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ABSTRACT

In this article, we introduce a new approach
to receive general solutions which describe all of
the properties of the light propagating across
optical uniaxial crystals. In our approach we do
not use the conception of refractive index

ellipsoid as being done in references. The
solutions are given in analytical expressions so
we can handly calculate or writing a small
program to compute these expressions.
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INTRODUCTION

The problem of lights propagation in optical
uniaxial crystals, i.e. crystals of trigonal, tetragonal
and hexagonal systems, was solved by the application
of Maxwell’s equations. Solving the Maxwell’s
equations for a plane wave light propagating in
transparent non-magnetic crystals, one can derive two
refractive indices of the two propagating modes of
light [2, 3]:

n;,ze = %‘:(7711 +17 ) * (7711 /Y )2 + 477122 :| 1)

In (1), 7; (i, j =1, 2) are the components of the
dielectric impermeability tensor of crystal. In

expression (1), the light direction is taken in parallel
to axis OX; of an arbitrary coordinate axes OX; (i =
1, 2,3).

Unfortunately, in the reality it is difficult to use
the general expression (1) to receive two refractive
indices, because in references the components of
tensor [7; ] are often given in crystal coordinate axes
ox; (i =1, 2, 3) where the number of independent
components of this tensor is minimum, i.e. ;- and
n;, (for optical uniaxial crystals).

Fig 1. The crystal coordinate axes ox; (i =1, 2, 3) and the light direction m
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On the other side, when the light direction varies,
the components ,, , »,, and ,, in (1) also vary in
according to the light direction. Therefore in
references, in order to eliminate this difficulty, one
can only solve this problem in crystal coordinate axes
ox; with the help of the conception of refractive
index ellipsoid, but this approach can only be applied
in some limited cases when light propagating in some
special symmetric directions of the crystal. The
refractive index ellipsoid of optical uniaxial crystals
is an ellipsoid of revolution. It has an important
property: the central section perpendicular to the light
direction m=(m,, m, ,m,) is an ellipse and the
refractive indices of the two waves are given by the
lengths of the semi—axes of this ellipse and the
directions of these semi—axes give the directions of
oscillations of the eigen vectors D@ and D™ for
each of the two modes of light.

By this approach, it is difficult to solve the
problem when light propagating in an arbitrary m
direction. In order to eliminate this difficulty, in this
article we introduce a new approach using the general
solution (1). Here, the important query is the
calculation of the components ,, , 5, and 5, via
the components ;- and : given in crystal
coordinate axes ox; . In order to do that we have to
find the transformation cosinus matrix (e") (i, k = 1,
2, 3) of the transformation of axes from ox; to
ox,. Having found (of) we apply the
transformation rule of the components of a second
rank tensor [77; ] to derive the corresponding
components 77; in an arbitrary coordinate axes ox; -
Replacing observed values of ; , 5, and 5, into
general expression (1) we can solve the given
problem.

THEORETICAL CALCULATIONS
The transformation cosinus matrix (o)

b | MM, mm,

In an arbitrary coordinate axes ox, (i=1, 2, 3)
we choose the ox, axis which is parallel to the light
direction m, which has three components (cosinus) in
crystal coordinate axes: m; ; my ; ms. Thus, the unit
vector u® along axis equals to m

u® :m:(ml , m, m3) )

Denoting g and h two vectors (not unit vectors)
prolonging axes ox, , ox, respectively.

We can write:

g=(1, 0, 0)+u®

Where (1, 0, 0) is the unit vector along ox; and
4 is a coefficient derived from the orthogonal
condition g.u® =o0.

Applying this orthogonal condition
gu® =[(1, 0, 0)+,uu(3>}.u(3) =0
We find p=-m,.
Thus,
g=(1,0, O)—mlu(3) =[(l—mf) , —mm, , _n.|1m3:|
®)
are the components of g in axes ox;, ox; and

oXx; respectively.
The vector h along the axis ox, can be written
in the form:

h=(0;1; 0)+ g+ ,u®
Where (0, 1, 0) is an unit vector along ox;,

and 4, are the coefficients derived from the
orthogonal conditions h.g = h.u® =0.
From  these orth%g]]onal conditions  we
find: g, =—m, va g :1_mj2
m
Thus, h=(0; 1; O)+1nl1 2 g-mu (4

From expressions (2), (3), (4) we can derive the
components of h along the axes ox; (i=1, 2, 3):

1_mlz(1_mlz)_mzml'1_1_mlz 2

_m?
M, ;M —mzms} :{0,

1-my
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The components of g and h along the ox are not * The orthogonal conditions of axes ox, (i =1, 2, 3)

the direction cosinus of axes ox, , ox, Versus ox;, via their scalar multiplications.
ox:, ox:, but these direction cosinus can be derived ~ * The determinant of matrix (e ) must be equal to 1
by dividing these components by their vector length, if the observed coordinate axes ox, form a right —
i.e. |g| and |n|. handed system.

