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A family of modified
Newton iteration method for
solving nonlinear algebraic equations

Nghiem Xuan Luc, Nguyen Nhu Hieu

Abstract— In this study, a modified Newton
iteration version for solving nonlinear algebraic
equations is formulated using a correction function
derived from convergence order condition of
iteration. If the second order of convergence is
selected, we get a family of the modified Newton
iteration method. Several forms of the correction
function are proposed in checking the effectiveness
and accuracy of the present iteration method. For
illustration, approximate solutions of four examples of
nonlinear algebraic equations are obtained and then
compared with those obtained from the classical
Newton iteration method.

Index Terms—nonlinear algebraic equation,
modified Newton iteration, correction function.

1 INTRODUCTION

Finding solutions of nonlinear algebraic equation
is one of the most important tasks in
computations and analysis of applied mathematical
and engineering problems [1,2]. The iteration
algorithm for nonlinear algebraic systems can be
classified into two main groups: bracketing
techniques and fixed point methods. The bracketing
techniques can be addressed as the well-known
bisection [3,4], Regula Falsi method [5], Cox
method [6]. The group of fixed point methods
includes a long list of research contributions,
among them are Halley method [7], Jaratt method
[8], King's method [9].

The Newton method is a well-known technique
for solving non-linear equations. It can be
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considered as an improved version of the classical
fixed point method with iteration function
containing the information of derivative at each
iteration step. The Newton method has a fast
convergence rate of iteration process when a
starting point is on the neighborhood of the exact
solution of equation under consideration. The
development contributions of Newton method are
archived based on the improvement of convergence
order, accuracy and computational time [10-14]. In
a work by Frontini and Sormani [10,11], a
modification of the Newton’s method which
produces iterative methods with order of
convergence three has been proposed to find
multiple roots of a nonlinear algebraic equations. In
[12], a research on the fourth-order convergence of
Newton method was carried out by Chun and Ham.
In their approach, per iteration requires two
evaluations of the function and one of its first-
derivative. For the order of convergence five,
analyses of convergence and numerical tests were
presented in [13], and based on these analyses, a
class of new multi-step iterations was developed.
The higher-order convergence analysis problem of
the Newton method is an interesting topic for future
researches in order to obtain solutions of nonlinear
algebraic systems with effectiveness and high
precision.

The objective of the present paper is to
generalize the classical Newton formula by

introducing a new correction function h(t) that
plays as a correction coefficient for the ratio of
f (x) to f '(x) at per iteration step. The form of

h(t) depends on the convergence condition of

iteration method. In our study, the second-order
convergence condition is used to obtain a family of
modified Newton iteration method.



TAP CHi PHAT TRIEN KH&CN, TAP 20, SO K2-2017

2 FORMULATION OF MODIFIED NEWTON ITERATION
METHOD

In this section we are concerned with solving the
algebraic equation of the form

f(x)=0 (1)
in which the function f'(x) is continuous on the
interval B=(a,b)cl, and has non-zero

continuous derivative, i.e. f'(x)#0 for xe(a,b).
Assume that Eq. (1) has a single solution « in
(a,b). To find the solution «, one can use the

following classical Newton iteration formula
X
xn+1 = 'xn - f,( ") (2)
I'(x,)

Let e, =x,—a be a difference value between

the exact solution « and approximate solution
value at n-th iteration step. It is well-known that the
formula (2) has the second-order convergence with
the solution error at (n+1)-th iteration step being
e

n+l?
e = e, +0(e)) 3
where the notation O(ej) denotes the higher-

order terms than e’ . The coefficient ¢, in Eq. (2)
is defined as
_1/"(e)
€ ==——
2 f'(a)
with assuming that the second-order derivative
of f(x) at x=a exists.

