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Abstract  
In this paper, a low-complexity linear group precoding algorithm in the exponential 
correlation channel model is proposed for massive MIMO systems. The proposed precoder 
consists of two components: The first one minimizes the interferences among neighboring 
user groups; The second one improves the system performance by utilizing the ELR-SLB 
technique. Numerical and simulation results show that the proposed precoder has 
remarkably lower computational complexity than its LC-RBD-LR-ZF counterpart, while its 
bit error rate (BER) performance is asymptotic to that of the LC-RBD-LR-ZF precoder as 
the number of groups increases.   

Keywords: MU-MIMO system; massive MIMO system; linear precoding algorithms; nonlinear 
precoding algorithms; lattice reduction algorithm in MIMO system. 

1. Introduction 
Multiple-Input Multiple-Output (MIMO) technology has been widely studied for 

years and already implemented in 4G mobile communication systems [1]. The initial 
research focuses on point-to-point MIMO systems. In recent years, more and more 
researchers are interested in Multiuser MIMO (MU-MIMO) scenarios. However, a 
limitation of MU-MIMO system is that BS is usually equipped with small numbers of 
antenna elements (normally fewer than 10) [2]. Therefore, the spectrum efficiency and 
system capacity are still relatively modest. 

To solve this problem, massive MIMO systems have recently been proposed [1, 3, 
4, 5]. In the Massive MIMO, the number of antennas at the base station (BS) can be up 
to hundreds of antennas (or even thousands) to simultaneously serve dozens of users 
using the same frequency resource. The Massive MIMO system can significantly 
improve the channel capacity, enhance the spectrum utilization efficiency and quality of 
the system [4]. It is expected that Massive MIMO will be a key and a potential 
candidate for the next generation wireless network (e.g., 5G network) [1, 4, 6]. 

Although the massive MIMO systems have numerous advantages, they face a 
number of challenges such as hardware complexity, power consumption, and system 
cost due to the large number of antennas equipped at the BS. Therefore, reducing the 
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complexity of the signal processing algorithms for both uplink and downlink in massive 
MIMO systems is essential. 

In massive MIMO systems, the dimensions of transmit/receive signal vectors are 
normally very large due to large numbers of antennas and users. Therefore, the 
precoding algorithms with low-complexity, e.g. Zero Forcing (ZF), Minimum Mean 
Square Error (MMSE) and Maximum Ratio Transmission (MRT) are considered as 
suitable solutions [7, 8, 9]. The Dirty Paper Coding (DPC) proposed in [10] can achieve 
the capacity region for multiuser precoding. However, its complexity becomes 
significantly large as the system dimensions grow due to the implementation of random 
nonlinear encoding and decoding [11, 12]. 

The combination of lattice reduction algorithms and precoding techniques for the 
downlinks of massive MIMO systems is an important solution to improve the system 
performance. In [13], the authors adopted the Seysen’s lattice reduction algorithm (SA) 
to create a LR-aided precoding technique for the MU-MIMO system. The simulation 
results show that the proposed algorithm gives better performance than the precoding 
algorithm adopting the Lenstra-Lenstra-Lovasz (LLL) method. In [14], a Block  
Diagonalization (BD) aided precoding algorithm was proposed based on the Pseudo-
Inverse Block Diagonalization (PINVBD) presented in [15] and the QR decomposition 
of the channel matrix. Furthermore, in each block, the Lattice Reduction and 
Tomlinson-Halashima precoder (THP) algorithms are applied to improve the quality of 
the system. In [16], the authors proposed the low-complexity Lattice Reduction (LR)-
aided BD algorithms for the MU-MIMO, referred to as LC-RBD-LRZF and LC-RBD-
LR-MMSE. In the authors’ proposal, the first precoding matrix is obtained using the QR 
decomposition instead of the Singular Value Decomposition (SVD). The second 
precoding matrix is computed based on either the ZF or MMSE algorithm to provide the 
corresponding LC-RBD-LR-ZF or LC-RBD-LR-MMSE precoder. It was shown in [16] 
that the precoders significantly improved the system performance, while reducing the 
computational complexity compared to the original BD one. However, the 
computational complexities of the precoders presented in [14] and [16] are still very 
high due to the adoptions of the QR decomposition and THP algorithms.  

