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Abstract 
This paper presents the tri-rotor UAV dynamic modeling and divides it to the control loops 
under the condition that the response of the inner loop is faster than the response of the outer 
loop. From diagram of the control loops, attitude, velocity and position controllers have been 
synthesized based on feedback linearization and module optimization methods. The stability 
of the attitude loop is proved by Lyapunov theory. Finally, the simulation results on 
MATLAB/Simulink confirm that the synthesized controllers are realizable in all flying modes 
with control parameters such as the settling time is about 5-8s and overshot is approximately 
equal to zero. 

Symbol 
Parameters Unit Mean 

m kg Mass of quadrotor 

Ixx kg.m2 The body moment of inertia around the x-axis  

Iyy kg.m2 The body moment of inertia around the y-axis 

Izz kg.m2 The body moment of inertia around the z-axis 

g m.s-2 Gravitational acceleration 

l m The distance between the center of the tri-rotor and the center of a propeller 

ωmi rad/s Speed of propeller rotors 

αi rad Tilt angles of the rotor 

Kt  Drag moment constant  

Kf  Thrust constant 

Keywords: Tri-rotor UAV; feedback linearization; dynamic model; nonlinear control; module 
optimization.  

1. Introduction 
The tri-rotor UAV is a vertical take-off and landing aircraft with 3 rotors in 

which rotors’s angles can change to allow the flights are more flexible compared to 
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other UAVs such as quadrotor, six-rotor, etc. However, dynamics of tri-rotor UAVs 
are highly coupled and nonlinear, which makes the control design of these UAVs be 
the key for successful flight and operations [5]. Compared to quadrotor systems, the 
yaw control of the tri-rotor systems is a further challenge due to the asymmetric 
configuration of the tri-rotor. For example, the reactive yaw moment in the quadrotor 
system is decoupled from roll and pitch moment, so which simplifies the yaw control 
design. In contrast, the yaw, roll and pitch moments are highly coupled in the tri-rotor 
system. Moreover, the attitude control of these tri-rotors is more complicated 
compared to quadrotor system due to the gyroscopic and Coriolis terms. The design of 
the control system is more complicated with coupling between attitude and position 
control loops. 

The design of tri-rotor control systems is published in many works. The authors in 
[6] propose a tri-rotor configuration in which all rotors of the system tilt simultaneously 
to the same angle to attain yaw control. The control design focuses only on the attitude 
stabilization and neglects the position control problem. In [5], the authors propose a tri-
rotor system of which the control design is implemented by four loops for attitude 
control and guidance. This control design is complicated with coupling between attitude 
and position control loops and high computation load. The control algorithm in [7] is 
based on nested saturation for decoupled channels from which the attitude control and 
position control of the UAV are designed independently. The authors in [10, 13] are 
concerned with the control design of nonlinear systems using feedback linearisation. 
The paper highlights the destabilisation effect of unmodelled actuator dynamics when 
applying feedback linearisation. To overcome this difficulty, a two stage feedback 
linearisation technique is proposed to compensate for actuator dynamics and 
subsequently linearise nonlinear systems. 

From the overview, the problem of tri-rotor control system design is a challenging 
problem because the dynamics has highly coupled and nonlinear. This paper presents a tri-
rotor control system design approach based on the dynamic model decomposition, 
feedback linearization. To simplify the implementation of feedback linearisation, several 
assumptions relating to the model of the nonlinear system and its operating point are 
considered. One of these assumptions, which is widely accepted in literature, is to 
neglect actuators dynamics [9, 11, 12]. 
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2. Tri-rotor dynamics 
Remind the dynamic equation system of tri-rotor in [1, 2] with 2 30, 0   , the 

translational acceleration equation system (1) and the angle acceleration equation system (2): 
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Rewrite equations (1) and (2) with (3), we receive (4) and (5): 
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In this paper, control system is synthesized with the following conditions: 

12 2     . Equation systems (4) and (5) can be written in a state space form 

 fX X,u  where 9 ( , , , , , , , , )Tx y z       X       is the state vector with state 

variables which are set following: 1 3;  ;X x X z   2 4 5;  ;  ;X y X X     

6 ;X  7 8 9  ;   ;    X X X       . System of equations (3), (4) in the state space  

form in (6). 

