
Vietnam Journal 
of Agricultural 
Sciences 

ISSN 2588-1299 VJAS 2018; 1(4): 289-304 
https://doi.org/10.31817/vjas.2018.1.4.05 

 

http://vjas.vnua.edu.vn/ 289 

 

Received: May 28, 2018 
Accepted: September 19, 2018 

Correspondence to 
pqsang@vnua.edu.vn/ 

thuydung@vnua.edu.vn 

A Stability Estimate for Robin Boundary 
Coefficients in Stokes Fluid Flows 

Phan Quang Sang and Nguyen Thuy Dung 

Faculty of Information Technology, Vietnam National University of Agriculture, Hanoi 

131000, Vietnam 

Abstract 

In this report, we examine the unsteady Stokes equations with non-

homogeneous boundary conditions. As an application of a Carleman 

estimate, we first establish log type stabilities for the solution of the 

equations from either an interior measurement of the velocity, or a 

boundary observation depending on the trace of the velocity and of 

the Cauchy stress tensor measurements on a part of the boundary. 

We then consider the inverse problem of determining the time-

independent Robin coefficient from a measurement of the solution 
and of Cauchy data on a sub-boundary.  
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Introduction 

The Stokes equations are famous equations that describe 

incompressible fluid flows where the advective inertial forces are 

small compared with the viscous forces (also called creeping flow). 

Such a flow is characterized by the property by which the fluid 

velocities are very slow, while the viscosities are very large, or the 

length-scales of the flow are very small.   

The Stokes equations can be applied to many situations 

occurring in nature, in technology, and in the modeling of biological 

problems, for examples, the swimming flow of microorganisms, the 

flow of lava, the motion of paint, or the flow viscous polymers 

generally (Dusenbery, 2011), blood flow in the cardiovascular 

system (Vignon-Clementel et al., 2006), and airflow in the lungs 

(Baffico et al., 2010).  

In this paper we consider the unsteady Stokes equations which 

can be modeled as following. Let   be a bounded open nonempty 

subset of 
N ( 2 or 3)N N  .  
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For some 0T  , we denote (0,T)xQ    and consider a velocity-pressure pair 

2 2 1 2 2 1( , ) (0,T;H ( )) (0,T; ( )) (0,T;H ( ))v p L H L L     
 solution to the following unsteady Stokes 

equations:  

0

,

( ) ,

(0, ) ( ), ,

tv v p f in Q

div v d in Q

v x v x for x

    



      

      (1) 

where 2L ( )f Q is an applied body force and 2 1(0,T;H ( ))d L  . 

We notice that the existence of the solution of the Stokes equation (1) is not guaranteed in 

general. However, it is guaranteed in certain Sobolev spaces under specific conditions; see for 

example an inf-sup condition (Bramble, 2003; Necas, 2012). In this paper, we will not go into this 

issue but will focus on the stability of the solution and on an inverse problem of determining a 

friction boundary coefficient.  

Moreover, we need an additional observation to ensure the uniqueness of the solution. There are 

two main ways of giving such an observation: it is given either by the value of the velocity v  in an 

(arbitrary small) open nonempty subset ,  or by the Cauchy data ( , ( , )n)v v p  on a part of the 

boundary. That is, either 

( , ) ( , ) : (0,T) ,obsv t x v t x in Q           (2) 

or  
(0,T)

( , )n (0,T)

D obs

N obs

v g on

v p g on

 


 
        (3) 

Here, n  is the outward unit normal to   which is assumed to be of class 2C , and the stress 

tensor is defined by ( , ) ( )
def

v p D v pI   , where   is a constant which represents the kinematic 

viscosity of the fluid we consider, 
1

( ) ( )
2

def
tD v v v     is the symmetrized gradient, and I  is the 

identity matrix. The uniqueness of the corresponding pair ( , )v p  is guaranteed by a unique 

continuation result for the Stokes equations proven in Fabre and Lebeau (1996).  

We show in this work the main following results. The first result is an estimate of the solution 

with respect to the initial data. Then, the second result is the global stability of the solution when we 

locally change the initial local data. The last result is the stability of a boundary coefficient, called 

the Robin coefficient, on the unobservable part of the initial data when we change the local data. 

The method that we use in this work is based on the construction of an appropriate Carleman 

estimate for the unsteady Stokes Eq. (1). This method is widely used in many works, including 

Boulakia et al. (2013) and Badra et al. (2016). However, these works were for steady Stokes 

equations, or for two dimensions 2.N   The results of this paper are presented for Stokes equations 

with time, and in three dimensions 3N  .  

In the following and throughout this work, 0C   denotes a generic constant which, unless 

otherwise stated, only depends on the geometry of and may change from line to line. 