In this paper, we propose a low complexity precoding algorithm for massive 
MIMO systems using the exponential correlation channel model. Based on the linear 
precoding algorithms and the lattice reduction technique, we propose the Zero Forcing 
group precoder combining with the low-complexity lattice reduction technique (or ZF-
GP-LR precoder for short). In our proposal, the channel matrix from the BS to all users 
is divided into L groups (i.e., sub-matrices), each of which contains a number of 
rows of the channel matrix. The sizes of the sub-matrices are all the same. The proposed 
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precoding matrix is designed to have two components: The first one minimizes the 
interferences from neighboring user groups by using QR decomposition of the sub-
matrices; The second one enhances the system performance thanks to the combination 
of the Zero Forcing precoding and the ELR-SLB lattice reduction algorithms. 
Numerical and simulation results show that the ZF-GP-LR precoder has remarkably 
lower computational complexity than the LC-RBD-LR-ZF in [16], whereas its BER 
performance is asymptotic to that of the LC-RBD-LR-ZF as L increases. Besides, the 
complexity of the proposed algorithm grows proportionally to the number of groups. 
Simulation results also show that the spatial correlation adversely affects the system 
performance no matter which precoder is adopted. Fortunately, the proposed precoder 
still works well as compared with the LC-RBD-LR-ZF under such circumstances. 

The rest of this paper is organized as follows. In Section 2, we present massive 
MIMO system model. The LC-RBD-LR-ZF and element-based lattice reduction (ELR) 
algorithms are reviewed in Section 3. The linear group precoding algorithm in 
combination with ELR-SLB technique is presented in Section 4. Simulation results are 
evaluated in Section 5. Finally, conclusions are drawn in Section 6. 

Notation: The notations are defined as follows: Matrices and vectors are 
represented by symbols in bold; (.)T  and (.)H  denote the transpose and conjugate 
transpose, respectively. We denote | |a  for the absolute value of scalar a and det(B) for 
the determinant of B.  rounds the real and imaginary parts of the complex number   
to the nearest integers. {.}Tr  is the trace of a square matrix.  

2. The downlink channel model in massive MIMO system 
Let us consider a massive MIMO system, where the BS is equipped with TN  

antennas to simultaneously serve K users, each user has uN  antennas. Thus, the total 

number of antennas of K users is R uN KN . In addition, the Channel State Information 
(CSI) is assumed to be perfectly known at the BS. In reality, although the theoretical 
distance is guaranteed, there till exist certain amounts of correlation among the 
antennas. These correlation can be modeled based on the actual measurements. 
Therefore, spatial correlations always exist among transmit and receive antennas, 
thereby degrading the system performance. In order to take into account the effect of the 
spatial correlation, the channel model is given by the following equation [17]: 

 1/2 1/2 ,H R H Rcorr R T   (1) 

where 
1 2

( ) ( ) ...( ) R T

K

T N NT T T
corr corr corr corr

   H H H H   is the channel matrix with 

antenna correlations, TR  is the T TN N  transmit correlation matrix and RR  is the 
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R RN N  receive correlation matrix. H is the uncorrelated channel matrix, whose 

entries, ijh , are complex Gaussian random variables with zero mean and unit variance. 

In this paper, we investigate the massive MIMO system in correlated channels using the 
exponential correlation matrix model [18]. In this model, the components of TR  and 

RR  are determined as follows: 
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where r ≥ 0 is the correlation coefficient between any two neighboring transmit or 
receive antennas. Let 1uN

u
x   represents the transmitted signal vector of the uth user. 

