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INTEGRATED RESOLVENT OPERATORS AND NONDENSELY 
INTEGRODIFFERENTIAL EQUATIONS INVOLVING THE 
NONLOCAL CONDITIONS 
Hoang Thi Lan1 , Le Anh Minh2 
Abstract: The aim of this work is to prove some results of the existence and regularity of 
solutions for some nondensely integrodifferential equations with nonlocal conditions, 
where the linear part has an integrated resolvent operator in the sens given by Oka [7]. 
They extend the results of  [4] and [5]. 
Keywords: Integrated resolvent operator, resolvent operator, integral solution, nonlocal, 
nondensely,  integrodifferential equations. 
1. Introduction  
         Nonlocal conditions in dynamical systems play an important role in many physical 
problems. They have better effects in applications than the classical initial conditions 

0(0)u u= . See, for example, in [1,2] to determine the unknown physical parameter in some 
inverse heat condition problems and in [3]  to describe the diffusion phenomenon of a small 
amount of gas in a transparent tube.  As indicated in [8], we sometimes need to deal with 
non-densely defined operators. For example, when we look at a one-dimensional heat 
equation with Dirichlet conditions on [0, ]  and consider 2

2A x
=   in ([0, ], )C  , in 

order to measure the solutions in the sup-norm, then the domain.  2( ) ([0, ], ) : (0) ( ) 0D A u C u u =  = =  
is not dense in ([0, ], )C   with the sup-norm since  

 ( ) ([0, ], ) : (0) ( ) 0 ([0, ], ).A u C u u C  =  = =   
In this work, we are concerned with the existence and regularity of solutions for the 

following nondensely nonlocal integrodifferential equation 

0
0

( ) ( ) ( ) ( ) ( , ( ))  for [0, ]
(0) ( )

t
u t Au t B t s u s ds f t u t t a
u u g u

 = + − + 
= +

  
(1.1) 

where : ( )A D A X X →  is a nondensely defined closed linear operator on a 
Banach space ,X  0( ( ))tB t   is a family of closed linear operators on X  having the same 
domain ( ) ( )D B D A  which is independent of t , :[0, ]f a X X →  and 

: ([0, ]; )g C a X X→ are given functions to be specified later, where ([0, ]; )C a X  denotes 
the space of continuous function form [0, ]a  to .X  
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In [5], Ezzinbi  and Liu studied the special case of  (1.1) when ( ) 0 [0, ].B t t a  
More precisely,  they studied the following nonlocal evolution equations 

0

( ) ( , ( )), [0,1]
(0) ( ),
du Au t f t u t tdt

u u g u
= + 
= +

 
 

(1.2) 
 

By using  the fixed-point methods and the theory of  integrated semigroup Ezzinbi  
and Liu obainted the existence and uniqueness of mild solution to (1.2)  when A  is not 
necessarily densely defined but satisfies the Hille-Yosida condition.  Then, they verified 
that mild solutions are ``strict solutions" if additional conditions are assumed.   

It is worth emphasizing that  in [4] Ezzinbi and Ghnimi proved the existence and 
regulariy of solutions to (1.1)  when A  is densely defined and has a resolvent operator in 
the sens given by Grimmer [6].  However,   in the case that the operator A  is not densely 
defined,  their results the existence and regulariy are not guaranteed.   
2. Integrated resolvent operators  

In this section, we summarize basic results which are useful in the sequel. Let Z and 
W  be Banach spaces. We denote by ( , )Z W the Banach space of bounded linear 
operators from Z  into W endowed with the operator norm, and we abbreviate to ( )Z  
when .Z W=  

Let : ( )A D A X X → be a closed linear operator whose domain is not necessarily 
densely defined in X and 0( ( ))tB t   be a family of linear operators in X  with 

( ) ( ( ))D A D B t  for 0t  and of bounded linear operators from Y into .X Here, Y is the 
Banach space ( )D A  equipped with the graph norm | | : | | | |Yy Ay y= +  for .y Y  We start 
by putting together the fundamental properties on integrated resolvent operators. We refer 
to Oka [7]  for more details. Let us consider the following integrodifferential equation: 

0
0

( ) ( ) ( ) ( )d  for 0
(0)

t
x t Ax t B t s x s s t
x x X
 = + −  = 

  
(2.1) 

Definition 2.1. ([7]) An integrated resolvent operator for Eq.(2.1) is a bounded 
operator-valued function ( ) ( )R t X  for 0t  , having the following properties. 

