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Abstract 
The paper presents static analysis results of functionally graded material (FGM) cylindrical 
shells under concentrated load by an analytical approach. The basic equations are 
formulated based on a higher-order shear strain theory, taking into account the effects of 
transverse shear strain and stress. The one-dimensional material distribution in the 
thickness direction follows Voigt’s power law. In this article influences of several 
geometric parameters and material distribution coefficients on the stress state of FGM 
cylindrical shells are considered. Based on the analysis results at the clamped boundary 
zone, the local load concentration is found, and the transverse normal stress is demonstrated 
to be considerable at this zone. 

Keywords: Cylindrical shells; FGM; higher-order shear/normal deformation theory; stress-strain 
state; stress concentration phenomenon. 

1. Introduction 
Functionally Graded Materials (FGMs) are advanced composites, in which there are 

two or more phases and have mechanical properties that vary smoothly in the direction of 
distribution [1]. Typically, FGMs consist of two phases that are metal and ceramic. One 
of the outstanding advantages of FGMs is the smooth change in the material composition, 
which can eliminate stress interruption and thus prevents material delamination [2]. 
Moreover, FGMs possess great advantages over conventional composite materials when 
working at high temperature conditions, as well as in high humidity environments. Due 
to these above-mentioned pros, FGMs are applied in many fields of science and 
engineering such as aerospace, nuclear power, and dental medicine, etc. [3]. 

Analyses of FGM structures are of great interest and have drawn attention of many 
scientists. Computational models for FGM plates and shells may be developed based on 
the classical plate theory (CPT) or Kirchhoff theory [4], the first-order shear deformation 
theory (FSDT) introduced by Mindlin [5], the third-order shear deformation theory 
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(TSDT) by Reddy [6], with many authors interested as Nguyen [7, 8], higher-order shear 
deformation theories and the three-dimensional elastic theory, etc. The use of CPT and 
FSDT in calculations requires the addition of shear correction factors, and sometimes 
cannot produce accurate results at complex load locations. TSDT also ignores horizontal 
deformation and stress in the calculation model. To enhance the fidelity of the 
computational model, it is necessary to employ the quasi-3D higher-order shear strain 
theory, which takes into account the effects of normal shear deformation and stress, 
especially in areas with complex loads. At present, the use of the quasi-3D high shear 
strain theory is still rarely used, especially for shell structures. 

In this paper, the authors use the quasi-3D higher-order shear deformation theory 
to investigate the stress-deformation state of FGM cylindrical shells. The displacement 
field is expressed by a third-order polynomial of the plane displacement and a quadratic 
polynomial of the displacement in the thickness direction. The analytical method is used 
to solve this problem, and Voigt’s power function is employed to model the material 
distribution in the thickness direction [9]. 

2. Theoretical basics 
Consider an FGM cylindrical shell with a thickness of 2h , and other geometric 

parameters are shown in Fig. 1. Assume that the shell is subjected to radial local loads 

( , )q   , and /x R  .  

 

 

Fig. 1. Geometric parameter of the FGM cylindrical shell, the coordinate system  
and the schematic calculation of cylindrical shell under the influence of radial 

concentrated load with boundary conditions at 0  , and /L R  . 

The material parameter variation along the thickness direction is determined as [10]: 

 ( ) ( )i c m c mP z P P P V    (1) 

where iP  is the mechanical and physical properties of materials such as Young’s 
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modulus ( E ), density (  ), Poisson’s ratio ( ); index m, c denote metal and ceramic, 

respectively. Voigt’s power-volume ratio distribution in the thickness direction is used 

with  1 / 2 / 2mV z h   , 1c mV V  , in which   is the power factor. It is noteworthy 

that the ceramic is placed inside the metal. 

The displacement of the shell is analyzed as [11]:  
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 (2) 

where 0 0 0, ,u v w  are the linear displacements on the neutral surface; 1 1 1, ,u v w  denote the 

midplane rotations of the normal; 2 2 2, ,u v w  are the higher-order straight displacements; 

3 3,u v  represent the higher-order angular displacement components. Analyzing the 

displacement field in the form of a sum (Eq. 2) enables us to study the stress-
deformation state of a cylindrical shell while taking into account the effect of higher-
order shear deformation and transverse-normal stress. 