The received signal vector for the uth user, (u = 1, 2,…, K), 1uN
u

y   is given by 

 , , , , , ,
1 1,

K K

corr u corr u k u corr u corr u u corr u corr u k u
k k k u  

    y H W x n H W x H W x n  (3) 

where ,
u TN N

corr u
H  is channel matrix from the BS to the uth user; ,

T uN N
corr u

W   

denotes the precoding matrix for the uth user; 1uN
u

n   is noise vector at the uth user. 
Note that, in (3), , ,corr u corr u uH W x  is the desired signal component of the uth user, 

, ,
1,

K

corr u corr k k
k k u 
 H W x  represents unwanted signals at the uth user. 

Let 1
1 1

R
T NT T T

K
   y y y y   be the overall received signal vector for all 

users. Then, the relationship between the transmitted signal vector, 1RN x   and the 
received signal vector y can be expressed as 

 ( ),corr corr y H W x n   (4) 

where corrH  is channel matrix from BS to all K users, defined in (1); T RN N
corr

W  is 

the precoding matrix for all users; 1RN n   is noise vector at the K users, whose entries 
are assumed to be identical independent distributed (i.i.d) random variables with zero 
mean and variance 2

n .  

3. Review of LC-RBD-LR-ZF and element-base lattice reduction 
(ELR) algorithms 
A. LC-RBD-LR-ZF algorithm 

The LC-RBD-LR-ZF algorithm is proposed for Multiuser MIMO (MU-MIMO) 
system using the uncorrelated channel model [16]. This means that the channel matrix 

from BS to all users is 
1 2

( ) ( ) ...( ) R T

K

T N NT T T
   

   H H H H  . The precoding matrix 
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of the LC-RBD-LR-ZF algorithm is expressed as follows: 
 ,a bW W W   (5) 

where 1 2, ,..., ;T TN KNa a a a a
K u

   W W W W W  is the precoding matrix for the uth user, 

created by applying QR decomposition to the channel matrix ,{ }
u uuN H I H ; the 

matrix 
1 1 1

( ) ...( ) ( ) ...( )
u u u K

TT T T T
     

   H H H H H is obtained by removing ( )
u

T
H  

from H ; 
2

R n

s

N
E


  ; u R uN N N  ; and sE is the energy of each transmitted signal 

symbol. The QR decomposition of 
u

H is given by 

 .
u u u H Q R   (6) 

Then, the precoding matrix a
uW  for the uth user is obtained as  

 ( 1: , 1: ).a
u u u u T u u TN N N N N N    W Q   (7) 

After getting a
uW , the effective channel matrix for the uth user is expressed as 

 ˆ ,
u u

a
u H H W   (8) 

which is subsequently converted into the LR domain by using the LLL algorithm in [19] as 
 ˆ ,ˆ

u u u

LR T
  H U H   (9) 

where 
u

T
U is a unimodular matrix with integer elements ( det | | 1

u

T
 U  ); ˆ

u

LR
H  is the 

channel matrix in the LR domain.  
The precoding matrix b

uW  for the uth user is created by applying the ZF algorithm 

on ˆ
u

LR
H . Finally, the precoding matrix bW  for all users is expressed as follows: 

 

1

2

0 0
0 0

.

0 0

T R

b

b
KN Nb

b
K



 
 
  
 
 
  

W
W

W

W





  

  (10) 

It can be seen that the LC-RBD-LR-ZF precoder involves numerous QR 
decomposition operations. Besides, the size of the matrices aW  and bW  increases 
linearly with the number of users. Therefore, this precoder is suitable for small 
size MU-MIMO systems. For massive MIMO systems with large number of antennas at 
the BS to serve dozens of users, the complexity of the LC-RBD-LR-ZF precoder 
becomes so high that it could hardly be applicable. 
B. Element-based Lattice Reduction (ELR) Algorithm  

The ELR algorithm was proposed by Qi Zhou and Xiaoli Ma in [20]. The 
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algorithm aims at minimizing the elements on the main diagonal of the error covariance 
matrix, which is defined as [20]: 

 1( ) ,H C H H   (11) 
where A BN NH  . As shown in [20], the ELR algorithm gives better performance than 
the SA and LLL lattice reduction algorithms. Moreover, the computational complexity 
of the ELR algorithm is significantly reduced compared to those of the SA and LLL 
ones. Therefore, the ELR algorithm is a suitable candidate for large MIMO systems. 