Theorem 1.1. Assume that 2 2 1 2 2 1( , ) (0,T;H ( )) (0,T; ( )) (0,T;H ( ))v p L H L L      is the 

solution of the Stokes Eq .(1) such that 2 2 2 1(0,T;H ( )) (0,T;H ( ))L L
v p M

 
   for some 0M  . Then there 

exists a constant 0C   such that we have the following estimates:  
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    

2

2 2 1 2

L ( )

L L 0, ;H L ( )

,

ln 1

Q

Q T Q

M
v C

M

f d v



 
 
 

  
 

      (4)  

   

2

3 1
2 2 2 22 2

L ( )

L L L (0, ; ( )) L (0, ; ( ))

and .

ln 1
( , )n

obs obs

Q

Q Q T H T H

M
v C

M

f d v v p
 


 
 
    
 

  (5) 

Moreover,  

   

2 2 3 2

3 1
2 2 2 22 2

(L ( )) L ( )

1

2

L L L (0, ; ( )) L (0, ; ( ))

( ) ( )

.

ln 1
( , )n

N

obs obs

Q Q

Q Q T H T H

curl v p div v

M
C

M

f d v v p



 

 



  
  
     
   

   (6) 

We notice that the (4), (5), and (6) estimates will be further proven by Theorem 3.1.2 and 

Theorem 3.2.3.  

As an application of the above theorem, we can obtain the stability estimate for the Stokes 

equations (1). 

Assume that 2 2 1 2 2 1( , ) (0,T;H ( )) (0,T; ( )) (0,T;H ( )), 1,2,i iv p L H L L i      
 

resulting in two 

solutions for Eq. (1) associated to one of two types of observations:  

either   

( , ) ( , ), 1,2, (0,T) ,i
i obsv t x v t x i in         (7) 

, 1,2, (0,T)
or .

( , )n , 1,2, (0,T)

i
i D obs

i
i i N obs

v g i on

v p g i on

   


  

     (8) 

Then we have the following result (proven with equations 43, 44, and 45):  

Theorem 1.2. Assume that 2 2 1 2 2 1( , ) (0,T;H ( )) (0,T; ( )) (0,T;H ( )), 1,2,i iv p L H L L i      
 

There are two solutions for Eq. (1) associated with one of two additional observations given by 

(7) or (8). Moreover, we suppose that 2 2 2 11 2 1 2(0,T;H ( )) (0,T;H ( ))L L
v v p p M

 
     for some 0M  . 

Then there exists a constant 0C   such that we have the following estimates:   

2

2

1 2 L ( )

1 2 L ( )

,

ln 1

Q

Q

M
v v C

M

v v


 
 
 
 
 

        (9) 

and 

2

3 1
2 22 2

1 2 L ( )

1 2 1 1 2 2L (0, ; ( )) L (0, ; ( ))

.

ln 1
( , )n ( , )n

obs obs

Q

T H T H

M
v v C

M

v v v p v p 
 

 
 
 
   
 

  (10) 
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Moreover, we have 

2 2 3 2

3 1
2 22 2

1 2 1 2(L ( )) L ( )

1

2

1 2 1 1 2 2L (0, ; ( )) L (0, ; ( ))

( )

ln 1
( , )n ( , )n

N

obs obs

Q Q

T H T H

curl v v p p

M
C

M

v v v p v p 



 

  



  
  
    
   

  

 (11) 

We notice that the results of this theorem lead to the uniqueness of the solution ( , )v p  of Eq. (1): if 

1 2v v  in Q  then 1 2v v  in Q , or if the Cauchy data 1 1 1 2 2 2( , ( , )n) ( , ( , )n)v v p v v p   on (0,T) ,obs  

then 1 2v v  in .Q  This matches the unique continuation result given in Fabre and Lebeau (1996).  

Similar stability estimates were given for the Navier-Stokes equations, as in the paper by Badra 

et al. (2016).  

An important purpose of this article is to prove the stability in the determination of the Robin 

boundary coefficient from the value of velocity v and the Cauchy data ( , ( , )n)v v p  on a part of the 

boundary. This kind of inverse problem is very significant in general in corrosion detection: the 

determination of the Robin coefficient on the inaccessible portion of the boundary thanks to 

electrostatic measurements performed on the accessible boundary part.  

We assume that 0  is another open nonempty subset of boundary   such that  0 obs   . 

We suppose that on 0 , corresponding to the previous pairs 1 1 2 2( , ), ( , )v p v p , the fluid has two 

friction boundary coefficients given by the conditions 

( , )n 0, 1,2.i i i iv p v i            (12) 

The coefficients i  in (12) are called the Robin coefficients. We have the following stability 

estimate for the Robin coefficients (proven with equations 46, 47, 48, 49, and 50): 

Theorem 1.3. Assume that  2 2 1 2 2 1( , ) (0,T;H ( )) (0,T; ( )) (0,T;H ( )), 1,2,i iv p L H L L i       are 

two solutions of Eq. (1) associated with the additional observation given by (8). Let , 1, 2i i   be the 

two Robin coefficients given by (12). Let   be the set  0 1 2, ( ) ( ) 0x v x v x      and we assume 

that  is a compact of 0 \   with a nonempty interior, and then let 0m   be a constant such that 

1 2max( , )v v m
 
on .   