1 :r  For all , (.) ([0, ); ).x X R x C X  +  
2 :r   For all 

0
, ( ) ([0, ); ).x X R s xds C Y  +  

3 :r
0 0 0

( ) ( )  ( ) ( )
t t s

R t x tx A R s x ds B t s R r xdrds− = + −    for all x X and 0.t   

4 :r
0 0 0

( ) ( ) ( ) ( )
t t s

R t x tx R s Axds R s r B r xdrds− = + −    for all ( )x D A  and 0.t   
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Remark 2.2. Definition 2.1 generalizes that of integrated semigroup of A  when 0B =  
Definition 2.3. An integrated resolvent operator 0( ( ))tR t   in ( )X  is called locally 

Lipschitz continuous, if for all 0a  , there exists a constant ( ) 0aC C a=  such that: 
| ( ) ( ) | | |  for , [0, ].aR t R s C t s t s a−  −   

Theorem 2.4. ([7]) Suppose that 0( ( ))tR t   is a locally Lipschitz continuous integrated 
resolvent operator. Then for all ( ), ( )x D A t R t x →  is a 1C -function on[0, ).+  

We now introduce the following assumptions:   
(H0):  The operator A  satisfies the Hille-Yosida condition. 
(H1):  0( ( ))tB t   is a family linear operator in X  with ( ) ( ( ))D A D B t  for all 0t   

and, of bounded linear operators from Y to X such that the functions (.)B x  are of strong 
bounded variation on each finite interval [0, ], 0a a  , for ( )x D A . 

The following result provides sufficient conditions ensuring the existence of locally 
Lipschitz continuous integrated resolvent operator for Eq.(2.1). 

Theorem 2.5. ([7]) Assume that (H0) and (H1) hold. Then, there exists a unique 
locally Lipschitz continuous integrated resolvent operator of Eq.(2.1). 

We study the following initial value problem: 

0
0

( ) ( ) ( ) ( ) ( )  for 0
(0)

t
x t Ax t B t s x s ds q t t
x x
 = + − +  =

  
                                       (2.2) 

where 0x X  and ([0, ); )q C X + . We shall introduce the notions of integral 
and strict solutions to Eq.(2.2) and give some results concerning the existence and 
regularity of solutions of  Eq.(2.2) used in the later sections. 

Definition 2.6. ([7]) Let 1
loc (0, ; )q L X +  and 0x X . A function :[0, )x X+ →

is called an integral solution of Eq.(2.2) if the following conditions hold: 
i) ([0, ); ).x C X +  
ii) 

.

0
( ) ([0, ); ).x s ds C Y +  

iii) 0
0 0 0 0

( ) ( ) ( ) ( ) ( ) for 0.
t t s t

x t x A x s ds B t s x r drds q s ds t= + + − +      
Remark 2.7.  If x  is an integral solution of  Eq. (1.1) then, it follows from Definition 2.6. 

that ( ) ( )x t D A  for all 0t  . Indeed, 0
1( ) lim ( )

t h

h t
x t x s dsh

+
→=   and ( ) ( ).

t h

t
x s ds D A

+   In 
particular, (0) ( )x D A is a necessary condition for existence of an integral solution of Eq.(2.2). 

Definition 2.8. A function :[0, )x X+ →  is called a strict solution of Eq.(2.2) if 
the following conditions hold: 
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i) 1([0, ); ) ([0, ); ).x C X C Y +  +  
ii) x  satisfies Eq.(2.2) on[0, ).+  
Theorem 2.9. ([7]) Assume that ( )D A X=  and ( )A  . Let 1

loc (0, ; )q L X + . 
The following statements are equivalent 

i) Eq.(2.1) admits a locally Lipschitz continuous integrated resolvent operator 
0( ( ))tR t  . 

ii) Eq. (2.1) admits a resolvent operator 0.( ( ))tR t   
iii) For all 0x X  there exists a unique integral solution x  to Eq.(2.2). 
iv) For all 0x X , there exists a unique weak solution x  to Eq.(2.2). In this case, 

                           0 0 00( ) ( )  for 0 and  tR t x R s x ds t x X=    

                                ( )0 0

0 00

( ) ( ) ( ) ( )  for 0
( ) ( ) ( )  for 0 and 

t

t

dx t R t x R t s q s ds tdt
R t x R t s q s ds t x X

= + − 
= + −  


  

The following is a key Theorem to prove our main results. 
Theorem 2.10 ([7]).  Let a family 0( ( ))tU t  in ( )X  be locally Lipschitz continuous 

with (0) 0U = . Then, the following holds: 
i) If 1(0, ; )q L a X , then 1

0
(. ) ( ) ([0, ]; )

t
U s q s ds C a X−  . 