The ELR algorithm has two versions: 1) element-base lattice reduction shortest 
longest basis (ELR-SLB); and 2) the element-base lattice reduction shortest longest 
vector (ELR-SLV). Among the two, the ELR-SLB algorithm minimizes all elements 
on the diagonal of C . The algorithm completes when all the diagonal elements of C  are 
irreducible. On the contrary, the ELR-SLV algorithm selects the largest element on the 
diagonal of C  to reduce. The algorithm is finished when the largest element on the 
diagonal of C  is irreducible. To balance the computational complexity and system 
performance, in this paper, we adopt the ELR-SLB algorithm as a part of our proposed 
precoder. For convenience, the ELR-SLB algorithm is summarized in Algorithm 1. 

Algorithm 1 The ELR-SLB algorithm 
1. Input , , A BN N

A BN N H    

2. Compute 1( )H C H H  and set 
BN T I   

3. Do: 
4. Find the largest element , .k kC   

5. Compute , i k    

6. Compute 
2 * *

, , , , , , ,i k i k i i i k i k i k i kC C C          and 

chooses index 1, , ,arg max .
Ri N i k i ki      

7. If: , 0 , [1, ]i k Ai k N     go to step 12 

8. ' ' '
,k k i k it t t    

9. ,k k i k ic c c      

10. *
,

k k i
i kc c c      

11. While (true): 
12. Output: 1( )HT T , and LR H HT   
 

Algorithm 2 The ZF-GP-LR precoding algorithm 
1. Input , ,T R orrcN N H  
2. Decide the number of user groups L and compute the 
size of the sub-matrices. 
3. Generate the matrix 1

corrH  

4. Apply QR decomposition to 1
extH   

5. Generate the matrix 
1

a
GPW   

6. Repeat Step 3 to Step 5 for the next user group until 
the precoding matrices 

l

a
GPW  are obtained for all user 

groups. 
7. Generate the matrix a

GPW  as in (14). 

8. Generate the matrix 
1

1
1

a
corr GPH H W  

9. Convert 1( )TH  into 1
LRH  by utilizing Algorithm 1. 

10. Create the matrix 
1

b
ZFW   

11. Repeat Step 8 to Step 10 for the next user group  
until the precoding matrices  

l

b
GPW  are obtained for all user groups. 

12. Generate the matrix b
GPW  as in (22). 

13. Output: ,GP corr W   
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4. Proposed ZF-GP-LR precoder 
A. Proposed ZF-GP-LR precoder 

In this section, based on the method in [16], we present a linear group precoding 
method in combination with the low complexity ELR-SLB technique for massive 
MIMO systems using the exponential correlation channel model. Block diagram of the 
proposed ZF-GP-LR precoder is described in Fig. 1. 

The overall precoding matrix for all users is defined as follows: 

 ,a b
corr GP GP GPW W W   (12) 

where ( )T TN LNa
GP

W  is designed to minimize the interferences from other user groups 
and ( )T RLN Nb

GP
W   is designed to enhance the system performance.  

group 
division

...

...

...

x

Quantize
x.  .  .

.  .  .

.  .  .

n

y

 
Fig. 1. Block diagram of the proposed ZF-GP-LR precoder 

In the first step, the correlation channel matrix, corrH  is divided into /( )RL L N   
groups (i.e., sub-matrices) ( 1,2,..., )TNl

corr l L  H   where γ is an integer greater than 
one. The first group, 1

corrH , consists of the first row to the γth row of the channel matrix 

corrH ; the second group, 2
corrH , is from the (γ + 1)th row to the 2γth row; and the last 

group, L
corrH , is from the ( )RN  th row to the RN th row. Specifically, the correlation 

channel matrix from BS to all users can be represented as follows: 

 

11 12 1

1

1 2

( 1)1 ( 1)2 ( 1)

( )1 ( )2 ( )

1 2

.