Finally, we obtain the direction cosinus matrix The components of dielectric impermeability
(aik) of the transformation of axes from ox; to tensors [ 77; ] in coordinate axes ox;
oX, : Applying the transformation rule of the

~mm, ~mm, components of a second rank tensor when the
\/ \/1— \/1_ coordinate axes varies from ox; to ox, : [1]
m foo* - -
" m=dkam, ik 0=1,2,3) ©)
a')=| 0 (5) In expression (6) we used Einstein notation, i.e. to
() ,= ﬁ =
2

take the summation of the repeated indices by
running this index from 1 to 3.
For example:

m,

We can verify the truth of this matrix by these
tests:

* (o) +(af) +(af) =1 (1=1,2,3)
= ko, = o (g + o, + ogmys)
= o (i, + e, + o5y ) + o (edmy, + almy, + ), ) + i (eamay + s, + oy )
() () () i = () + (@) i+ ()
mmg

=1y + 1- (7733 77;1)

In this example we have taken into account tensor [77;] is diagonal for optical uniaxial crystals and
s =5 and (mf +m +mi)=1.

Analogously, we can derive all the components of tensor [ 77; ] in the coordinate axes ox, as follows:

202 2
N +]r.n mjz (7733 771*1) n;_lin;rrgs (77;3 - 77;1) ]an‘:l} (77;3 - 77I1)
2 2 B
|:77ij ] = The linl?nz Ty +1Tlfﬂf T \%(Uss 771*1)
W
Ths s Ty +M; (77;3 - 771*1)

- - )
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Now, replacing »,,, », and 5, from (7) into the general expression (1) we can solve the proposed

problem.
After a long way of calculations we derive the refractive indices for the two propagating modes of light:

2 = 2 [0 + (1o md (1 mé ) (o) )

The corresponding refractive index of ordinary and extra-ordinary rays

Now here, we discuss what of the sign (+ or —) in (8) of which the refractive index of ordinary ray will be
taken. For the convenience of discussion we rewrite expression (8) in the form:

02 === 2] (Lo o+ (12 )y £B] = A, 02, == and B =(1-m2 ) (1))
n2, 2 A
There are two cases for discussion:
* Positive optical crystals (n, >n,) or (s, —1;,) <0
In this case, because of the refractive index of ordinary ray n, < ne, the quantity A, must be greater. On the
other side, in this case (;7;3 —77;‘1) <0 sothat —B > 0. Thus n_*takes the sign (-) and therefore > takes the sign
(+) in expression (8).
* Negative optical crystals (n, <n,) or (r7;,—7;,)>0
In this case, B >0 and A must be smaller so n2 also takes the sign (-) and n_? takes the sign (+).

Finally, regardless of positive or negative optical crystals, the refractive index of ordinary and extra-ordinary
rays have the expressions:

n? = l[(u M3 ), + (1= m3 )y — (1= m2 ) (s — 22 ) |

2
)
.7 = 2 (e me (1 md o+ (1-m? ) ()
* For ordinary ray:

1 « . . 1. - «

ngz = E[(l"' m32)7711 +(1_ m32)7733 _(1_ msz)(7733 _7711)] =§[27711] =T
= (10)

T
Therefore the velocity of ordinary ray propagating across the crystal:

v, = ni = cﬁ and is independent of light direction. (11)

(o]

* For extra-ordinary ray:

nj = %[(1"' m§)77;1 +(l_m§)77;3 +(l_ msz)(ﬂgs _77;1)] = %[ngﬂl*l + 2(1_ me%)’ﬁs} = m32771*1 +(l_ m32 )77;3
ne = * 1 *

\/m§7711 +(1_ m§)7733

(12)

The velocity of extra-ordinary ray:

v, == = ey + (1 ), (13)

e

The polarization of the two rays
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Denote D and D', the unit vectors of polarization of the two rays in coordinate axes ox, . Because the
light is transversal, so in ox; :

D =(D{ , D, 0) and D (D , D’ , 0)

In order to derive D® and D we have to solve the equations determined the eigen vectors of a two-
dimension tensor [ 7, ] having known eigen values n, and ne.

