Journal of Science and Technique — ISSN 1859-0209

IDENTIFY THE NATURAL FREQUENCIES OF STRUCTURES
BY FREQUENCY DOMAIN DECOMPOSITION METHOD

Tran Trung Duc'”, Le Anh Tuan?!, Vu Dinh Huong?, Nguyen Cong Nghit
Le Quy Don Technical University

Abstract

Natural frequencies are important dynamic characters of building structures and can be
determined by analytical or experimental methods. Over time, under the effect of loads,
environment, random factors..., the characteristics of the building structure are changed,
leading to a change in the dynamic characteristics. The paper presents how to determine
the natural frequencies of the building structures by the frequency domain decomposition
(FDD) method. This method belongs to the group of Operational Modal Analysis (OMA)
method, which only uses vibration measurement data of structures to determine the
natural frequencies without knowing forces acting on the structure.
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1. Introduction

When designing or testing any structure, it’s important to determine dynamic
parameters and must be done first. In particular, the natural frequencies of the structure
is an important parameter in the analysis, design, and testing of the project. There are
many methods of identifying the dynamic characteristics of structural structures.
According to measurement data characteristics, there is time domain method [6] and
frequency domain method [4]. The time domain methods often require prolonged
measurement time and are sensitive to noise, so frequency domain methods are more
common. According to the measurement data source, there are groups of identification
methods based on input stimulation and measurement of the dynamic response of the
structure (Input-Output), also known as experimental modal analysis (EMA) [5], this
method requires knowing the factors affecting the structure and measuring the dynamic
response of the structure to construct a descriptive transfer function for the structure.
Group of identification methods on the basis of using only the dynamic response
measurement data of the structure (Output-Only) also known as the method of
Operational Modal Analysis (OMA) [3, 4, 7]. In OMA, the excitation forces are
indeterminate or impossible to measure; the only information is the measure of the
dynamic response of the structure. However, if the acting forces are assumed to be in
the form of white noise and are randomly distributed over the space surrounding the
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structure, then structural dynamic response measurements will contain all the necessary
information to describe the building structure. This is obviously a big advantage of the
OMA method because we do not use any expensive stimulants, but sometimes artificial
devices can damage the building during the experiment. Instead, we take advantage of
vibrations caused by environmental loads on the structure, such as the effect of wind,
movement of traffic, or other effects, and can identify the dynamic parameters of the
building without interrupting the operation of the building. Frequency domain
decomposition (FDD) is one of the techniques of the OMA identification method.

The paper conducts vibration measurements and determines the natural
frequencies of steel beam structures by frequency domain decomposition method (FDD).

2. Frequency Domain Decomposition (FDD) method

Frequency domain decomposition is proposed by Brincker et al. [4]. This method
decomposes the spectral density matrix at each frequency into singularity values and
singularity vectors by the singular value decomposition (SVD). Frequency domain
decomposition is an extension of the basic frequency domain technique or commonly
known as the Pick Peaking technique, in which natural frequencies is identified by finding
peaks in the spectral density matrix.

2.1. Theoretical basis

The relationship between unknown input x(t) and measured response output y(t)

can be expressed as follows:

[Gyy (@)] =[H (&)] [Gy (@)][H ()] 1)
where [G,, (w)] is the Power Spectral Density (PSD) matrix of the input; [G,, ()] is
the PSD matrix of the responses; [H ()] is the complex conjugate matrix of Frequency

Response Function (FRF); [H(w)]" is the transpose matrix of FRF.
The FRF can be written in prutial fraction
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where n is the number of modes, 4, is the pole of the k™ mode shape, o, 1s minus the

real part of the pole and @y, is the damped natural frequencies of the k™ mode shape.
[R,] is the residue expressed as follows:

R 1=4 7 (4)
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where ¢, is the mode shape vector, y, the modal participation vector.

Suppose the input is white noise, its power spectral density is constant or
[G,,(®)]=C, (C is constant). Formula (1) is rewritten as follows:
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Multiplying the two partial fraction factors and making use of the Heaviside

partial fraction theorem, after some mathematical manipulations, the output PSD can be

reduced to a pole/residue form as follows:
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where [A] is the k™ residue matrix of the output PSD.
At a certain frequency @ only a limited number of modes will contribute
significantly, typically one or two modes. Thus, in the case of a lightly damped
structure, the response spectral density can always be written:
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where k € Sub(w) is the set of modes be denoted at a specific frequency, ¢, is the

mode shape vector and 4, is the pole of the k™ mode shape.

The Frequency domain decomposition technique is based on the singular value
decomposition of the Hermitian response spectral density matrix.

[Gy, ()] =[U][S]U]" (8)
where [S] is a diagonal matrix holding the scalar singular values, [U] is a unitary matrix
holding the singular vectors and [U]" is a Hermitian matrix.

From vibration measurement data of the structure (acceleration), we calculate the
spectral density matrix [G,,(w)] and decompose the singular value according to
formula (8) to determine the natural frequencies of the structure.