T

T

T

R R R T

R R R T

N

corr

N

N
corr

N N N N

L
corr

N N N N
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  (13) 
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In the second step, the precoding matrix a
GPW  is designed to have the following form 

 
1 2

... ,
L

a a a a
GP GP GP GP   W W W W   (14) 

where 
l

a
GPW is the precoding matrix for the lth group.  

To obtain 
l

a
GPW , let us first construct the channel matrix ( ) ( )R TN Nl

corr
 H   consisting 

of the channel coefficients for all groups except those for the lth group as the following 

 1 1 1( ) ...( ) ( ) ...( ) .
Tl T l T l T L T

corr corr corr corr corr
    H H H H H   (15) 

After that an extension of l
corrH  is constructed as follows: 

 { , },
l

l l
ext N corrH I H     (16) 

where ( ) ( ) ,R R TN N Nl
ext l RN N       H  and 

2

.R n

s

N
E


    

Applying QRD to l
extH , we get 

 ,l
ext l lH Q R    (17) 

where ( ) ( )l T l TN N N N
l

  Q   is an unitary matrix and lR is an upper triangular matrix. From 

lQ  the precoding matrix a
GPlW  for the lth group is constructed as 

 ( 1: , 1: ).
l

a
GP l l l T l l TN N N N N N    W Q    (18) 

After getting all the weight matrices , ( 1, , )
l

a
GP l LW  , we define the effective 

channel matrix for the lth group as follows: 

 .
l

l a
l corr GPH H W    (19) 

The channel matrix ( )lH in (19) is then transposed and converted into the matrix 
LR
lH  in the LR domain by using the ELR-SLB algorithm to give 

 ,LR T
l l lH U H     (20) 

where .TNLR
l

 H   The weight matrix 
l

b
ZFW for the lth group is created by applying the 

ZF procedure to LR
lH  as follows: 

     
1

.
l

H Hb LR LR LR
ZF l l l


    

W H H H      (21) 

Finally, the precoding matrix b
GPW  and unimodular matrix b

GPU  for all groups can 
be obtained as follows: 
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1

2

1

2

0 0 0 0
0 0 0 0

, .

0 00 0
L

b T
ZF

b T
ZFb b

GP GP

Tb
LZF

   
   
       
   
     

W U
W U

W U

UW

 
 

      


   (22)  

In order to make sure that the transmit power is unchanged after the transmit 
signals are precoded, the normalized power factor GP  is computed to be 

 
  

.R
GP Ha b a b

GP GP GP GP

N

Tr
 

 
  

W W W W
   (23) 

The proposed algorithm ZF-GP-LR is summarized in Algorithm 2. At the user 
side, the received signal vector for all groups can be expressed as 

 ( ) / .corr corr GP y H W x n    (24) 

Using y in (25), the estimated signal vector is given by 

= x + 2  (25) 

where 111/ 2, (1 ),
2

RN
z L

m j R  
   1  is a column vector with RN  ones, [ ]zQ a  

denotes the operation that rounds a to the nearest integer, m is the number of bits in a 
transmitted symbol. 

From (25) it follows that x is decoded correctly if 1
2z

GP

Q


 
 

 

n 0 . This means that 

for a given noise power, the component 1/ GP  will be the factor that determines the 

system performance. In Fig. 2 and Fig. 3, the empirical cumulative distribution 
functions (ECDFs) of 1/ GP  are shown for the LC-RBD-LR-ZF and ZF-GP-LR 

precoders in the case of exponential correlation channel at the BS side (i.e., 
1/2

corr TH H R ). The simulation results show that 1/ GP  increases as the correlation 

coefficient increases. For the same system configuration, the LC-RBD-LR-ZF precoder 
generates smaller 1/ GP  than the ZF-GP-LR precoder. In addition, the more sub-groups 

are generated, the smaller 1/ GP  becomes. This means that the system performance will 

be degraded as the spatial correlation increases. Besides, the LC-RBD-LR-ZF precoder 
will probably outperform the ZF-GP-LR precoder in the aforementioned scenarios. 
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Fig. 2. Empirical CDF of 1/ GP  for the LC-
RBD-LR-ZF and ZF-GP-LR precoders with 