Q)

We have the following theorem for iteration:
Theorem 1. Given a differential function

f(x) defined on an interval BE(a,b)cD with
single solution o belonging to B, ie. f(a)=0.
If h(¢t) is an arbitrary continuous differential
function of argument ¢ with h(O) =1 and
|h'(0)| <+, and x, is a starting point close to «,

the iteration determined by

X1 =xn_h(un)% (5)

has the second-order convergence with solution
error e ,, at(nt+1)-th iteration step

et =(c:h(0)=1'(0)) e} +0(e)) ©)
where the coefficient c, determined by (4), and
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S (x,

u” = |( ) (7)
/(%)

Proof. Expanding the Taylor series of

f (xn ) =f (a + en) about the solution point « and
noting f (a) =0, we obtain
f(xn):f'(a)(en+c2ef)+0(ej) (8)
From Eq. (8), the derivative f'(x,) can be
derived as follows
f'(xn):f'(a)(1+202en)+0(ej) 9)
Using Egs. (8) and (9), the ratio u, of f(x,) to
f"'(x,) can be estimated as follows
L f(x,) _ f'(a)(en +czef)+0(ej)
") S(@)(1+2¢e,)40(e;)  (10)

~ _ 2 3
~ en CZen + 0 (en )

where the expression of u, is retained at the
second-order of the error e, .

The Taylor expansion of h(un) in the
neighborhood of zero point gives
h(%)zhan+h(®un+%h%0y¢+0(ﬁ) (11)

Substituting Eq. (10) into Eq. (11) for u,, and
the result into Eq. (5), we get
X, =x,~h(0)e, +(c,h(0)=h'(0))el +O(e}) (12)

Eq. (12) can be rewritten in the form of solution
error

e =(1=5(0))e, +(eh (0)=h'(0))e; +0(e;) (13)
The expression (13) shows that the second-order
condition of iteration (5) is satisfied if the

correction function %(z) is selected so that three

following conditions must be fulfilled:
i. h(r) is continuous differential function on

some open interval [ c[] .
ii. h(0)=1
iii. |h'(0)|<+oo, i.e. the value of derivative

h'(0) must be finite.

From the second condition ii., Eq. (13) is
reduced to a simpler form

e, =(c,h(0)=h"(0))el +O(e}) (14)
The proof is complete.
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3 THE CHOICE OF CORRECTION
FUNCTIONS

The addition of the correction function #(7)

gives a generalized form of the classical Newton
iteration method. The Newton method is recovered

if the function Ah(r) is taken to be unity, i.e.
h(t)=1. The importance of the function %(z) is
that it decides the magnitude of coefficient
¢,h(0)—h'(0) of solution error in the expression
(14). In the case that value of e, is very small, and
can neglect the higher-order than 3 of e, , the error
e,,, at (nt+1)-th iteration step can be estimated as a

quadratic function of e, :

e, ~é,,=(c,—h"(0))e; (15)
Cne1 i Ca 7’!’(0) >0
(4] 2,
: >
c;—Rh0) <0

Figure 1. The function e, , as a quadratic function of e,

when neglecting the higher-order terms than 3.
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Figure 2. Graphs of four chosen correction functions

(4

The expression (15) shows that the sign of the
estimated error value e _, depends on the sign of

If ¢,>h'(0), the
Fig. 1

n+1

the coefficient ¢, —4'(0).

estimated error &, increases in e, .

illustrates the behavior of the function ¢ ., when

n+l

e, is varying for two cases: ¢,—h'(0)>0 and

¢, —h’(O) <0. In numerical computation practice,

if the initial value of solution is selected close to
the desired solution, after several numbers of
iterations, the value of ¢ _, becomes very small. If

n+l

¢, —h’(O) =0, the estimated error ¢ _, will vanish,

n+l1

therefore the solution error e .. is now a function

n+1
of at least order 3 of the previous step solution error
e, . However the choice of /() in this case is very
difficult because in almost cases of algebraic
equations, the desired solution « is not known
exactly.

We here consider a special case of choosing the

correction function A(t): h(0)=1 and A'(0)=0.
For this case, the estimated error ¢, ,, is
én+1 = lf 1] (a) e:

2 f'(a)

It is seen that the estimated error ¢, ,, in Eq. (16)

(16)

does not depend on the behavior of the function
h(¢) for t#0 provided that the conditions
h(0)=1 and A'(0)=0 are satisfied. Two
examples of 4 (t) in this case are

1

1+¢

(f2): h(1)=1+¢

(f1): h(t)=

Noting that the choice h(t) =1 in the classical
form of Newton method is such a condition
situation. In several studies, the function /() can

be chosen as some constants, for
h(t)52/3 in[15].

example,

Another special case of /(7)is presented here
that satisfies conditions #(0)=1 and A'(0)=1. In
this case, an example of / (t) is taken to be:

(f3): h(1)=1+1¢

This case shows that the estimated error ¢,

only depends on the nature of the function f(x),

1/"(a)

i.e. depends on the quantity ¢, = 5 (@)
a

will be large,

. If this

quantity is large, the estimated é

n+1
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too. The graphs of the function h(t)=1 (for classical
Newton method) and three functions (f1), (f2) and
(f3) are plotted in Fig. 2. If the iterations are

convergent and magnitude of derivative of f(x) at
each iteration step is finite, it can be examined that
the ratio f(x,)/f'(x,) is quite small. This leads
to the fact that the argument ¢ of the correction
functions is small [here, the argument ¢ represents
for f(x,)/f'(x,)]. In Fig. 2, t is taken in the
interval [0,1]. Several examples for illustrating the
effectiveness of the modified Newton iteration

method using above correction functions will be
presented in next section.

4 EXAMPLES
4.1 Example 1
Consider the following polynomial equation

X +4x*-10=0 a7
We here use the classical Newton iteration
formula and modified Newton formulae with three

forms of the correction function 4 (7): h(t)=1+t,

h({)=1+2, h(t)=1/\1+7 . The obtained
results for Eq. (17) with different values of the
starting point x, of iteration are given in Tab. 1.
The obtained approximate solution is 1.365230013
with tolerance &£=10" for all of iterations. The
<¢g and

stopping criteria of iterations are |x ,, —Xx,

|f(xn+l)|<g. For the same tolerance &, the
effectiveness of iterations is demonstrated by the

number of iteration steps to obtain the desired
solution of the equation (17).

TABLE 1. Approximate solution values and corresponding
number of iteration steps at several values of starting point X,

(No.: number of iteration steps, NaN: divergence).

%, Newton No. h=1+¢ No. h=1+t+# No. h=1/y1+¢ No.
0.5 1.365230013 6 NaN 16  1.365230013 7 1.365230013 4
1.0 1.365230013 4 1.365230013 5 1.365230013 4 1.365230013 4
1.5 1.365230013 4 1.365230013 4  1.365230013 4 1.365230013 4
2.0 1.365230013 5 1.365230013 5 1.365230013 5 1.365230013 5
2.5 1.365230013 5 1.365230013 5 NaN 9 1.365230013 6
3.0 1.365230013 6 1.365230013 6 NaN 7 1.365230013 6
3.5 1.365230013 6 NaN 13 NaN 13 1.365230013 7
4.0 1.365230013 6 NaN 17 NaN 22 1.365230013 8

It is seen from Tab. 1 that, as the starting point
x, is increasing from 0.5 to 4.0, the maximum
iteration step number of the classical Newton
method is 6 whereas that of modified Newton
method depends on the choice of the correction
function A(¢). If the function h(r)=1+¢ is
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selected, the number 17 of iteration steps is not
enough to reach the desired solution when the
starting point is taken far from 1.365230013
(approximate solution point). In the narrow range
of starting point from 1.0 to 3.0, the solution
1.365230013 still can be attained with several
iteration steps similar to the classical Newton

method. For the case h(t) =1+¢*, the domain of
starting points for iteration should be chosen [1.0,
2.0] that even though is narrower than the case

h(t)=1+t.  For the chosen  function

h(r)=1/N1+1", the obtained results of iteration

step number are nearly the same as the classical
Newton method. Fig. 3 is the basin of attraction in
1D for Eq. (17) for different values of starting point
X, in two cases: the classical Newton iteration

formula and modified Newton formula with
h(r)=1/N1+¢ . If x, is far from 1.365230013,

the number of iteration steps will increase.

Classical Newton iteration formula, h=1
6 T T T

[o] Sppe— ——— 4

Numer of iter, steps

o

5 1 15 2 25 3 35 4
Wodified Newton iteration formula, h=1f3qrt(1+12)

8 T T T T
w
gt
il
zer 8
sl me—— 1
5
E 4 — |
=

3 . L . . . L

05 1 15 2 25 3 35 4

Starting point value

Figure 3. Basin of attraction in 1D illustration for Example 1
in a range of starting points

4.2 Example 2
The second example is to solve the following
equation
x'—e" =3x+2=0
Two  correction

(18)
selected,

h(t)=1+t and h(1)=1/ 1+¢* . The numerical

results for this example are presented in Tab. 2. The
basins of attraction for Example 2 in two cases of

h(t) are plotted in Fig. 4 in the domain [-4, 4] of
starting point. Tab. 2 reveals that the choice of
h(t)=1/N1+¢ is better than that of h(r)=1+¢

because the number of iteration steps of the
modified method is nearly equal to that of the

functions  are
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classical Newton method whereas the choice
h(t)=1+t yields several positions of starting

point which lead to the divergence, for examples,
X, ==2, x,=-15, x,=-1.