Moreover, we suppose that 2 2 2 11 2 1 2(0,T;H ( )) (0,T;H ( ))L L
v v p p M

 
    for some 0.M   

Then there exists a constant 0C   such that we have the following estimates 

 2

3 1
2 22 2

1 2 L (0, )

1

4

1 2 1 1 2 2L (0, ; ( )) L (0, ; ( ))

ln 1
( , )n ( , )n

obs obs

T

T H T H

C M

m

M

v v v p v p

 

 



 





  
  
    
   

  (13) 

There is a wide collection of mathematical works dealing with inverse boundary coefficient 

problems. Most of them prove a logarithmic stability estimate for boundary coefficients in stationary 

Stokes equations (Chaabane et al., 2004; Sincich, 2007; Bellassoued et al., 2008; Cheng et al., 2008) 
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or in two dimensions (Boulakia et al., 2013). The paper by Badra et al. (2016) presented the inverse 

problem of the Robin coefficient for stationary Navier-Stokes equations. The paper by Boulakia et al. 

(2013) gave stability estimates for the Robin coefficient but in the two dimensional Stokes equations.  

Otherwise, the present inverse problem is for unsteady Stokes equations in two or three 

dimensions. It improves upon several of the previously cited works and so it is new. 

Notations Through this paper,   is a nonempty bounded open subset of
N

 for 2N   or 3,N   
with a boundary  of class 2C  and   is a nonempty open subset of .   

For some 0,T  we denote (0,T)xQ  
 and (0,T) .Q    

Let v  be a vector field,  1 2, ,..., ,Nv v v v then we define:  

 the gradient of v  is  
1 ,jx i

i j N
v v

 
   , 

 the Laplacian of v  is   2

2

1,
1

1,

j

N

i ixi N
j i N

v v v





 
     

 
 
 , 

 the divergence of v  is 
1

div
i

N

x i

i

v v


  , and 

 the curl of v  is the vector function is:   

1 22 1( ) x xcurl v v v    if 2N  , or  

2 3

3 1

1 2

3 2

1 3

2 1

( )

x x

x x

x x

v v

curl v v v

v v

   
 

    
 
    

  if 3.N   

Carleman Estimate for Unstaedy Stokes Equations 

The main aim of this section is to prove a Carleman inequality for the non-homogeneous Stokes 

equations. For that, we first prove a Carleman inequality for a velocity-pressure pair in 

     2 2 1 2 2 1
0 0 0L 0, ;H H (0,T;L ( )) L 0, ;HT T      and then we use a domain extension argument to 

recover the non-homogeneous case. 

For 0T  , we recall that (0, )xQ T 
 and (0, ) xQ T   for an open nonempty subset .   

Let :   be a function satisfying  

2
0

0

  ( ; ), 0 \ ,C c and in

c on

   



     

       

       (14) 

for some positive constant 0 0c  . For the existence of such a function, see Tucsnak and Weiss 

(2009), for instance. 

Then we introduce the weight functions: 

 
 

 
 

 
 

 

         0 0

2
( ) ( )

2

0 0 0 0

1
ˆ, , , , ,

ˆ ˆ, .

C

C

x x

c c

e e e
t x t t x

t T t t T t t T t

t t e t t e e

 
 

 
 

  

     






  

  

    
          

(15)
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Carleman estimate in the case of homogeneous boundary data 

Due to a result from Badra et al. (2016), we can easily get the following result.  

Theorem 2.1.1. Let  0,1k , 2L (Q)F , and 2L ( )G Q , then there exists 0, 1C   , and 1s   

such that for all    and s s , the solution 2L ( )v Q  of 

,
0

v F divG in Q

v on Q

  


 
 

satisfies the following inequality:  2 21 2 1 2 d dk k s

Q

v s v e x t   
 

   2 2

2 2
1/2 k/2 1 1/2 k/2 2 1 2 2

L L
.s s k s

Q Q
Q

C s Fe s Ge s v e dxdt



      
 
   
 
 


 

We recall here a Carleman estimate for homogeneous Stokes equations cited from Imanuvilov 

and Yamamoto (2003).  

Theorem 2.1.2. Let 2L (Q)F  and 2L ( )G Q , then there exists 0, 1C    and 1s   such that 

for all   and s s , the solution 2L ( )v Q  of 

,
0

tv v F divG in Q

v on Q

    


   

satisfies the following inequality: 

 
   2 2

2 22 21 1 2 2 2

L L
d d ,s s s s

Q Q
Q Q

s v s v e x t C Fe Ge s v e dxdt



      
 
     
 
 

     (16) 

where the constant 0C   is dependent continuously on , k  and is independent of s . 

Using the two previous theorems, we can get a Carleman estimate for the unsteady Stokes 

equations with homogenous boundary data.  

Theorem 2.1.3. There exists 0, 1C    and 1s   such that for all    and s s , and for all 

        2 2 1 2 2 1
0 0 0( , ) L 0, ;H H 0, ;L L 0, ;Hv p T T T      ,

 
the following inequalities hold: 

 

   
2 2

2 2 22 2 2

2 223 3 2 1/2 1/2

L (Q) L (Q)

curl d d

d d div ,

s

Q

s s s
t

Q

v s v s v e x t

C s v e x t v v p e v s e





  

 

  

  

 
       
 
 





  (17) 

and  2 2 22 2 2div div .s s s

Q Q Q

s v p e dxdt C p v e dxdt s v p e dxdt



   
 
       
 
 

      (18) 

Proof:  We set
def

tf v v p    . Easy calculations yield: 

 curl (curl ) curl ,
t

v v f in Q   
  

      (19) 

curl(curl ) (div ) ,v v v in Q          (20) 

(div ) divv p f             (21) 
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To get (18), we just apply Theorem 2.1.1 for 0k   to Eq. (21). 