The equilibrium equation system of the shell is determined as [12]: 
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In the equation system (3), we use the following extrapolation symbols [12]: 

   , , , , , , 1 ,
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where  ,  , z  are the legal stresses in the respective axes, and  , z , and z  are 

successive stresses. 
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where coefficients K  depend on the material and geometry parameters of the FGM 
cylindrical shell. Due to the cumbersome nature of the expressions defining 
coefficients K , this paper does not present the derivation of these expressions. 

The system of partial differential equations (5) is solved using the Laplace 
transform for single trigonometric series. The details of this process are provided in 
[11]. The displacement components and the load are expressed as the following 
single trigonometric series (6): 
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 (6) 

where  mQ   are the coefficients of the expansion of the load  ,q    in single 

trigonometric series. 
Boundary conditions are required to solve the system of equations (5). In this 

paper, we only analyze the stress state and the deformation of the FGM cylindrical shell 
with a double-clamped boundary condition. This is one of the most common types of 
boundary conditions, and stress concentration can be observed in this case. The double-
clamped boundary condition is shown in the following form: 

at  0, / : 0, 0, 0, 0,1,2,3, 0,1,2 .i i jL R u v w i j        
at  1 2, : 0, 0, 0 0,1,2,3, 0,1,2 .i i ju v w i j         

3. Results and discussion 
3.1. Validation of the model 

For verification calculations, we choose the input parameters according to the 
literature [13]. The inner surface of the shell is made of Zirconia (ZrO2), a metal with 
the following parameters: 0.2980c  , 168.06 (GPa)cE  . The outer surface is made 

of Stainless steel (SUS304) with 0.3178m  , 207.79 (GPa)mE  . The shell has a 

length 0.381 (m)L  , radius 0.1905 (m)R  , thickness 2 0.000501 (m)h  . The shell 
is subjected to uniformly distributed pressure 0 1000 (Pa)q  . 

Table 1 presents the calculation results of the displacement at / 2L R  . 

Analyzing the results, it is shown that the value of the displacement in the middle 
position according to the quasi-3D theory and that by the semi-analytical finite element 
model [13] are in good agreement, which can guarantee the validity of the  
present method. 
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Tab. 1. The displacement  ( )w m  of the FGM cylindrical shell at the middle position 

  60 Elements [13] 90 Elements [13] 120 Elements [13] Quasi-3D 
10 -3,864·10-7 -3,859·10-7 -3,857·10-7 -3,856·10-7 
5 -3,794·10-7 -3,789·10-7 -3,787·10-7 -3,786·10-7 
1 -3,511·10-7 -3,506·10-7 -3,504·10-7 -3,504·10-7 

1/4 -3,289·10-7 -3,284·10-7 -3,282·10-7 -3,282·10-7 
1/6 -3,249·10-7 -3,244·10-7 -3,243·10-7 -3,243·10-7 
1/8 -3,228·10-7 -3,223·10-7 -3,221·10-7 -3,221·10-7 

Figures 2-7 show the displacements and stresses of the shell in a case of external 
concentrated radial load located at the middle of the shell. 

   
Fig. 2. The displacement w  

along the shell length 
Fig. 3. Distributions of stresses 

along the shell length 
Fig. 4. Distributions of stresses 

along the shell length at the 
clamped boundary zone 

   
Fig. 5. Distributions of 
stresses along the shell 

thickness near the clamped 
boundary 0   

Fig. 6. Distribution of 
stresses along the shell 
thickness at a distance 

/h R    

Fig. 7. Stress state along the shell 
thickness at / 2L R   

In particular, the load concentration is defined as follows: 
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The stress values shown in the above figures are dimensionless and determined by 
the following expression: 

    
11 22 33 13

0

,  ,  ,  
,  ,  ,  z z

q
     

      

The results show that stress concentration can be observed near the clamped 
boundary zone, and it diminishes rapidly as the distance to the boundary increases. In 

particular, the value of the horizontal stresses 33 , which is ignored in the classical and 

the first-order theories, is relatively large compared to other stresses. 