7,0, =n?D, =0 (i,j=1,2)
Using the Kronecker notation &,
(7 —n*6;)D; =0 (14)
* For the ordinary ray:
Replacing n2 =n;? =7;, from (10) into the equations (14) we have:

(771_1 _771*1) Dl(O) +7 D£0) =0
The D:EO) +(7722 _771*1) Dg()) =0

=1 we solve the equations and derive the components

we can write these above equations in the form:

Combining with the normalization of D, i.e. |D(°)

of D as follows:
D(o) _ m, ’ —-mm, , 0 (15)
\/mfmg +m’ \/mfm32 +m?
* For extra-ordinary ray:
Replacing n™* =n;? = miz;, +(1—m )77, from (12) into the equation (14) to determine D'
|:771_1 - [mszﬂl*l + (1_ m; )77;3 :|:| Dl(e) 7, D£E)

Tha Dl(e) + [7722 - |:m§771*1 + (l_ m§ )77;3:|:| Dée)
Combining with the normalized condition of D® we derive:
D(e) — rnlmS , m2 , 0 (16)
\/mfm:f +m? \/mfm§ +m?
We can verify the orthogonality of D and D® via their scalar product.
The polarization of the rays in crystal coordinate axes ox "

0

0

Remember that, the light direction m :(ml , m, n13)was given in crystal coordinate axes ox;", so we have
to transform the polarized vectors D® and D into their corresponding vectors D and D" in ox". The
transformation cosinus matrix is now (), which is the inverse matrix of (c ).

Rotating matrix from (5) around its diagonal by an angle = we have:

Ji-m? 0 m,

—mm m

(4)=]| == L m, (a7
—-m 1_m1
—m,m, —m,

\/1— m? \/1— m?
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Applying the transformation rule of the components of a vector:
D =D, (Lk=1,2,3)
We derive the vectors D and D in the crystal coordinate axes ox; :

pP-| T
1-m? afl—msz
G L L B L 1L S (19)
[Jl—m?? afl—mg ’

From (18) we see that the ordinary ray is always polarized in the plane (Oxl*, Oxg)or the plane
perpendicular to ox;, i.e. the optical axis of crystals.

We can verify the truth of (18) and (19) by the following tests:

* The orthogonality of D and D"® via their scalar multiplication.

(18)

* The orthogonalities D®@.m=D"®.m=0
* The normalized conditions of vectors D and D"® .

The lack of the coincidence between the light direction m and the direction of light energy transfer P (the
Poynting vector)

According to [2], [3] the angle & of the lack of coincidence between the light direction m and the direction
of light energy transfer, i.e. Poynting vector P is determined by the following expression:

c05a=%=i if vector D" is normalized.
E’|o7| |E

Thus, in order to calculate « we have to determine the electric vector E”. Because in crystal coordinate

axes ox; the dielectric impermeability tensor [77;] is diagonal, therefore
El =D =D (i=1,2,3)
For the ordinary ray from (18):

* % m *
E1(0) = 7711'D1(0) = —227711
—
* * * * —m —m *
g Ez(o) = 7722-D2(0) =T15- : 2 - =
1-m; 1-m,
0 -5, 07 =0

Therefore : |E*(°)| =17
Analogously, for the extra-ordinary ray:
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) Mmym, .

m 7711

E;(E) =—y1- m3277;3

= () + (12 ) ()’
* For the ordinary ray:

E*(U).D*(O) *(0).D*(0) + E*(O).D*(O) *
cosct, = —— o = 50 5D gm0 (20)
‘E Tha un

Thus, for the ordinary ray, there is no lack of coincidence between m and P.
* For the extra-ordinary ray:

EODC  miy+(1-m)n,

Therefore : | E"®

cosa, = eI = = (21)
‘E \/me? (7711) +(1_ m; )(7733)
Before applying our results to some specific cases, we summarize all the solutions we have derived. In
crystal coordinate axes ox;: light direction m :(ml ,m,, m3)
* For the ordinary ray:
. 1
+ Refractive index : n, = — (22)
7711
+ Light velocity : v, =C 771*1 where c is the light velocity in vacuum. (23)
+ Light polarization : D@ =| T2 M g (24)
\/1— m? \/1— m2
+ The ordinary ray is always polarized in the plane perpendicular to the optical axe of crystals.
+ There is a coincidence between m and P.
* For the extra-ordinary ray:
+ Refractive index : n, = ! (25)
2 * 2 *
\/ms Ty + (1_ m, )'733
+ Light velocity : v, = c\/m§771*1 +(1-m? )75 (26)
+ Light polarization : D = uMs MMy 72 27)
\/1— m? \/1— m?
+ Angle ¢, of lack of coincidence between m and P:
m’n;, +(1-m2) 7.
cosa, = 31 ( 3 ) 33 (28)

e () (1m2 ) ()
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APPLICATION

To test the truth of our above results, in the
application we use KDP crystal. KDP (Dihydro-
Phosphate-Kali: KH,PO,) is a crystal of tetragonal
system. Its point symmetry group is 42m . It has an

Fig 2. A) Polar projection of point group
42m of KDP

In crystallographic coordinate axes ox* the
tensor dielectric impermeability of KDP is:

0.43858 0 0
[7]=| 0 043858 0
0 0 046277

Because 7;, =0.46277 > ;, =0.43858, KDP is
a negative optical crystal. Its optical axe is the A,
axe and in this case is parallel to axis ox: .

We apply our above results in three cases:

The light direction is along the optical axe of
KDP

In this case we have m; =m, =0and mz=1

This is the simplest case of light propagation in
optical uniaxial crystals and interestingly to be
discussed here. In references, we know that in this
case we have only one ray propagating along the
optical axe of KDP. This is the ordinary mode. Its
polarization can be taken in any direction belonging
in the plane perpendicular to the optical axe.

Which, for our results:
* For the ordinary ray:
From (22), (23) we have:

inverse axe E two axes A,, which are
perpendicular to X, two mirrors M which contain
E. The Fig. 2 shows the polar projection and the
crystallographic axes of KDP:

A4 OX*3 Ox*2 A’z

oxX’; A,

B) Crystallographic axes of KDP
OXI I A, OX. I A, OX; I A,
1

=t -1 _15
© Jm, o43sss

c 300000

km/s=198675.5km/s

°n 151

o]

From (24) we derive the light polarization:

po-|_ T _~M ,o:[g,_—o,o)th
J-m2 o 1-m? 0 0

e polarization of this mode is undetermined. This
query will be discussed later.
* For the extra-ordinary ray:
From (25) we have :
1 1

n, = = = = =

\/m327711 + (1_ m; )7733 Tha
This means that, in this case we have only

one mode propagating along optical axe of KDP.

It is the ordinary ray.
Light polarization is calculated from (27):

D® — m m, , m,m, - {1_m32 :(9’ 9, —O]
Ji-m? a/1—m32 0 0

is also undetermined.

_no

From these above results we see that the
polarization of the rays is undetermined but these
polarizations are certainly lying in the plane
perpendicular to optical axe because
D® =D® =0. The ratio (%j will go to some
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limitd values, which is not infinity but depends on the
light polarization entering the crystal. Imagine a laser
beam with any polarization entering along the
crystalographic axe of crystal. The polarization of the
laser beam can now combine two perpendicular
components lying in the plane perpendicular to the
optical axe of crystal. Each of the components is the
polarization vector for mode n, or n.. Although their
lengths are not equal to 1, but as shown in [2] the
important thing is not the eigen vector but eigen
direction as all vectors of arbitrary lengths provided
lying along this direction are also eigen vectors of a
second rank tensor. Thus, in references we frequently
speak about eigen direction instead of the eigen
vector. In our case the laser beam will propagate
across the crystal with its original polarization. It is
the ordinary ray. The laser beam can be polarized in
any direction so the plane perpendicular to optical axe
of KDP is an eigen plane.