Now we introduce a relatively compact open subset 0 of 
 
and apply Theorem 2.1.2 (the 

inequality (16)) for 0k   to Eq. (19) to obtain: 

 
2 21 1 2 2curl e d d curl e d ds s

Q Q

s v x t s v x t         

2

0

22 2

L (Q)
curl d d ( )s s

t

Q

C s v e x t v v p e



 
 
     
 
 
 ,      (22)

 2 21 2 2 2 3 2 3se

Q Q

C s e divv p v e dxdt s e dxdt




      
 
       
 
 
  .   (23) 

In the last inequality, let us estimate the local term in curlv  by a local term in v . For that, we 

introduce the function 0 ( )C   such that 
0 1 

 and 
1 

 in 0 . Using an integration by parts 

in ,Q  we get 

 

0

2 22 2 2

2 2 2 2

curl d d curl d d curl( curlv)d d

curl d d curl d d ,

s s s

Q Q Q

s s

Q Q

s v e x t s v e x t s e x t

C s e v v x t s e v v x t

 

 



  

 

  

 

 

 
   
 
 

  

 

 

and then with the Cauchy- Schwarz inequality:                

  
0

22 22 1 1 2 2

23 3 2

curl d d curl curl d d

d d .

se s s

Q Q

s

Q

s v e x t s e v s e v x t

C
s e v x t



 



 



   




   



 


 

By combining (22) with the above inequality for small enough values of 0  , we obtain 

 

 
2

2 21 1 2 2

223 3 2

L (Q)

curl e d d curl e d d

d d .

s s

Q Q

s s
t

Q

s v x t s v x t

C s v e x t v v p e



 

 

 



   

 
     
 
 

 



     (24) 

Finally, (17) is obtained by first applying (16) (for 1k  ) to Eq. (20) and then using the estimate 

of curlv  given by (24).    

Carleman estimate in the case of non-homogeneous boundary data 

In this section, we prove a Carleman inequality for the Stokes equations with non-homogenous 

boundary data. We consider the equation:  

,

div d .

tv v p f in Q

v in Q

     




        (25)       

We recall that 0C   denotes a generic constant depending only on the geometry of the boundary 

and is independent of .s  
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Theory 2.2.1. There exists 0, 1C    and ˆ 1s   such that for all    and ˆs s , every solution 

        2 2 1 2 2 1( , ) L 0, ;H H 0, ;L L 0, ;Hv p T T T       of (25) satisfies: 

 

 

 

2 2

0
2 2 2 1

2 2 22 2 2

2 223 3 2 1/2 1/2

L (Q) L (Q)

2 22

L (0,T;H ( ) L (0,T;H ( )

curl d d

d d e

,

s

Q

s s s

Q

s

v s v s v e x t

C s v e x t f d s e

Ce v p





  



 

  

 

  

 
    
 
 

 



     (26) 

and  

 2 2 22 2 2s s s

Q Q Q

s d p e dxdt C f e dxdt s d p e dxdt



   
 
    
 
 

    

 0
2 2 2 1

2 22

L (0,T;H ( ) L (0,T;H ( )
.

s
Ce v p



 
         (27) 

Proof: Let   be a bounded domain of
N

( 2N   or 3N  ) of class 2C  such that   is relatively 

compact in  . We denote (0, )Q T  . We extend   to   (while keeping the same name) in such a 

way that:  

2

0 0 0

( ; ), 0 0 \ ,

, 0 \ , ,

C and in

c on c in c in

  

  

      

       
      (28) 

and we denote      0
2

0 0
ˆ .

Cc
t t e e

 
  


    

Let E  be a linear continuous map from         2 2 1 2 2 1L 0, ;H H 0, ;L L 0, ;HT T T      into 

        2 2 1 2 2 1
0 0 0L 0, ;H H 0, ;L L 0, ;HT T T      such that ( , ) ( , )E v p v p  in Q  (given by Stein’s 

Theorem, see Adams (2003)), and we define    , ,
def

v p E v p . Then the pair    , ,v p E v p  is the 

solution to the system:   

,

div ,

0 ,

0 ,

0 ,

tv v p f in Q

v d in Q

v in Q

v
in Q

n

p in Q

     



  



 



    

where  2Lf Q  and  2 1L 0, ;H ( )d T   are given by f f  and d d  in Q , and by 

tf v v p    and divd v  in \Q Q . From the continuity of the extension operator E , we have: 

      2 2 2 12 2 1

2 2 2 2

L (0,T;H ( ) L (0,T;H ( )L \ L 0, ;H \
.