   
Fig. 8. The displacement w  

long the shell length 
Fig. 9. Distributions of  

stresses along the shell length 
Fig. 10. Distributions of stresses 
along the shell thickness at the 
clamped boundary zone 2   

Figures 8-10 exhibit the displacement and stresses when the shell is 
simultaneously subjected to radial, linear and concentrated loads. 

  
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0, when 0 0.5, 1.5 / 2,
,

, when 0.5 1.5.
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Here, the stress concentration phenomenon at the clamped boundary also appears, 
which is similar to the prior case. 

3.2. Investigate the effect of the shell thickness 

To analyze and assess the effect of the thickness on the stress-deformation state, 
we use the input parameters as stated in Section 3.1. Here, we vary only the relative 
thickness value. The analysis is only performed for the case of uniformly distributed 
concentrated load. The displacement and stresses corresponding to various thickness 
values are presented in Tab. 2. 
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Tab. 2. Displacement and stresses of the shell while varying the thickness 

2h
R

 
0   / 2L R   

11  22  33  13  11  22  33  13  w ×108 

1/10 -2.2584 -1.0520 -0.8681 0.5532 -7.0248 -9.0101 -1.000 0 -0.6159 
1/25 -3.4094 -1.5881 -1.4537 0.7948 -16.434 -28.034 -1.000 0 -2.0957 
1/50 -6.3622 -2.9635 -2.6748 1.4869 -24.968 -61.654 -1.000 0 -4.9344 

1/100 -12.674 -5.9033 -5.3533 2.9020 -26.445 -124.09 -1.000 0 -10.620 

Based on the results, it is seen that the shell thickness greatly affects the 
displacement and stresses. For a shell with a smaller relative thickness value (a thinner 
shell), greater values of displacement and stresses are obtained. In the boundary region, 
for thin shells, the displacement and stresses increase with an almost linear law, which 
is not observed in shells with large relative thickness. 

3.3. Investigate the effect of shell length 
Similar to Section 3.2, to study the effect of the length on the stress-deformation 

state of the shell, we vary only the relative length. The displacement and stresses of 
shells with various relative length values under the effect of distributed concentrated 
load are presented in Tab. 3. 

Analyzing the results, we found that the displacement grows with an increase 
of the shell length, but not significantly. At 0  , the stresses decrease gradually as 

shell length becomes larger. At / 2L R  , the normal stress 33  is the same as the 

applied pressure, and the shear stress 13 0   while the remaining stresses decline 

slightly. When the relative length / 4L R  , the displacement and the stresses are 
almost constant. 

Tab. 3. Displacement and stresses while varying the length 

L
R

 
0   / 2L R   

11  22  33  13  11  22  33  13  w ×108 

1 -4.4219 -1.8771 -2.4326 1.4224 -18.025 -27.877 -1.000 0 -2.0338 
2 -3.4094 -1.5881 -1.4537 0.7948 -16.434 -28.034 -1.000 0 -2.0957 
4 -1.6436 -0.7656 -0.7017 0.3916 -15.676 -28.024 -1.000 0 -2.1173 
6 -1.0928 -0.5090 -0.4666 0.2604 -15.426 -28.021 -1.000 0 -2.1245 
8 -0.8185 -0.3813 -0.3495 0.1950 -15.302 -28.020 -1.000 0 -2.1280 
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3.4. Investigate the effect of material coefficients 
The displacement and stresses of shells under the effect of distributed 

concentrated load corresponding to various values of the material distribution   are 
given in Tab. 4. 