TABLE 2. Approximate solution values and corresponding
number of iteration steps of Example 2

EA Newton No. h=1+t No. h:l/m No.
-2.0 0.2575302854 5 NaN 13 0.2575302854 6
-1.5 0.2575302854 4 NaN 14 0.2575302854 6
-1.0 0.2575302854 4 NaN 17 0.2575302854 5
-0.5 0.2575302854 4 0.2575302854 7 0.2575302854 4
0 0.2575302854 3 0.2575302854 5 0.2575302854 3
0.5 0.2575302854 3 0.2575302854 5  0.2575302854 3
1.0 0.2575302854 3 0.2575302854 7  0.2575302854 3
1.5 02575302854 4 0.2575302854 9  0.2575302854 5
2.0 0.2575302854 4 0.2575302854 8  0.2575302854 5
2.5 0.2575302854 5 0.2575302854 5  0.2575302854 5
3.0 0.2575302854 5 0.2575302854 7  0.2575302854 7

Classical Newton iteration formula, h=1

@
a
2
D5 1
2
5
@ 4 4
E
S
P4

3 I I I S ' I I

-4 3 2 1 0 1 2 3 4

Modified Newton iteration formula, h:1/sqr|(1+t2)

8 T T T T T
@
@ TE eressnnes e 4
w
56 ]
ts 1
5
a4 ]
z

3 . . I J " . .

) 3 2 ] 0 1 2 3 4

Starting point value

Figure 4. Basin of attraction in 1D illustration for Example 2
in a range of starting points

4.3 Example 3: Equation in complex domain
We consider the following simple equation in
complex domain

2 -1=0 (19)
It is seen that Eq. (19) has three solutions z, =1,

z=(-1+i3)/2 and z=(-1-iV/3)/2. In the

complex plane, three solutions are three vertices of
an equilateral triangle. The iteration formulae can
provide insight of the nature of iteration processes
for approximate solutions of nonlinear equations.
Using the Newton formula, we have the following
iteration series for Eq. (19)

-1 2z +1

Zn+1 =Zn - 3Zn2 325 (20)
Similarly, the following modified Newton

iteration formula is formulated

1 z -1
Zyy =2, 2 B
e 3z, 1)
377

converge to z,
converge 10 z,
converge to z,
diverge

Imaginary axis

05 0 05

Real axis
Figure 5. Basin of attraction of classical Newton iteration
formula for Example 3

converge to z
converge to z,

converge to z;
diverge

Imaginary axis

-05 0 05
Real axis

Figure 6. Basin of attraction of modified Newton iteration

formula for Example 3 with /1 (t ) =1/N1+t 2

w 15
&
=
5
=
g
Eoos
= converge to z;
= converge o z,
05 = converge to z;

= diverge

= 05 0 05 1 15 2
Real axis

Figure 7. Basin of attraction of classical Newton iteration
formula for Example 4.

The selection of a starting point for iteration is
important because it affects to the convergence and
approximate solution values of the iteration



TAP CHi PHAT TRIEN KH&CN, TAP 20, SO K2-2017

process. In Fig. 5, if the starting point is dropped on
the red color region, the solution z =1 can be

obtained from the iteration process. In the blue
region, however, the iteration solution series tend to

the second solution z, :(—1+i\/§)/ 2. The third

solution z, = (—1—1\/5 )/2 can be obtained if the

starting point is taken in the green region. It is
observed that in the 2D domain [-2, 2]x[-2, 2] with
200x200 starting points, there exist a number of
points at which the iteration process is divergent. In
Fig. 5, divergence points belong to the black
region.