60, 1, 60, 4,6T uN N K L     and 10, 
0.5r   
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1/

GP
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Fig. 3. Empirical CDF of 1/ GP  for the LC- 
RBD-LR-ZF and ZF-GP-LR precoders with 

60, 1, 60, 4,6T uN N K L     and 10,  
0.7r   

B. Computational Complexity Analysis 
In this sub-section, we evaluate the computational complexity of the proposed 

algorithm and compare it with that of the LC-RBD-LR-ZF algorithm in [16]. The 
complexities are evaluated by counting the necessary floating point operations (flops). 
We assume that each real operation (such as an addition, a multiplication or a division) 
is counted as a flop. Hence, a complex multiplication and a division require 6 flops and 
11 flops, respectively. It is worth noting that the QR decomposition of an m n  
complex matrix requires 2 26 4mn mn n n    flops. Based on the above assumptions, the 
computational complexities of the proposed algorithms ZF-GP-LR is given by: 

 ( ).a b cF F F F flops      (26) 

where aF  and bF  are the number of flops needed to calculate a
GPW  and b

GPW , respectively; 

cF  is the total complexity of the multiplication two matrices a
GPW  and a

GPW . 

In the proposed algorithm, to find the precoding matrix 
1

a
GPW  for the first user 

group, we have to perform the QR decomposition to the correlation channel matrix 
( ) ( )R R TN N Nl

ext
    H  . So the complexity of this work is given by: 

 
2 2

1 6( )( ) 4( )( ) ( )
( ) ( ).

R R T R R T R T

R T

F N N N N N N N N
N N flops

    


         
 




  (27) 

The QR operation must be carried out L times. Hence, the total number of flops to 
find the precoding matrix a

GPW  is calculated as follows: 



 
 
 
 
Journal of Science and Technique - N.205 (3-2020) - Le Quy Don Technical University 
 
 

 66



2 2
1 1 6( )( ) 4( )( ) ( )

( ) ( ).
R R T R R T R T

R T

F L F L N N N N N N N N

N N flops

    



           
  


 (28) 

The number of flops to calculated b
GPW  is represented as follows: 

 2 3 4 ( ),bF F F F flops      (29) 

where 2F  is the number of flops to find lH , 3F  is the computational cost for all groups 

when the ELR-SLB algorithm is adopted to find LR
lH , and 4F  is the total number of 

flops to find the precoding matrix 
l

b
ZFW , respectively. Based on the above definitions, 

2F  is calculated as follows: 

 2
2 (8 2 ) ( ).T TF L N N flops      (30) 

In this paper, we apply the ELR-SLB algorithm to convert the channel matrix 
( )T

lH into the matrix LR
lH . Therefore, 3F  is given by 

 3 5 6 ( ),update SLBF F F F flops      (31) 

where 5F  and 6F  are the number of flops to calculate    
1HT T

l l


    

C H H    and 

LR T
l l lH U H  , respectively. update SLBF  is computational cost of the ELR-SLB algorithm’s 

update operation, which can only be obtained from the computer simulation. Note that 
every update operation in the ELR-SLB algorithm requires (16γ + 8) flops. The 
computations of ik  and ,i k  in Step 5 and Step 6 in Algorithm 1 need 4 flops and 10 

flops, respectively. Therefore, update SLBF   is calculated as follows: 

   (16 8) 4 10 ( ).update SLBF CUpdate CLamda CDelta flops          (32) 

where CLamda  is the number of updates ik , CDelta  is the number of updates ,i k , 

CUpdate  is the number of updates '
kt , kc  and kc  from Step 8 to Step 10 in Algorithm 1. 