Q Q T
f d C v p

  
        (29) 

Next, by applying estimate (17) of Theorem 2.1.3, we have: 
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 

 
 2 2

2 2 22 2 2

2223 3 2 1/2 1/2

L L ( )

curl d d

d d .

s

Q

s s s

Q Q
Q

v s v s v e x t

C s v e x t e f d s e





  

 

  

  

 
    
 
 





     (30) 

Moreover, for ˆ 1s s  , applying the estimates (28) and (29), we have: 

 
 2 2

22
1/2 1/2

L \ L ( \ )

s s

Q Q Q Q
e f d s e     

      0
2 2 2 12 2 1

2 2 2 222

L (0,T;H ( ) L (0,T;H ( )L \ L 0, ;H \
.

ss

Q Q T
e f d Ce v p



  

 
    

 
   (31) 

Using (30) and (31), we have the proof for (26).  

To prove (27), we apply (18) of Theorem 2.1.3 to  ,v p  to get: 

 
22 22 2 2div divs s s

Q QQ

s v p e dxdt C f e dxdt s v p e dxdt



   
 
    
 
 

    

2 22 2divs s

Q Q

C f e dxdt s v p e dxdt



 
 
   
 
 
   0

2 2 2 1

2 22

L (0,T;H ( ) L (0,T;H ( )
.

s
Ce v p



 
 

 
 

Stability Estimates for Unsteady Stokes Equations and The Inverse Problem of the 
Robin Coefficient 

In this section, we show stability estimates for unsteady Stokes equations corresponding to a 

distributed observation or a boundary observation, which allow proving the main results announced 

in Theorem 1.1 and Theorem 1.2. Then, we can apply them to the inverse problem of determining the 

Robin boundary coefficient presented in Theorem 1.3.  

Estimates for the solutions with a distributed observation 

In this subsection, we use the Carleman inequalities given in Theorem 2.4 to obtain several 

stability estimates with a distributed observation. 

Theorem 3.1.1. There exists ˆ 1   and ˆ 1s   such that all ˆ   and all ˆs s , with large enough 

c , result in every solution         2 2 1 2 2 1( , ) L 0, ;H H 0, ;L L 0, ;Hv p T T T       of Eq. (25) 

satisfying: 

      2 2 2 1 2 2 2 2 1L (Q) L L 0, ;H L (Q ) L (0,T;H ( ) L (0,T;H ( )

1
.

cse

Q T
v e f d v v p

s







  

 
     

 
  (32) 

Proof: Let   be the function defined by (14). We define the following:  

min 0
(t, )
min (t, ) c

x Q
x 


  , and max

(t, )
max (t, )

x Q
x 


 , 

 
 

 
 

 

         

max max

0 0

2

1 1 1 1

2

0 0 0 0

, ,

ˆ ˆ, .

C

Cc c

e e e
t t

t T t t T t

t t e t t e e

 
 

 
 

   

     






   

 

    
   

  (33) 
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We apply (26) to  ,v p  to get  

 

 
 

 

 

1 1 1

2 2

0
2 2 2 1

2 22 2 2

2 22 23 3 1/2 1/2
1 1

L L

2 22

L (0,T;H ( ) L (0,T;H ( )

curl d d

d d e

,

s

Q

s s s

Q Q
Q

s

s v s v e x t

C s v e x t f d s e

Ce v p





  



 

  

 



 
    
 
 

 




 

 and then  

 

 
 

 

 

0

1 1 1

2 2

0
2 2 2 1

2 2 22 2
0 0

2 22 23 3 1/2 1/2
1 1

L L

2 22

L (0,T;H ( ) L (0,T;H ( )

curl d d

d d e

.

s

Q

s s s

Q Q
Q

s

s v s v e x t

C s v e x t f d s e

Ce v p





  



 

  

 



 
    
 
 

 



    (34) 

Then, by dividing inequality (34) by 02s
e

 and using (33), we obtain  

 

   
 

   
 

 

1 0 1 0 1 0
2 2

2 2 2 1

2 22 2
0 0

22 22 2 23 3 1/2 1/2
1 1L L

2 2

L (0,T;H ( ) L (0,T;H ( )

curl d d

d d

.

Q

s s s

Q Q
Q

s v s v x t

C s v e x t e f e d s

C v p



     

 

 
    

 



 
    
 
 

 



  

Thus, we have 

 
 

 

 

 
 

 

        

1 01 0

1 0
2 2

2 2 2 1

2 2 1 2 2 2 2 1

223 1
22 2 221 1

2 2 2 2L L
0 0 0

2 2

2 2 L (0,T;H ( ) L (0,T;H ( )
0

2 2 2 2 22

2L L 0, ;H L L (0,T;H ( ) L (0,T;H ( )

d d d d

1
,

c

ss
s

Q Q
Q Q

se

Q T Q

ee
v x t C s v e x t f d

s s

C
v p

s

e f d v v p
s







  
  

  





  


 

  

 
    
 
 

 

 
     

 

 

 

with large enough c  (independent of  ).  

From the above theorem, we can show a logarithmic estimate for the solutions of the Stokes 

equations that prove the inequality (4) of Theorem 1.1.  