Tab. 4. Displacement and stresses when varying the material distribution coefficient 

  
0   / 2L R   

11  22  33  13  11  22  33  13  w ×108 

0.02 -3.2560 -1.5166 -1.4695 0.7998 -15.138 -25.441 -1.000 0 -1.8998 
0.05 -3.2627 -1.5197 -1.4706 0.8001 -15.199 -25.577 -1.000 0 -1.9105 
0.1 -3.2736 -1.5248 -1.4718 0.8006 -15.297 -25.791 -1.000 0 -1.9273 
0.2 -3.2942 -1.5344 -1.4727 0.8010 -15.476 -26.175 -1.000 0 -1.9572 
1 -3.4094 -1.5881 -1.4537 0.7948 -16.434 -28.034 -1.000 0 -2.0957 
5 -3.5897 -1.6721 -1.3561 0.7241 -18.167 -30.486 -1.000 0 -2.2498 

10 -3.6478 -1.6991 -1.3073 0.7247 -18.897 -31.298 -1.000 0 -2.2917 
20 -3.3694 -1.7206 -1.2705 0.7011 -19.448 -31.866 -1.000 0 -2.3187 
50 -3.7438 -1.7438 -1.2437 0.6839 -19.881 -32.295 -1.000 0 -2.3379 

From Tab. 4, it is observed that when increasing the material distribution 
coefficient, the displacement becomes larger. At 0  , the stresses 33  and 13  

decrease whereas 11  and 22  increase. At / 2L R  , 33  is the same as the applied 

pressure while the shear stress 13 0  , and the remaining stresses increase. For very 
large or very small values of  , the stresses and displacement do not show noticeable 
changes, suggesting that the material distribution coefficient in these cases does not 
significantly affect the stress-deformation state of the FGM cylindrical shell. 

4. Conclusion 
Based on the proposed theory and numerical simulations in this work, we have 

some principal conclusions as follows: 
- The paper presented the theoretical basis and numerical analysis in calculating 

the FGM cylindrical shell under local load based on the quasi-3D higher-order shear 
deformation theory. The validity of the research method and the calculation program 
has been confirmed in a comparison with the results from a previous paper.  

- Analyses of the effects of several shell geometric parameters (thickness and 
length) and the material distribution coefficient on the stress-deformation state of the 
shell were carried out for the case of uniformly concentrated distribution of radial load. 
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- An analysis of stress concentration phenomenon in the clamped boundary zone 
was conducted. In this zone, the value of the horizontal-normal stresses 33 , which is 
ignored in the classical and the first-order theories, is relatively large compared to other 
stresses. Therefore, to accurately assess structural strength in the boundary area, it is 
necessary to use a quasi-3D higher-order shear deformation theory. 
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PHÂN TÍCH TĨNH VỎ TRỤ FGM CHỊU TẢI TRỌNG TẬP TRUNG  
SỬ DỤNG LÝ THUYẾT BIẾN DẠNG TRƯỢT BẬC CAO  

KIỂU QUASI-3D 
Tóm tắt: Bài báo trình bày kết quả phân tích tĩnh vỏ trụ có cơ tính biến thiên (FGM) chịu 

tải trọng tập trung theo hướng tiếp cận giải tích. Các phương trình cơ bản được xây dựng dựa 
trên lý thuyết biến dạng trượt bậc cao, có tính đến ảnh hưởng của ứng suất và biến dạng cắt 
ngang. Đặc tính phân bố vật liệu một chiều theo chiều dày với quy luật phân bố lũy thừa Voigt. 
Trong bài báo, các tác giả nghiên cứu ảnh hưởng của một số tham số hình học (chiều dày, chiều 
dài vỏ), hệ số phân bố vật liệu lên trạng thái ứng suất của vỏ trụ FGM. Thông qua phân tích 
trạng thái ứng suất vỏ tại vị trí biên ngàm, chứng minh hiện tượng tập trung ứng suất tại vùng 
biên, đồng thời khẳng định giá trị ứng suất pháp ngang là không thể bỏ qua trong tính toán kết 
cấu tại vùng biên này. 

Từ khóa: Vỏ trụ; FGM; lý thuyết biến dạng pháp và trượt bậc cao; trạng thái ứng suất 
biến dạng; hiện tượng tập trung ứng suất. 
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