Hence, the total number of flops to convert the channel matrix ( )T
lH  into the matrix 

LR
lH  is calculated as follows: 

 3 2 2
3 (8 16 2 2 ) ( ).T T update SLBF L N N F flops            (33) 

The number of flops to find the precoding matrix 
l

b
ZFW  for all group is given by  

 3 2 2
4 (8 16 2 2 ) ( ).T TF L N N flops         (34) 

 Therefore, the total number of flops to find the precoding matrix b
GPW  is 

calculated as follows: 
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2 3 2 2

2 3 4

3 2 2

(8 2 ) (8 16 2 2 )

(8 16 2 2 ) ( ).
b T T T T update SLB

T T

F F F F L N N L N N F

L N N flops

     

   
      

 

  

 
 (35) 

 The number of flops for cF  is calculated by  

 3 28 2 ( ).c T TF LN N flops     (36) 

 From the above analysis results, the total number of flops for the ZF-GP-LR 
algorithm is given by 



2 2

2 3 2 2

3 2 2 3 2

6( )( ) 4( )( ) ( )

( ) (8 2 ) (8 16 2 2 )

(8 16 2 2 ) 8 2 ( ).

a b c

R R T R R T R T

R T T T T T update SLB

T T T T

F F F F

L N N N N N N N N

N N L N N L N N F

L N N LN N flops

    

      

   


  

          
         

     


 (37) 

 The complexities of the precoding algorithms ZF-GP-LR and LC-RBD-LR-ZF are 
summarized in Tab. 1. From Tab. 1, we can see that the computational complexity of the 
ZF-GP-LR proposed algorithm is a third-order function of TN . In contrast, the 
computational complexity of algorithm LC-RBD-LR-ZF is a fourth-order function of TN . 

5. Simulation results 
 In this section, we compare both the computational complexity and the system 
performance of the proposed algorithm with those of the LC-RBD-LR-ZF algorithm in [16]. 
 Figure 4 demonstrates the computational complexities of the ZF-GP-LR and LC-
RBD-LR-ZF precoders. In this scenario, TN  is varied from 40 to 100 transmit antennas. 
It can be seen from the figure that the complexities of the ZF-GP-LR precoder are 
significantly lower than those of the LC-RBD-LR-ZF. For example, at 60R TN N   
antennas, the complexities of the ZF-GP-LR algorithm with L = 2; 4 and L = 10 are 
approximately equal to 3.04%, 5.52% and 15.21% of the LC-RBD-LR-ZF precoder’s 
complexity, respectively. The computational complexity of the proposed algorithm 
increases as the number of groups L increases. However, the reduction in complexity is 
obtained at the cost of performance degradation as illustrated in the figures 5, 6 and 7. 
 BER performances of the proposed algorithms ZF-GP-LR and the LC-RBD-LR-
ZF precoders are illustrated in Fig. 5 to Fig. 7. In Fig. 5, the system is assumed to work 
in an uncorrelated massive MIMO channel with the following parameters: 

60R TN N  , and 4-QAM modulation. The channels between the BS and all users are 

assumed to be semi-static Rayleigh Fading channel, the entries are i.i.d with zero mean 
and unit variance. The numbers of user groups for the ZF-GP-LR precoder are L = 4; 6 
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and 10. As can be seen from Fig. 5, in the low and medium SNR regions, the BER 
curves of the proposed ZF-GP-LR precoder get closer to the LC-RBD-LR-ZF precoder 

as L increases. Specifically, at BER = 310 , the proposed algorithm suffers from 
performance degradations of around 0.6 dB, 0.7 dB and 0.9 dB in SNR respectively for 
L = 10; 6 and 4 as compared to the LC-RBD-LR-ZF. However, at sufficiently high 
SNRs, the proposed algorithm provides better system performance than the LC-RBD-
LR-ZF algorithm. 

In Fig. 6 and Fig. 7, we simulate the system performance in the case exponential 
correlation channel at the BS side (i.e., 1/2

corr TH H R ) with the correlation coefficient  

r = 0.5 and r = 0.7. Other parameters are the same as those used to generate Fig. 5. 
Similar to the results in Fig. 5, the results in Fig. 6 and Fig. 7 show that, at low SNR, the 
performance of the proposed ZF-GP-LR precoder approaches that of the LC-RBD-LR-
ZF algorithm when L increases. Besides, at high SNR, the proposed algorithm 
outperforms its LC-RBD-LR-ZF counterpart. From Fig. 6 and Fig. 7, it can also be 
observed that the spatial correlation has an adverse effect on the system performance no 
matter which precoder is employed. 