Theorem 3.1.2. There exists 0c   such that all ˆ 1  
 
results in every solution  

        2 2 1 2 2 1( , ) L 0, ;H H 0, ;L L 0, ;Hv p T T T     
 

of Eq. (25) such that 2 2 2 1(0,T;H ( )) (0,T;H ( ))L L
v p M

 
   for some 0M   satisfying:  

      

2

2 2 1 2

L (Q)

L L 0, ;H L

 

ln 1

ce

Q T Q

e M
v

M

f d v










 
 
 

  
 

 .     (35) 
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Proof: We introduce 
      2 2 1 2L L 0, ;H LQ T Q

A f d v


   and apply Theorem 3.1 for ˆs s , and 

then we can write (32) in the form: 2L ( )
,sC

Q

c
v e A M

s




   where 
def

cC e   . 

First, if the case 0A  , since the previous inequality is true for all ˆs s , we obtain 2

2

L ( )
0

Q
v   and 

then (35) holds.   

In the following, we assume 0A  .  

We suppose that 
1

ˆln(1 )
2

M
s

AC
   and choose 

1
ln(1 )

2

M
s

AC
  . This yields  

2

1/2

L ( )

2
1 .

ln 1
Q

M A C c
v M

MA M

A

 

 
 
     

      
  

 

Next, using the fact that 

1/2

1 1 1 1
0 1, . , 1, . ,

ln(1 ) ln(1 )
for x i e M A and for x i e M A

x x xx
      

 
 

we obtain (35) (by choosing large enough values of 0c  ). 

In the case 
1

ˆln(1 )
2

M
s

AC
  , we have 

ceM e A


  for some constant 0c  , and (32) with ˆs s  

gives

 

2L (Q)
,

cev e A


 for some constant 0c  . Then the conclusion follows from 

1

ln(1 )

A
A M M

MM

A

 



 (since 
1 1

, 0
ln(1 )

x
x x
  


).  

Estimates for the solutions with a boundary observation 

Theorem 3.2.1. There exists 0c   such that all ˆ 1  
 

results in every solution 

  2 2( , ) L 0, ;Hv p T       1 2 2 1H 0, ;L L 0, ;HT T   
 
of the Stokes equations (1) associated with 

an additional observation given by (3) such that  2 2 2 1L (0,T;H ( ) L (0,T;H ( )
v p M

 
   for some 0M   

satisfies 

         
  

 

2 2 2 1 2 3/2 2 1/2

2 2 2 1

L (Q) L L 0, ;H L 0,T;H L 0,T;H

L (0,T;H ( ) L (0,T;H ( )

,

1
,

c

obs obs

se

Q T
v e f d v v p n

v p
s






  

 

 
    

 

 

       
(36)

  

and
 

         
  

 

2 2 3 2

2 2 1 2 3/2 2 1/2

2 2 2 1

(L ( )) L ( )

L L 0, ;H L 0,T;H L 0,T;H

1/2 L (0,T;H ( ) L (0,T;H ( )

( ) ( )

,

1
.

N

c

obs obs

Q Q

se

Q T

curl v p div v

e f d v v p n

v p
s









  

 

 

 
    

 

 

  (37) 
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Let us begin by proving the following lemma, which is a construction of an extension of the domain 

Q  and of the solution ( , )v p  of Problem (25). It is deduced from a result of Badra et al. (2016). 

Lemma 3.2.2. Let   be an extension of   of class 2C  through obs , namely   is class 2C , 

obs  . We also denote  0,Q T  .   

There exists an extension           2 2 1 2 2 1, L 0, ;H H 0, ;L L 0, ;Hv p T T T     
 

of 

          2 2 1 2 2 1, L 0, ;H H 0, ;L L 0, ;Hv p T T T       such that 

, , ,
obs obs obs obs

obs obs

v v
v v p p

n n   
 

 
  

 
 

with the following estimate 

     

  
  

  

1 2 2 1

2 3/2 2 1/2

2 1/2

2 2

0,T;H \ L 0,T;H \

2
2 2

L 0,T;H L 0,T;H
L 0,T;H

.
obs obs

obs

H
v p

v
C v p

n

   

 




 
   

 
 

    (38) 

In particular, 

   1 2 2 1 2 2 2 1

2 2 2 2

H (0,T;H ( ) L (0,T;H ( ) L (0,T;H ( ) L (0,T;H ( )
.v p C v p

   
  

     (39) 

Proof of Theorem 3.2.1. Let  ,v p  be an extension of  ,v p  as in Lemma 3.2.2.  

Let us consider \    a non-empty bounded open subset, and denote  0,Q T   . 