3. Determination of natural frequencies by experiment

3.1. Test objectives

The test to obtain dynamic responses (acceleration) of steel beam structures at
nodes over time. The result of vibration measurement is used to identify the natural
frequencies of the structure.
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3.2. Test model
Test structure is a steel beam. The physical parameters of the structure are shown
in Table 1.
Table 1. The physical parameters of the test structure

No. Parameter Value Unit
1 Length 710 mm
2 Density weight 7850 Kg/m?
3 Modulus of elasticity 2.03-10° MPa
4 Width 60 mm
5 Height 8 mm

3.3. Test equipment
The equipment used in the test is listed in Table 2.
Table 2. Test equipment

No. Equipment name Code Company Mere;]ugr;ng Quantity
Vibration measurement NI . Multi -
1 equipment cDAQ-9137 National Instrument channel 01
2 Accelerometer PCB 352C68 PCB Group 509 01
(100 mV/qg)
3 Accelerometer PCB 353B33 PCB Group 509 01
(100 mV/qg)

3.4. Test layout

The test layout for determining the natural frequencies of the steel beam is arranged
as shown in Figure 1. In which, using two accelerometer sensors to measure the vibration
of the beam, the position of the sensors is shown in Figure 2, the NI cDAQ-9137
Connected with accelerometer sensors and display. Accelerometer measurements are
collected and displayed through the NI Signal Express software pre-installed.

PCB352C68 PCB333B33 STEEL BEAM

L B 3 : 710
= . 0 200 340 3 BOLTS

AR | [ I
. —_ ran|

o o
PCBI32CAE PCBI33R33
- Note: Unst of maasum 13 millimeter
Figure 1. Experiment setup of the structure Figure 2. The position of the sensors
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3.5. Test methods
Proceed with the installation and install parameters for measuring equipment,
Create vibration for the structure by any stimulus is large enough for the structure to
work in the elastic stage. The measured data is recorded as the value of the acceleration
overtime at the location where the acceleration is mounted.

4. Test results

After measuring the vibration of the structure, acceleration at the nodes on the
steel girder structure is obtained over time. The data of one measurement is shown in
Figure 3, Figure 4.
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Figure 3. Results of acceleration at the middle of the beam
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Figure 4. Results of acceleration at the free position of the beam

10000

89



Section on Special Construction Engineering

With the acceleration data obtained from the experiment, calculate and estimate
the power spectral density according to Welch's estimation method and resolve the
singularity values by SVD algorithm according to formula (8). We determine the natural
frequencies of the structure corresponding to the positions of the maximum power
spectral density function. Results of identifying the five natural frequencies are shown
in Figure 5.
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Figure 5. Power spectral density (PSD)

Comparing the natural frequencies obtained by the FDD method and the results of
the calculation of the natural frequencies by the experimental modal analysis (EMA)
method [2] and according to theory [1] are shown in the Table 3.

The deviation in the results of identifying natural frequencies of the structure by the
FDD method compared with other calculation methods is shown in the following formula.

A= fFD'?—_foloo (%) 9)

K
where f.yp is the natural frequencies of the structure determined by FDD method;

f is the natural frequencies of the structure determined by other methods.
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Table 3. Comparison of natural frequencies between methods

No. | Mode FDD (Hz) EMA (H2) E(E/ro‘;r T?I_el‘;)ry E(Z/:Sr
1 1 12.75 128 0.4 129 12
2 2 81.0 79.8 15 80.9 0.1
3 3 227.3 228.6 0.6 226.6 0.3
4 4 439.5 446.1 15 444 1.01
5 5 7335 735.6 0.3 734 0.07

From the comparison results in Table 3, it shows that the results of identification
by the frequency domain decomposition method (FDD) are very close to the results
calculated by the experimental modal analysis (EMA) and the theory method. FDD
gives highly accurate results.

5. Conclusion

The paper presents the content of the experiment measures frequencies of the steel
beam structure and uses the frequency domain decomposition method to identify the
natural frequencies of the structure.

The results of the identification of the natural frequencies by the frequency
domain decomposition method are consistent with the natural frequencies obtained by
the experimental modal analysis method and calculated theoretically, with small errors.
This shows the reliability of the experimental method and the identification method.

The frequency domain decomposition method (FDD) can be used to identify other
vibration characteristics such as mode shape, damping ratios and can be used in
monitoring the technical state of the structure during the process of work.
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XAC PINH TAN SO DAO BPONG RIENG CUA KET CAU
BANG PHUONG PHAP PHAN RA MIEN TAN SO

Tom tat: Tan sé dao dong riéng l1a mér dic trung dong luc hoc quan trong cua két cau
cong trinh va cé thé xdc dinh bang phiong phdp gidi tich hodc thic nghiém. Theo thoi gian,
dudi tc dung cua tdi trong, méi trirong, Cac yéu to ngau nhién..., cdc déic trung cua két cdu
cong trinh b thay d@oi dan t6i s thay doi cac ddc trung dong luc hoc. Bai béo trinh bay cach
xdc dinh tan sé dao déng riéng cua két cau bang phwong phdp phédn ra mién tan s6 (FDD).
Phwong phadp nay thuéc nhom cac phuwong phdp phdn tich Model hoat dong (OMA), chi sur dung
di lidu do rung dong cua két cau dé xdac dinh tan sé dao dong riéng tizc 1a khong can biét luc
kich thich tac dong |én két cdu.

Tir khoa: Tan sé dao dong riéng; EMA; OMA; FDD.
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