Tab. 1. Computational complexity comparison 

Precoding 
algorithms 

Complexity (flops) 
Computational 

complexity 
level 
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LR-ZF 

algorithm 
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It is worth emphasizing that as the number of antennas at the user side is greater 
than 1, i.e., 1uN  , the correlation channel matrix becomes 1/2 1/2

corr R TH R H R . In such a 
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case, performances of all the precoders under consideration are further degraded. 
However, the behaviors of the BER curves are still the same as those illustrated in Fig. 5 
to Fig. 7. To balance between the computational complexity and system performance, L 
should be selected by / 2R uN N  when K is an even number. Conversely, K is an odd 

number, L should be selected by the adjacent divisor to the greatest divisor of K. 

 

Fig. 4. Compare the complexity of the 
proposed algorithm and the LC-RBD-LR-ZF 

algorithm in [16]. 

Fig. 5. The system performance with 
60, 1, 60, 4,6T uN N K L     and 10  

in the case of uncorrelated channel. 
 

 
Fig. 6. The system performance with 60,TN   

1, 60, 4,6uN K L    and 10 in the case of 
correlated channel use the exponential 

correlation chanel model, 0.5r  . 

Fig. 7. The system performance with 60,TN   

1, 60, 4,6uN K L    and 10 in the case of 
correlated channel use the exponential 

correlation chanel model, 0.7r  . 
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6. Conclusions 
In this paper, we propose the ZF-GP-LR precoder which is a ZF-based group 

precoding algorithm in combination with the low-complexity ELR-SLB technique to 
improve the BER performance of massive MIMO systems. Performance and complexity 
of the proposed precoder are then investigated in massive MIMO systems using the 
exponential correlation channel model at the BS side. It is shown that the  
ZF-GP-LR precoder has remarkably lower complexity than its LC-RBDLR-ZF 
counterpart. In addition, the BER performance of the proposed ZF-GP-LR approaches 
those of the LC-RBD-LR-ZF algorithm when L increases in the low and medium SNR 
regions. The proposed precoder even outperforms the LC-RBD-LR-ZF in the high SNR 
region in both correlated and uncorrelated channels. As a consequence, the proposed 
ZF-GP-LR precoder can be a potential digital beamforming technique at the base 
stations of massive MIMO systems. 
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TIỀN MÃ HÓA TUYẾN TÍNH THEO NHÓM  
CHO CÁC HỆ THỐNG MASSIVE MIMO DƯỚI ĐIỀU KIỆN  

TƯƠNG QUAN KHÔNG GIAN HÀM MŨ 

Tóm tắt: Trong bài báo này, thuật toán tiền mã hóa tuyến tính theo nhóm trong mô hình 
kênh tương quan hàm mũ được đề xuất cho các hệ thống massive MIMO. Bộ tiền mã hóa đề 
xuất gồm hai thành phần: Thành phần thứ nhất được thiết kế để giảm thiểu can nhiễu từ những 
nhóm người dùng lân cận; Thành phần thứ hai được thiết kế để cải thiện hiệu suất của hệ thống 
bằng cách áp dụng kỹ thuật rút gọn giàn ELR-SLB. Kết quả tính toán và mô phỏng cho thấy 
rằng, bộ tiền mã hóa đề xuất có độ phức tạp tính toán thấp hơn đáng kể so với bộ tiền mã hóa 
LC-RBD-LR-ZF trong khi tỷ lệ lỗi bít (BER) gần tiệm cận với bộ tiền mã hóa LC-RBD-LR-ZF 
khi số lượng nhóm tăng lên. 

Từ khóa: Hệ thống MU-MIMO; hệ thống massive MIMO; thuật toán tiền mã hóa tuyến 
tính; thuật toán tiền mã hóa phi tuyến; thuật toán rút gọn giàn trong hệ thống MIMO. 
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