Applying (26) and (27) to  ,v p  we get 

 2 2 22 2 2curl div d ds

Q

s v s v s p v e x t      

   
 

 
 2 2

2 22 23 3 2 1/2 1/2

L L
div d d e divs s s

t
Q Q

Q

C s v s p v e x t v v p v s e



     
 
         
 
 


 

 0
2 2 2 1

2 22

L (0,T;H ( ) L (0,T;H ( )
,

s
Ce v p



 
 

 

and then from the estimates (38) and (39) of Lemma 3.2.2 and \    we deduce 

 

   
 

 
 

 

1 1

2 2

0
2 2 2 1

2 2 22 2 2

222 2 23 3 1/2 1/2

L L

2 22

L (0,T;H ( ) L (0,T;H ( )

curl div d d

div d d e div

s

Q

s ss
t

Q Q
Q

s

s v s v s p v e x t

C s v s p v e x t v v p v s e

Ce v p





 



  

   

 

  

 
         
 
 

 



  

 
 

 

 

1 1

2 2

1

2 2

L L

22 2 2 2 223 3
1

\

e div

div div

s s

Q Q

s
t

Q Q

C f v e

C e s v v v p v s p v dxdt

 



 
   

 

         
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 0
2 2 2 1

2 22

L (0,T;H ( ) L (0,T;H ( )

s
Ce v p



 
   

 
 

 

  
  

  

 

1 1

2 2

1
2 3/2 2 1/2

2 1/2

0
2 2 2 1

2 2

L L

2
2 223 3

1 L 0,T;H L 0,T;H
L 0,T;H

2 22

L (0,T;H ( ) L (0,T;H ( )

e ( )

,

obs obs

obs

s s

Q Q

s

s

C f div v e

v
Cs e v p

n

Ce v p

 






 



 

 
   

 

 
   

 
 

 

    (40) 

with 1 being defined by (33). 

Thus, by dividing the inequality (40) by 02s
e

 and using that 0
2 22 2 2 d d d d

s s

Q Q

e v e x t v x t
 

  , 

we have 

 

 
 

    
  

  

 

2

1 0

2 2 3/2 2 1/22

2 1/2

2 2 2 1

2

L (Q)

22 3
22 2 21

2 L L 0,T;H L 0,T;HL
L 0,T;H

2 2

2 2 L (0,T;H ( ) L (0,T;H ( )

e
div

.

obs obs

obs

s

Q Q

v

s v
C f v v p

n

C
v p

s

 








 


 



 
     

 
 

 

We note that from the definition of  ,v p n , it is possible to replace the term 

  
  2 1/2

2 1/2

2
2

L 0,T;H
L 0,T;H

obs

obs

v
p

n 






 

in the last inequality with  
  2 1/2

2

L 0,T;H
,

obs

v p n


, so we get

 
         

  

 

2 2 2 1 2 3/2 2 1/2

2 2 2 1

22 2 2 22

L (Q) L L 0, ;H L 0,T;H L 0,T;H

2 2

2 L (0,T;H ( ) L (0,T;H ( )

,

1
.

c

obs obs

se

Q T
v e f d v v p n

v p
s






  

 

 
    

 

 

  (41) 

With a similar argument as above, we can prove that 

         
  

 

2 2 3 2

2 2 1 2 3/2 2 1/2

2 2 2 1

2 2

(L ( )) L ( )

22 2 22

L L 0, ;H L 0,T;H L 0,T;H

2 2

L (0,T;H ( ) L (0,T;H ( )

( ) ( )

,

1
.

N

c

obs obs

Q Q

se

Q T

curl v p div v

e f d v v p n

v p
s









  

 

 

 
    

 

 

   (42) 

The estimates (41) and (42) directly lead to (36) and (37).   

With the help of Theorem 3.2.1 and using similar arguments of the proof of Theorem 3.1.2, we 

have the following results, which prove the inequalities (5) and (6) of Theorem 1.1.  

Theo rem 3.2.3. Assume that 2 2 1 2 2 1( , ) (0,T;H ( )) (0,T; ( )) (0,T;H ( ))v p L H L L       is the 

solution of the Stokes equation (1) associated with an additional observation given by (3) such that 

 2 2 2 1L (0,T;H ( ) L (0,T;H ( )
v p M

 
  for some 0M  . Then there exists a constant 0C   such that we 

have the following estimates:        
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   

2

3 1
2 2 2 22 2

L ( )

L L L (0, ; ( )) L (0, ; ( ))

.

ln 1
( , )n

obs obs

Q

Q Q T H T H

M
v C

M

f d v v p
 


 
 
    
 

 

Moreover, we have 

   

2 2 3 2

3 1
2 2 2 22 2

(L ( )) L ( )

1

2

L L L (0, ; ( )) L (0, ; ( ))

( ) ( )

.

ln 1
( , )n

N

obs obs

Q Q

Q Q T H T H

curl v p div v

M
C

M

f d v v p



 

 



  
  
     
   

 

Stability of solutions: the proof of Theorem 1.2 

This section focuses on the proof of Theorem 1.2, which shows the stability of the solutions of 

the Stokes equations. 

Let 1 2 1 2( , ) ( , )v p v v p p   , then it is the solution to  

0

( ) 0 .

(0, ) ( )

tv v p f in Q

div v in Q

v x v x for x

    



  

        (43) 

This equation is a particular form of Eq. (1). The additional observation for the pair ( , )v p  is:  

1 2 (0,T) ,v v v in      (44) or   

1 2

1 1 2 2

(0,T)
.

( , )n ( , )n ( , )n (0,T)

obs

obs

v v v on

v p v p v p on  

  


  
      (45) 

By applying Theorem 1.1 for the pair ( , )v p , we directly get the estimates (9), (10), and (11).   