Putting 
0

( ) : ( ) ( )
tdQ t U t s q s dsdt= − for [0, ]t a , we have 

0| ( ) | | ( ) |t
aQ t C q s ds   

where aC  is the Lipschitz constant of ( )U t  on [0, ]a . Moreover, if | ( ) |q t K  for
[0, ]t a , then 

0
| ( ) ( ) | | ( ) ( ) |  for , , [0, ].

t
a aQ t s Q t KC s C q s r q r dr s t t s a+ −  + + − +   

ii) If a function :[0, ]q a X→  is of strong bounded variation, the function (.)Q  
defined in  i) is Lipschitz continuous on[0, ]a . 

Remark 2.11. The results reported in Theorem 2.10 hold for any locally Lipschitz 
continuous family of bounded linear operators 0( ( ))tU t   with (0) 0U = . In particular, these 
results are true for the integrated resolvent operators. 

The following theorem gives sufficient conditions for the existence of integral and 
strict solutions of Eq.(2.2). 

Theorem 2.12. ([7]) Assume that Eq.(2.1) has an integrated resolvent operator 
0( ( ))tR t   that is locally Lipschitz continuous and ( ) .A   Then, the following holds. 
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i)  If 0 ( )x D A  and 1(0, ; )q L a X , then there exists a unique integral solution 
(.)x  of Eq. (2.2) which is given by the variation of constants formula 

0 0( ) ( ) ( ) ( )  for [0, ].tdx t R t x R t s q s ds t adt
= + −   

Moreover, we have ( )0 0| ( ) | | ( ) |  for [0, ].t
ax t C x q s ds t a +   

ii)  If 1,1
0 ( ), (0, ; )x D A q W a X   and 0 (0) ( )Ax q D A+  , then there exists a 

unique strict solution (.)x  of Eq.(2.2). Moreover, we have 
0 0

0
( ) (0) ( ) ( )  for [0, ].

t
ax t C Ax q B s x q s ds t a   + + +     

3.  Existence and Regularity of Solutions  
Definition 3.1. A continuous function :[0, ]u a X→  is said to be a strict solution of 

Eq.(1.1) if 
i) 1([0, ]; ) ([0, ]; ),u C a X C a Y   
ii) u  satisfies Eq.(1.1). 
Definition 3.2. A continuous function :[0, ]u a X→  is said to be a mild solution of 

Eq.(1.1) if 
( )0

0
( ) ( ) ( ) ( ) ( , ( ))  for [0, ].

tdu t R t u g u R t s f s u s ds t adt= + + −   
To prove the existence of mild solutions, we make the following assumptions: 
(H2): Function :[0, ]f a X X →  is continuous and Lipschitzian with respect to 

the second argument. Let 0fL   be such that 
| ( , ) ( , ) | | |  for [0, ] and , .ff t u f t v L u v t a u v X−  −    

(H3): Function : ([0, ]; )g C a X X→  is Lipschitz continuous. Let 0gL    be such that  
| ( ) ( ) | | | for , ([0, ]; ).gg u g v L u v u v C a X−  −   

Theorem 3.3.  Assume that Eq. (2.1)  has an integrated resolvent operator 0( ( ))tR t    
that is locally Lipschitz continuous and ( ) .A    Let ,f g  be two functions satisfying 
(H2) and (H3) respectively, and 0 ( ) ( )u g u D A+  . Then the nonlocal problem  (1.1)  has 
a unique mild solution u  on [0, ]a  provided that ( ) 1.a g fC L L a+   (3.1) 
 Proof . Consider the operator : ([0, ]; ) ([0, ]; )C a X C a X →  defined by  