Imaginary axis

= converge to z,
= converge 1o z,

converge to z,
= diverge

" - 05 1 15 2
Real axis

Figure 8. Basin of attraction of modified Newton iteration

formula for Example 4 with /1 (t ) =1/N1+t¢ :

Fig. 6 exhibits the difference between the
convergent domain of the modified iteration
method and that of the classical Newton method.
The distribution of convergent points of Fig. 6 is
quite different from that of Fig. 5. The black color
region becomes larger, i.e. the number of divergent
points increases if using the modified version of
Newton method. For a set of points lying on the
neighborhood of desired solutions, the estimated
errors of the classical Newton method and modified

version with 2 =1/~+1+¢ are nearly the same and
this can be seen from Eq. (14) because of

h ’(O) =0.
4.4 Example 4: Another complex equation
Let us solve the following complex equation:

z3—(1+3i)zz+(3i—2)z+2:0 (22)
Eq. (22) has three solutions, z =1, z, =i, and
z, =2i at different positions in the complex plane.

The basins of attraction of the Newton and
modified formulae for Eq. (22) are presented in

39

Figs. 7 and 8. The distribution of starting points is
not symmetric. The red, blue and green color
regions show the convergence of both iteration
methods for z, z,, z, , respectively. Also, the black

region is the divergent one of iterations.
5 CONCLUSIONS

Solving nonlinear algebraic equations plays an
important role in areas of applied mathematics
because this is usually a final stage in dealing with
a series of implementation processes to find
solutions of problems of mathematics and
engineering. The Newton iteration method is
simple and can be easy to implement to a specified
algebraic equation. The our present study gives a
family of iteration methods in which the classical
Newton formula is a special case. The following
results can be drawn from the family of modified
Newton iteration method:

- The order of convergence of modified iterations
in the family with different forms of the correction
function is still remained to be two as the classical
Newton method, as shown in Theorem 1.
According to the definition of convergence order of
iteration methods and Theorem 1, we have

im Lol = ¢, —h'(0)|20 that has a finite value

n—>+w0 2

n

because h'(0) is finite. This means that the

convergence of modified Newton method is
quadratic.

- The obtained results show that the choice of
correction functions affects to the convergence of
the modified iterations and the number of iteration
steps can grow considerably if the starting point is
far from the desired solution of the nonlinear
equation. In general, the number of iteration steps
of modified Newton method is larger than that of
the classical Newton method. If an appropriate
correction function is chosen, however, the
difference between the iteration step numbers of
modified and classical Newton methods may be not
considerable.

- The basins of attraction in 1D and 2D
demonstrate convergent regions of iterations in
which a starting point can approach to exact
solutions. Our study has proposed the use of several
forms of the correction function. It is seen that the

correction function A=1/+1+¢" can be a good
choice for our iteration formulae because this
function possesses a property that A'(0)=0

leading to the estimated error of iteration solution
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being the same as that of the classical Newton
iteration formula. Consequently, we have the
following iteration formula:

Xy =2, /() S (x,) (23)
GO LT /)

- Two other proposed modified iteration versions
of the classical Newton formula also can be used to
find solution of algebraic equations:

_ /(x,)
e T ) (24)
h(t)=1/(1+1)
e )
U )] )] (25)
for ki (¢) =1/(1+¢)
- More formulae for the modified Newton

iteration method can be established based on the
methodology of this study.
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Ho cac phuong phap lip Newton cai tién

giai phuong trinh dai s6 phi tuyén

Nghiém Xuan Luc, Nguyén Nhu Hiéu

Tém tit - Trong nghién ciru nay, mt phién ban cai
tién ciia phwong phap lip Newton dé gii phwong
trinh dai s phi tuyén dwoc trinh bay, trong dé cé sit
dung m¢t ham hiéu chinh. Ham hi¢u chinh nay thu
dwge tir didu kién hdi tu caa phép lip. Theo d6, néu
bac hdi tu clia phép 1ip 12 hai, ta c6 thé thu dwoc ho
cac phép lip Newton cé chira cd phép lip Newton
truyén thong. Cac tac gia lua chon mdt vai dang ham
hi¢u chinh khac nhau dé kiém tra tinh hi¢u qua va do
chinh xac ciia phép Lip dé nghi. Mgt sé vi du minh
hoa cho ta nghiém xip xi ciia bai toan gidi phwong
trinh dai s6 phi tuyén 1a kha tin cdy va ¢6 dd chinh
x4c cao.

Tir khéa - phwong trinh dai sé phi tuyén, phép lip
Newton cai tién, ham hiéu chinh.