Stability of the Robin coefficients: the proof of Theorem 1.3 

In this section, we show the stability of the Robin coefficients in the Stokes equations with the 

help of the stability of the solutions. We focus on the proof of Theorem 1.3.  

Let ( , ), 1,2,i iv p i 
 be two solutions of Eq. (1) associated with the additional observation given 

by (8) and let , 1, 2i i   be the two Robin coefficients given by (12).  

As in the proof of Theorem 1.2 shown above, let 1 2 1 2( , ) ( , )v p v v p p   , which is the solution to 

Eq. (43) with the additional observation given by (45).  

Without a loss of generality, we can assume that 
1v m . The Robin coefficients given by (8) 

then satisfy the relationship:  

   1 2 1 2 2( , )n ( )v v v p v D v pI n             on 0 .  

Thus, we get the estimate   

        2 2 2 2
0 0 0

1 2 L (0, ) L (0, ) L (0, ) L (0, )
.

T T T T

C
v v p

m
 

   
         (46) 

Using an interpolation inequality borrowed from Badra et al. (2016) 2 2 1L ( ) L ( ) ( )
,

H
C

  
    we 

can get  
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 2 2 2 1
0

1 1
2 2

L (0, ) L ( ) (0,T;H ( ))
,

T Q L
p C p p

 
         (47) 

 2 2 2 1
0

1 1
2 2

L (0, ) L ( ) (0,T;H ( ))
,

T Q L
v C v v

 
         (48) 

and then
 2 2 1 2 2

0

1 1
2 2

L (0, ) (0,T;H ( )) (0,T;H ( ))
.

T L L
v C v v

  
        (49) 

Combining (47), (48), and (49) with the interpolation inequality 
1

2 2L ( ) ( )

1 1
2 2

( )
,

H
H

 


   
 

the 

inequality (46) then leads to      

 2 2 2 2 2 2 2 2 2 1

2 2 2 2 2 1

3 31 1 1 1
4 4 4 4 2 2

1 2 L (0, ) L ( ) (0,T;H ( )) L ( ) (0,T;H ( )) L ( ) (0,T;H ( ))

31 1 1
4 4 2 2

L ( ) (0,T;H ( )) L ( ) (0,T;H ( ))

T Q L Q L Q L

Q L Q L

C
v v v v p p

m

C
v v p p

m

 
   

 

     
 

   
 

 

2 2

1 13 1
4 24 2

L ( ) L ( )
.

Q Q

C
v M p M

m

   
 

      (50) 

Hence, the result (13) of Theorem 1.3 is proven by applying Theorem 1.2 (the inequalities (10) and 

(11)) to the estimate 2L ( )Q
v and 2L ( )Q

p in the above inequality (50).    

We notice from the result of Theorem 1.3 that if the boundary observations of 1v and 2v  on the 

observable boundary part are equal, then the corresponding Robin coefficients 1  and 2  are also 

equal.  

 

Discussion 

The estimates (9), (10), and (11) (stated in 

Theorem 1.2) show the stability of the velocity 

and of the pair of solutions ( , )v p with respect to 

a distributed observation or a boundary 

observation. These results extend the results of 

Boulakia et al. (2013) and Badra et al. (2016) 

by building an appropriate Carleman estimate 

for the unsteady Stokes Eq. (1). 

On the other hand, the uniqueness of the 

solution ( , )v p  of  Eq. (1) is guaranteed thanks to 

the above results: if 1 2v v  in Q  then 1 2v v  in 

Q , or if the Cauchy data 1 1 1( , ( , )n)v v p 
 

2 2 2( , ( , )n)v v p on (0,T) ,obs  then 1 2v v  in 

.Q  This matches the unique continuation result 

given in Fabre and Lebeau (1996).  

The estimate (13) shows the stability in the 

determination of the Robin boundary coefficient 

from the value of the velocity v and the Cauchy 

data ( , ( , )n)v v p  on a part of the boundary. 

This means that the Robin coefficient can be 

determined from an unobservable boundary part 

of the velocity and of the Cauchy data.  

Many mathematical works dealing with 

boundary coefficient problems have previously 

been published (Chaabane et al., 2004; Sincich, 

2007; Bellassoued et al., 2008; Cheng et al., 

2008; Boulakia et al., 2013). However, the 

present work is for unsteady Stokes equations in 

two or three dimensions.   

Conclusions 

The present work treats, for the first time, 

the inverse problem of determining the time-

independent Robin coefficient in unsteady 

Stokes equations (in 2 or 3 dimensions) with 
non-homogeneous boundary conditions.  

The stability estimates of a log type are 

established for the solution of the equations 

from either an interior measurement of the 

velocity, or a boundary observation depending 

on the trace of the velocity and of the Cauchy 

stress tensor measurements on a part of the 
boundary.  
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A stability estimate for the Robin 

coefficient is then established from a 

measurement of the solution and of the Cauchy 

data on a sub-boundary. It is very significant in 

the determination of the Robin coefficient on 

the inaccessible portion of the boundary thanks 

to electrostatic measurements performed on the 
accessible boundary part.  
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