 0
0

( )( ) ( ) ( ) ( ) ( , ( )) for [0, ].
tdu t R t u g u R t s f s u s ds t adt = + + −   
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Let , ([0, ]; )u v C a X . Then for [0, ]t a , we have 

( )
( )

0

0

| ( )( ) ( )( ) | | ( )[ ( ) ( )] | | ( )[ ( , ( )) ( , ( ))] |

| | | ( ) ( ) |
| |,

t

t
a g f

a g f

du t v t R t g u g v R t s f s u s f s v s dsdt
C L u v L u s v s ds
C L L a u v

 −   − + − −
 − + −
 + −


  

which implies that ( )| ( ) ( ) | | | .a g fu v M L L a u v −   + −  
Thus, from (3.1),    is a strict contraction. Then by the Banach's fixed point theorem   has a unique fixed point in ([0, ]; )C a X , which means there exists a unique mild 

solution for Equation (1.1)  on[0, ]a . For the regularity of the mild solution, we assume the 
following assumption: 

(H4): 1([0, ] ; )f C a X X  and the partial derivatives 1 (., .)D f  and 2 (.,.)D f  are 
locally Lipschitzian with respect to the second argument. 

Theorem 3.4.  Assume that Equation  (2.1)  has an integrated resolvent operator 
0( ( ))tR t   that is locally Lipschitz continuous and ( )A  . Let  (H2) - (H4) hold and   

0(0) ( ) ( )
(0) (0, (0)) ( ).

u u g u D A
Au f u D A

= + 
+   (3.2) 

Then, the integral solution of Equation (1.1) given by Theorem 3.3 is a strict solution 
on [0, ).+  

Proof. Let u be the mild solution of Equation (1.1) given by Theorem 3.3. Then 

0
( ) ( ) (0) ( ) ( , ( ))  for [0, ].tdu t R t u R t s f s u s ds t adt= + −   (3.3) 

Differentiating  4( )r  with (0) ( )x u D A=  , we get  

0
( ) (0) (0) ( ) (0) ( ) ( ) (0)  for [ ].. 0,

t
R t u R t Au R t s B s u ds t a = + + −   

which implies, together with (3.3), that 

( )
0

0

( ) (0) ( ) (0) ( ) ( ) (0)

( ) , ( )  for [0, ].

t

t

u t u R t Au R t s B s u ds
d R t s f s u s ds t adt

= + + −

+ − 



 

(3.4) 

Consider now the following equation 

( ) ( ) ( )( )
1 2

0

( ) ( ) ( ) ( ) ( , ( )) ( , ( )) ( )
( ) (0) f

.
or [0, ]

0  0 0,  0

tdv t Av t B t s v s ds D f t u t D f t u t v tdt
B t u t a

v A u f u

= + − + +
+ 

= +


 

(3.5) 

where 1D  and 2D  are the partial derivatives to the first and second variables, respectively.  
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Then by the contraction mapping principle we can prove that equation (3.5)  has an 
integral solution v on [0, ]T which is given by 

( ) ( ) ( ) ( )( )
 1 2

0

 '  0 0,  0
( ) ( , ( )) ( , ( )) ( ) ( ) (0) .

t
v t R t A u f u

d R t s D f s u s D f s u s v s B s u dsdt

= +
− +

 
+


+   

(3.6) 

Let w  the function be defined by 

0
( ) (0) ( )  for [0, ].

t
w t u v s ds t a= +   

Now, we shall prove that .w u=  In view of  (3.2)  it follows from (3.6) that the 
solution v  of Eq. (3.5) satisfies ( ) ( ) ( ) ( )( )

 1 2
0

'  0 0,  0
( ) ( , ( )) ( , ( )) ( ) ( ) (0) .

t
v t R t A u f u

d R t s D f s u s D f s u s v s B s u dsdt

= +
+ − +

 
+


  

Integrating this over[0, ]t , we obtain 

 
0

1 2
0

( ) ( )[ (0) (0, (0))]

( ) ( , ( )) ( , ( )) ( ) ( ) (0)

t

t

v s ds R t Au f u

R t s D f s u s D f s u s v s B s u ds

= +

+ − + +



 

and so 

 
0

1 2
0

( ) (0) ( ) (0, (0)) ( )

( ) ( , ( )) ( , ( )) ( ) ( ) (0) .

