness of the proposed control method in Section 4 and 
Section 5, respectively. Finally, conclusion remarks and future work are given in 
Section 6. 

2. Quadrotor model and notation  
2.1. Dynamic equations 

Quadrotor is a typical under-actuated, nonlinear coupled system because it has six 
degrees of freedom but only four actual inputs. The six degrees of freedom consist of 
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translational motion in three directions and rotational motion around three axes. The 
two reference frames are shown in Fig. 1: The Earth inertial frame E which is 
represented by E E E EO x y z  and the body-fixed frame B which is represented by B B B BO x y z  

with its origin at the center of the mass. 
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Fig. 1. Quadrotor UAV configuration 

Let the vector  , ,
T

x y zv v v v  denotes the linear velocities in the earth frame and 

vector  , , Tp q r  represents the angular velocity of roll, pitch, and yaw in the body-

fixed frame B. Using Newton-Euler formalism, the dynamic equations of the quadrotor 
system can be described as follows [1, 3, 9, 20]: 
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where   1( , , ) /t d ev t A T R R z m     ,      1 1
2 , , f r f ft I A G I I         ;  

m is the mass;  diag , ,f xx yy zzI I I I  is a symmetric positive definite constant matrix 

express in body-fixed frame with Ixx, Iyy, and Izz being the rotary inertia with respect to 

the Obxb, Obyb, and Obzb axes, respectively; g is the gravity acceleration;  0,0,1 T

ez   is 

the unit vector expressed in the Earth inertial frame; T R  and   3
1 2 3, , T R      are 

the total thrust and the total torque produced by four rotors in free air, respectively; G 
denotes the gyroscopic torque vector; tA  and rA  denote the drag force and torque 

coefficients for velocities and angular velocities of the inertial frame;  
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    denote the virtual 

control signals of the position subsystem and the attitude subsystem, respectively;  
dt and da are total uncertainties and disturbances in the position and attitude  
subsystem, respectively. 

In the view of the under-actuated characteristic of the quadrotor helicopter system, 

the desired attitude signals  , , T
d d d d     were computed based on the virtual control 

signal Pu  and need to be followed by the attitude subsystem. According to the result 

from [11, 17], with the desired yaw angle selected in advanced, the commanded roll and 
pitch angle can be calculated as 
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  (2) 

2.2. Notations 
The power of a scalar as follows: 

    signcca a a   (3) 

where c > 0. The power of a vector is defined as: 

        
1 2, ,...,c c c c n

n          (4) 

3. Control algorithms  
From (5), the compact affine nonlinear equation of the aerial robot system is given 

as the following: 
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                    denote the state 

variables, the control signals, and the uncertainties and the external disturbances  

of the whole system, respectively;  2 1 30 , ( )
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    
  denotes the nominal  

nonlinear function. 
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In this section, a fast finite time sliding mode control algorithm for position and 
attitude tracking of the quadrotor system is presented. The design procedure of the 
FNTSMC includes of two steps [18, 19]. The appropriate fast nonsingular terminal 
sliding surface is designed in the first step. The second step is to develop a control law 
that forces the system states to reach the sliding surface in a finite time.  
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Fig. 2. Cascade control architecture for the quadrotor system 

The terminal manifold for the system defined in (5) is selected as follows [19, 20]: 

  
2 1s X X      (6) 

where α = α1/α2, where α1, α2 are positive odd integers, and α1 < α2. The derivative of 
the ith element of s is given as follows: 

 1
2 1 2 , 1, 2,...,6i i i is X X X i        (7) 

To overcome the singular problem in the conventional terminal sliding mode 
system, motivated by the work [21], we proposed a nonsingular terminal sliding 
manifold, which provided a smooth switch from the terminal sliding manifold to 
conventional sliding manifold as the following: 
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where the smooth switch function  1iX   is defined as follows: 
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