* For the extra-ordinary ray:

N = = S Y
\/m32771*1+(1—m32)77;3 \K J0.46277

c 300000

vV, =
n 1.47

e

Polarization (figure 3) :

o) | mym, mm,
D _L/l—mz , =, Jl m;
3

=(0,0, -1)
=(90°,90° , 180°)
Angle of lack of coincidence between m and P:
mE7y, +(1-m3 ) 7z,

km/s =204081.6km/s

Cosa, = — —
e () +(1-m2) ()
:”—%:1:» a,=0°
33

There is a coincidence between m and P.

In conclusion of this discussion, our results are
the same already known in the classical approach.

The light direction is along one of the two axes
A, of KDP (along OX; or OX;)

For example, the light direction is

ml :1' m2 = rn3 = O
* For the ordinary ray:

1 1

n, = =———=151
Ty \J0.43858
- 300000, /s 198675 5km/s
n, 151

Polarization (Fig 3) :

D) :{ m__-m OJ
\/1— m2 Jl— m?
=(0, -1, 0)
=(90° , 180° , 90°)
There is a coincidence between mand P : ¢, =0°

*

OX

A
4

3
A
1
I

Fig 3. The polarization of the ordinary ray
and extra-ordinary ray.

In this case, we can say that we have two ordinary rays

propagating with different velocities along an A, of KDP.
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1 2 1

NN

The light direction m =[

j=(65.91° , 35.26° 65.91°)

In this case it is difficult to use the refractive index ellipsoid approach to solve the problem.

Our results:
* For the ordinary ray:
1 1
N, =———==—=——==151
\ /;71*1 /0.43858
v, =& 300000, /s 198675 5Kkm/'s
n 151

0

Polarization (Fig 4) :

D*(O)z[Jszmg | \ll_inm ’0]
&%)

=(25.57° , 116.57° , 9o°)

There is a coincidence between mand P : ¢, =0°
* For the extra-ordinary ray:

n, = ! = ! =1.47646
2 * 2 *
e T ey
= 300000, /¢ 203190.7kmv's
n, 147646
Polarization (figure 4) :
D — m, m, , m,m, - 1_m32
Jl— m? \/1— m?

1 2 -5

:[ﬁ 30 30 J

=(79.48° , 68.58° , 155.91")
Angle of lack of coincidence between m and P:

M3y, +(1-m3 ) s,
e () (1m2 ) ()
=0.9998069

= a, =1.126°

cosa, =

Fig 4. The polarization of the ordinary ray
and extra-ordinary ray
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CONCLUSION

Based on the general expression of refractive
index (1), by the transformation cosinus matrix and
tensorial calculations, we have completely solved the
“Light
crystals”. These analytical expressions describe all
the properties of light propagating across the crystal.
We have some remarks: the polarization of the two
propagating modes depends only on the light
direction whereas the light velocities and the angle of
lack of coincidence between m and P of extra-
ordinary ray depend on the crystal and light direction.

theme propagation in optical uniaxial

With the exception of the cubic system, which is
an isotropic medium in optical aspect, our approach
can be applied to orthorhombic and monoclinic
systems. Of course the calculations will be more
complex and take longer time because of in these
Cases 7, = 1,

Acknowledgments: The authors wish to give their
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Phuong phap giai tong quat ctia chu dé

“Syu truyén anh sang trong cac tinh thé don

truc quang hoc”

e Truwong Quang Nghia
e Nguyén Tir Ngoc Huong

Truong Pai hoc Khoa hoc Tu nhién, Dai hoc Québc gia thanh phé Hb Chi Minh

TOM TAT

Trong bai bdo nay, chung toi gioi thiéu mot
cdach thirc méi dé nhan dwoc phwong phép gidi
tong quat cé thé mé ta dwoc tat cd cdc tinh chat
ciia sw truyén dnh sang khi di qua cdc tinh thé
don truc quang hoc. Trong cach thirc nay, chung
16i khéng sir dung khdi niém chi sé ellipsoid

chiét sudt nhwe da timg lam trong cdc tai liéu
tham khdo. Phwong phdp ndy dwa ra cdc biéu
thitc dai s6 nén ching ta cé thé dé dang tinh
todn hodc viét mot chuong trinh nho dé tinh céc
biéu thirc nay.

Tir khéa: tia bdt thuong, sw phdn cuc dnh sdng, van toc dnh sang, hé phwong trinh Maxwell, tinh
thé don truc quang hoc, tia thuong, chi so chiét suat, tensor
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