t

t

R t Au R t f u v s ds

R t s D f s u s D f s u s v s B s u ds

= − +

− − + +



 

(3.7)

On the other hand, since the function ( )t w t→  is continuously differentiable, it 
follows from Theorem 2.10  that 

( )
0

( ) , ( )
t

t R t s f s w s ds→ −  
is also continuously differentiable and 

( ) ( )
( ) ( )( ) ( ) ( )

0 0

1 2
0

( ) , ( ) ( ) , ( )

  0, 0 ( ) , ( ) , ( ) ( ) .

t t

t

d dR t s f s w s ds R s f t s w t s dsdt dt
R t f u R t s D f s w s D f s w s v s ds

− = − −

= + − +  

 


 

This implies that 
( )

( ) ( )
0

1 2
0

( ) (0, (0)) ( ) , ( )

( ) , ( ) , ( ) ( ) .

t

t

dR t f u R t s f s w s dsdt
R t s D f s w s D F s w s v s ds

= −

− − +  




 
(3.8) 
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Combining (3.4) with (3.7) and (3.8), we find 

 
( )

( )
( ) ( )

0

1 2
0

0 0

0

1 2
0

0

( ) (0) ( ) (0, (0)) ( )

( ) ( , ( )) ( , ( )) ( ) ( ) (0)

( ) ( ) (0) ( ) , ( )

( ) ( ) , ( )

( ) , ( ) , ( ) ( )

( )

t

t

t t

t

t

t

u t u R t f u v s ds

R t s D f s u s D f s u s v s B s u ds
dR t s B s u ds R t s f s u s dsdt

dw t R t s f s w s dsdt
R t s D f s w s D F s w s v s ds

R t s D

= − +

− − + +

+ − + −

= − −

+ − +  
− −



 



  

( )
 

 
 

1 2

0 0

0

1 1
0

2 2
0

( , ( )) ( , ( )) ( ) ( ) (0)

( ) ( ) (0) ( ) , ( )

( ) ( ) ( , ( )) ( , ( ))

( ) ( , ( )) ( , ( ))

( ) ( , ( )) ( , ( )) ( ) .

t t

t

t

t

f s u s D f s u s v s B s u ds
dR t s B s u ds R t s f s u s dsdt

dw t R t s f s u s f s w s dsdt
R t s D f s u s D f s w s ds

R t s D f s u s D f s w s v s ds

+ +

+ − + −

= + − −

− − −

− − −

 





 

Consequently, 
 
 
 

0

1 1
0

2 2
0

( ) ( ) ( ) ( , ( )) ( , ( ))

( ) ( , ( )) ( , ( ))

( ) ( , ( )) ( , ( )) ( )

t

t

t

du t w t R t s f s u s f s w s dsdt
R t s D f s u s D f s w s ds

R t s D f s u s D f s w s v s ds

− = − −

− − −

− − −





 

and so, 
 
 
 

0

1 1
0

2 2
0

| ( ) ( ) | ( ) ( , ( )) ( , ( ))

( ) ( , ( )) ( , ( ))

( ) ( , ( )) ( , ( )) ( ) .

t

t

t

du t w t R t s f s u s f s w s dsdt
R t s D f s u s D f s w s ds

R t s D f s u s D f s w s v s ds

−  − −

+ − −

+ − −
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Let { ( ), ( ) : [0, ]}u t w t t a=  . Then  is a compact set. Since 1D f  and 2D f  are 
locally Lipschitz with respect to the second argument, then 1D f  and 2D f  are globally 
Lipschitz on .Thus there exists ( ) 0a   such that 

0
| ( ) ( ) | ( ) | ( ) ( ) |  for [0, ]

t
u t w t a u s v s ds t a−  −   

where ( ) ( )2
0 1 0 2( ) Lip Lipa fa C L b D f b D f = + +  

with  0 0 0
: max sup | ( ) |, sup ( ) .

s a s a
b R s v s

   
=  

By Gronwall's lemma, we deduce that ( ) ( )u t w t= for [0, ]t a . Then u is 
continuously differentiable in [0, ].a  So the function ( , ( ))t f t u t→ is continuously 
differentiable on v , which means, by  Theorem 2.12 that u  is a strict solution of 
Eq.(1.1) on [0, ]a .  
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