The decomposition 
technique is used to 
transform the state space 
equations (6), into two 
subsystems, in which the 
subsystem M1 consists of 
equations describing the 
state of the Euler angles 
with the inputs are variables 
u3, u4, u5 (7): 
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Fig. 1. Diagram shows the links between subsystems M1 and M2. 
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and the second subsystem M2 consists of the translational motion equations of tri-rotor 
with the inputs are the outputs from the subsystem M1 and inputs u1, u2 (8): 
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The equation systems (7), (8) can be described by a diagram which shows the 
links between subsystems M1 and M2, also between state variables of M1 and M2  
(Fig. 1). The diagram in Fig. 1 will be the basis for synthesizing tri-rotor control loops.  

3. Design of tri-rotor control system 
This section presents the synthesis of three controllers for the attitude control 

loop, translational velocity control loop and the position loop. The steps of the 
controller synthesis present below.  

From model shown in Fig. 1, the authors proposed a nested control structure for 
tri-rotor UAV control. The block diagram of the nested control loops is shown in Fig. 2. 
In which the inner loop C1-M1 is the control loop for controlling and stabilizing the 
Euler angles, the middle loop C2-M2 is the translational velocity control loop and the 
outer loop C3 is the position control loop. With this structure, it is assumed that the 
inner control loop responses must be much faster than the outer loop responses. 
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Fig. 2. Nested control structure of the tri-rotor UAV 

The following shows the synthesis of controllers for the above control loops based 
on feedback linearization and module optimization. The synthesis is performed in the 
order C1, C2 and C3. 
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3.1. Synthesis of attitude control system  
The dynamic equation system of M1 subsystem is shown in (7). The attitude loop 

stabilizes the Euler angles following a desired vector ( , , )  d d d . To synthesize the 

controller C1 for this loop, use the feedback linearization method. 
From the expression (7), applying the feedback linearization [3], [4] to obtain a 

linear system (9) with new input variables * * *
3 4 5, ,u u u : 
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Substituting (9) into the Eq. (7), we received the Eq. (10): 
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In order to obtain a linear system, the new control variables * * *
3 4 5, ,u u u  are selected 

in the right side of the equation system (10), which becomes a linear system. For this the 
following conditions must be fulfilled: 
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with the unknown constant parameters K3, K4, K5. Evaluation of (12) yields the 
nonlinear feedback for linearization: 
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Substituting (9), (12) into (7) turns into the linear and decoupled system (13): 
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It can be shown that the linearized closed-loop system is stable even for non-
modeled components. For that purpose, consider that inputs * * *

3 4 5 0u u u    and the 

operating point 7 8 9 0X X X   . A Lyapunov function  7 8 9, ,V X X X  is defined 

which is C1 and positive defined around the operating point: 

 2 2 2
7 8 9 7 8 9( , , ) ( ) / 2V X X X X X X     (14) 

Combining (10) with (11), (13), the derivative of the last Lyapunov function has 
the following form: 

 2 2 2
7 7 8 8 9 9 3 7 4 8 5 9V X X X X X X K X K X K X           (15) 

The derivative is negative defined if K3, K4, K5 < 0, and this guarantees that the 
operating point of the linearized closed-loop system is asymptotically stable. 

Substituting variables 4 7 5 8 6 9 ,   ,   X X X X X X      into (13), we have: 
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If 4 5 6; ;d d dX X X  are the desired angles, select the linear controllers: 
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5 5 6 6du X X  for (13) with constants 

3 5 6; ;   . Using Laplace transform with (16), we received the transfer functions for 
roll, pitch and yaw channels, respectively: 
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The dynamics of these closed-loop systems can now be easily defined by 
adjustment of the parameter pairs 3 3 4 4 5 5,  ,  ( ,  )  ( , )( ) ,  K K K   , respectively, with 
the only limitation that the parameters K3, K4, K5 must be negative. 
3.2. Synthesis of the translational velocity control system C2 

If the attitude control loop is sufficiently fast, i.e. the desired values of the roll, 
pitch and yaw angles 4 5 6; ;d d dX X X  are achieved very fast compared to the outer 
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translational velocity control loop. Therefore, the closed inner attitude control loop can 
be approximately considered as a static block that just transfers the desired values of 
roll, pitch and yaw angles to the next subsystem M2. The M2 model can be rewritten in 
simple form: 

 

5 6

5
1

6 4 6 4 5
2

5 4

3
6 4 6 4 5

2

1

2

1

15

2

4

 cos( )sin( ) /
sin( ) /

(cos( )cos( ) sin( )sin( )sin( )) /
cos( )sin( ) /

(cos( )sin( )+ sin( ) cos( )sin( )) / +
+cos( )cos( ) /

d d

d

d d d d d

d d

d d d d d

d d

X X
XX

X X X X X
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X
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X X X X X X
X X

m
u m

u m
u m

u m
u



 
 

 
  
  
 
  










gm

 
 
 
 
 
 
 
 
 
 

 




 (18) 

where 4 5 6,  ,d d dX X X  and 1 2,  u u  are input variables. Eq. (18) can be expressed by the 

following set of nonlinear differential equations  

 
1 1 1 4 5 6

2

1 2

1 2

1

2 2 4 5 6

3 23 3 4 5 6

,  , ,

,  

( , )

( , ), ,

,  ,( , ),

d d d

d d d

d d d

X u f X X X

X u f X X X

X u f X X

u u

u

X

u

u u

 

 

 

 
 
 

 (19) 

with the new input variables 1 2 3, ,u u u   , that depend on the five input variables in a 
nonlinear form. However, regarding these new input variables, the control task is very  
simple because it comprises the control of three independent systems of first order 
which might be solved by pure proportional controllers, respectively: 

 1 1 1 1 2 2 2 2 3 3 3 3       ( ); (       ); ( )       d d du b X X u b X X u b X X         (20) 

Here, the parameters of the controllers 1 2 3,  ,  b b b  can be selected in a way such that 
allows the outer loop are fast enough but not too fast compared to the inner attitude 
control loop. From the above conditions and equations, the main task of designing  
these controllers are to determine the relationship between 4 5 6 1 2,  , ,  ,  d d dX X X u u  and 

1 2 3,  ,  u u u   .  

We could know that any desired velocity vector can be achieved without any yaw 
rotation and therefore we can set 6 0d dX   , so (19) can be rewritten bellow: 
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 (21) 
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From (21) we receive: 
 15 1sin( )  /d mX u u   (22) 

 4 12 5 42cos( ) cos( )sin( )d d dmu X uXu X   (23) 

 4 2 13 4 5( )   sin( ) + cos( )cos( )  d d dm u ug X X Xu   (24) 

Take the square of the two equations (23), (24) and add them together, we receive: 

    22 2 22 2 2
2 3 2 5 1cos du u u X um m g     (25) 

Take the square of Eq. (22) and then add it with Eq. (25), we have: 

  2 2 2
1 3 2

2
1

2 2
2 gu u u um u    
       (26) 

From the last Eq. (22), we can determine u2: 

 2 5 1
1 

f

tu uKu
Kl

   


   
  (27) 

Take the square of Eq. (27) and substitute it into (27), we receive: 

   2 2 2 2 2
1 5 1

2
22 2

1 5 3 22 2 0
f

t t

f

l u u l u u u
K K
K K u u m g

       
   


     (28) 

Because 
f

tK
K

 is very small, we simplify the Eq. (28), and can find u1: 

 
  2 2 2

1 3 2

1

2

2

22
5 gl u

u
l

m u uu   


  
  (29) 

u1 has the same direction as the z-axis, so u1 is always positive: 

 
  2 2 2

1 3 2

1 2

22 2
5 gl u u u

u
l

u m   


  
  (30) 

Replace Eq. (30) into Eq. (27), we can find u2 and into Eq. (23), X5d is determined. 

From Eq. (23), we divide the two sides of the equation for  5
2 2 2
1 2cos dXu u ,  

we have: 
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It is easy to know 
 

2 2
2

5
2 2 2
1 2cos

1
du u

m u
X 




 so Eq. (32) has solutions. We set 

 
 

 
 2 2 2 2 2 2

1 2 1

1

5 2

2

5

; sin cos
cos cosd du u u

u u
X uX

 





. Rewrite (31), we have: 
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
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  (32) 

Because 42 2dX 
  , from Eq. (32), we can find 4dX in the following: 

 
 

2
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2 2 2
1 2

arcsin
cos

d

du u
muX
X




         


  (33) 

3.3. Synthesis of position control system C3 
The design of position controller C3 is implemented after the inner-loop controllers 

are synthesized. The way to design the position controller of three channels is the same, so 
in this section we synthesize the controller for altitude channel Z. Simplifying synthesis, we 
assume that the transfer function of the velocity loop which is synthesized above is second 
order. Therefore, the transfer function of Z channel has a form: 

 z
z 1 2( 1)( 1)

z
p

c z z

KZW
U s T s T s

 
 

 (34) 

Using the module optimization method [8] the transfer function of the Z channel 
controller is in the form - the Proportional - Derivative controller (PD): 

 2
z

1

1
2

z
c

z z

T sW
K T


  (35) 

4. Simulation of control system 
In order to implement the derived control system, a simulation model has been 

developed. The tri-rotor model (6) using the parameters of Tab. 1 is then implemented 
in MATLAB/Simulink for a simulation, which is shown in Fig. 3.  

Tab. 1. Parameters of tri-rotor 
Parameter Value Units  Parameter Value Units 

Kf 2.92·10-6 kg.m  Ixx 0.3105 kg.m2 
Kt 1.1·10-7 kg.m2  Iyy 0.2112 kg.m2 
m 0.5 kg  Izz  0.2215 kg.m2 
l 0.3 m  g 9,81 m.s-2 
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Fig. 3. Diagram simulating the tri-rotor control system 

  
a) Position responses b) Angular responses 

  

c) Translational velocity responses d) Angular velocity responses 

Fig. 4. The simulation results of the tri-rotor control system with synthesized controllers  

The parameters of the velocity controllers are chosen as 1 1;b  2 1;b   3 1b   while 

the design parameters of the inner loop attitude controllers are 3 4 5 80K K K     and 

3 4 40   , 5 30;   the coefficients of position controllers PD are 0.25;PXK   

0.25;PYK  0.25;PZK  0.1DX DY DZK K K   . In simulation, we will implement with 
some steps: At the first time, the tri-rotor vertical takes off to height Zd = 30, after  
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20 seconds, UAV moves following the Y direction with Yd = 10; after the next 10 
seconds, flies to the X direction with Xd = 20. At the time equal 40s, tri-rotor reduces 
the altitude from 30m to 25m and flies to the Y direction more 5mm, simultaneously. At 
the time point 60s, tri-rotor implements from 25m to 30m in Z direction. At the time 
point 70, tri-rotor moves back 5m in the X direction. At the time point 90, tri-rotor lands 
at the start point. 

The obtained control result is shown in Fig. 4. In general, the controller shows 
good performance with tracking in all channels for take off, hovering and landing state. 
The controller succeeds to maintain the stability of the vehicle and follow the reference 
trajectory. The settling time of the system is about 5-8s with overshot is approximately 
zero. Both translational and rotational velocities converge to zero when tri-rotor at 
hovering state. At the time when X, Y channels change which also cause changing a 
little in Z channel. This is reflected from dynamic model. 

5. Conclusion 
In this paper, non-linear control systems for tri-rotor UAV is designed based on 

the dynamic model decomposition into a nested structure with the constraint that the 
responses of inner loops is much faster than the responses of outer loops. The 
controllers of the attitude loop, the translational loop and the position loop are 
synthesized using feedback linearization, modulus optimum. Stability of attitude loop is 
proved by Lyapunov theory. The simulation model has built on Matlab/Simulink from 
the tri-rotor dynamics and the synthesized controllers. The simulation results have 
shown the good performance of control system in take off, hover and landing modes 
with control parameters such as the settling time is about 5-8s and overshot is 
approximately equal zero. 
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ĐIỀU KHIỂN PHI TUYẾN TRI-ROTOR DỰA TRÊN PHÂN CHIA 
MÔ HÌNH ĐỘNG LỰC HỌC VÀ TUYẾN TÍNH HÓA PHẢN HỒI 

Tóm tắt: Bài báo trình bày việc xây dựng mô hình động lực học UAV tri-rotor và phân chia 
mô hình động lực học thành cấu trúc các vòng điều khiển lệ thuộc với điều kiện ràng buộc rằng đáp 
ứng của các vòng trong nhanh hơn đáp ứng của những vòng ngoài. Từ sơ đồ các vòng điều khiển, 
các bộ điều khiển tư thế, vận tốc và vị trí đã được tổng hợp bằng phương pháp tuyến tính hóa phản 
hồi và tối ưu hóa mô đun. Tính ổn định của vòng điều khiển tư thế đã được chứng minh bằng lý 
thuyết Lyapunov. Cuối cùng, các kết quả mô phỏng trên MATLAB/Simulink khẳng định rằng các bộ 
điều khiển đã tổng hợp làm việc được trong tất cả các chế độ bay với các thông số điều khiển như 
thời gian quá độ từ 5-8s và độ quá điều chỉnh xấp xỉ bằng không. 

Từ khóa: Tri-rotor UAV; tuyến tính hóa phản hồi; mô hình động lực học; điều khiển  
phi tuyến; tối ưu hóa mô đun. 
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