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THE SEMILINEAR COUPLED SYSTEMS FOR THE EXTERNAL DAMPING
MODELS WITH VARIABLE COEFFICIENTS

Pham Trieu Duong
Faculty of Mathematics, Hanoi National University of Education

Abstract. We present in this article some results on the global solvability with
arbitrarily small data of the Cauchy problem for the following semilinear coupled
system with a variable coefficient

utt + a(x)(−∆)σu+ ut = F (|D|αv, vt),
vtt + a(x)(−∆)σv + vt = G(|D|αu, ut),
u(0, x) = u0(x), ut(0, x) = u1(x),

v(0, x) = v0(x), vt(0, x) = v1(x).

The nonlinearities are of the form (F,G) = (||D|αv|p, ||D|αu|q), or (F,G) =
(|vt|p, |ut|q), and the parameter σ satisfies σ ∈ (0, 1). We will show that the
”critical exponents” p, q for the small data global solvability have a close relation to
the established exponents of the corresponding semilinear problems for the external
damping equations.
Keywords: external damping, coupled systems, global (in time) solvability, decay
estimates, small data solutions.

1. Introduction
In [1] Nishihara and Wakasugi studied the Cauchy problem of the weakly coupled

system of the damped wave equation
utt −∆u+ ut = |v|p, t ≥ 0, x ∈ Rn,

vtt −∆v + vt = |u|q, t ≥ 0, x ∈ Rn,

(u, ut, v, vt)(0, x) = (u0, u1, v0, v1)(x), x ∈ Rn

(1.1)
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They have proved that global existence of small data solutions to (1.1) holds in any space
dimension n ≥ 1, provided that

α :=
max{p, q}+ 1

pq − 1
<

n

2
. (1.2)

It can be checked directly that condition (1.2) is equivalent to

max{p, q}(min{p, q}+ 1− pF (n)) > pF (n), (1.3)

where pF (n) = 1 + 2/n is the Fujita critical exponent for the damped wave equation.
The aim of our current study is to obtain results analogous to that of [1] in the

case of fractional damping models using the decay estimates for linear external damping

models. Let us denote pE = pE(σ, α) :=
n+ 2σ

n+ α
. For the Cauchy problem

utt + a(−∆)σu+ ut = ||D|αv|p, t ≥ 0, x ∈ Rn,

vtt + a(−∆)σv + vt = ||D|αu|q, t ≥ 0, x ∈ Rn,

(u, ut, v, vt)(0, x) = (u0, u1, v0, v1)(x), x ∈ Rn,

(1.4)

where 0 < a = const, |D| := (−∆)
1
2 , we will show that the global existence of the small

data solution holds if

max{p, q}(min{p, q}+ 1− pE) > pE (1.5)

for all n ≥ 2.
For the Cauchy problem with nonlinearities (F,G) = (|vt|p, |ut|q)

utt + a(x)(−∆)σu+ ut = |vt|p, t ≥ 0, x ∈ Rn,

vtt + a(x)(−∆)σv + vt = |ut|q, t ≥ 0, x ∈ Rn,

(u, ut, v, vt)(0, x) = (u0, u1, v0, v1)(x), x ∈ Rn,

(1.6)

we will prove the global small data solvability in the class Hs (for sufficiently large s)
under the following condition

p, q > pS, (1.7)

where the exponent pS is linked to the global solvability of the following Cauchy problem

utt + a(x)(−∆)σu+ ut = |ut|p, u(0, x) = u0(x), ut(0, x) = u1(x). (1.8)

We recall that the general semi-linear structurally damping model is a family of following
problems containing the fractional Laplacians with parameters δ and σ

utt + (−∆)σu+ (−∆)δut = F (u, ut, |D|αu),
u(0, x) = u0(x), ut(0, x) = u1(x), (1.9)
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(see [2, 3, 4, 5] for the studied damping models).
In general, without any restriction on the parameter σ, we can define the fractional

Laplacian by the Fourier transform

F((−∆)σf(ξ)) = |ξ|2σF(f)(ξ)

for all σ > 0, where F(f) denotes the Fourier transform of the function f with respect to
the x variable.

For σ ∈ (0, 1) we can use the integral representation of the fractional Laplacian:

(−∆)σu(x) = cn,σ

∫
Rn

u(x)− u(y)

|x− y|n+2σ
dy,

for sufficiently smooth u, with a normalization positive constant cn,σ = 22σσΓ(n/2+σ)

πn/2Γ(1−σ)

depending on n and σ.
For the external damping model, where δ = 0, using the diffusion phenomenon and

the Markov property of the semigroup generated by non-negative self-adjoint operators
(see [6]), we have recently obtained in [7, 8, 9] the following decay estimates for the
solution of the linear external damping problem. Let a(x) be a continuous function
satisfying

a1 ≤ a(x) ≤ a2, for all x ∈ Rn, (1.10)

with positive constants a1, a2. Then the solution v(t, x) of the linear Cauchy problem for
external damping model{

vtt + a(x)(−∆)σv + vt = 0, t ≥ 0, x ∈ Rn,

v(0, x) = v0(x), vt(0, x) = v1(x), x ∈ Rn,
(1.11)

and its derivatives satisfy the following (L1 ∩ L2)− L2 estimates

∥v(t, ·)∥L2 ≲ (1 + t)−
n
4σ ∥v0∥L1∩L2 + (1 + t)−

n
4σ ∥v1∥L1∩H−σ , (1.12)

∥v(t, ·)∥Ḣσ ≲ (1 + t)−
n
4σ

−1
2∥v0∥L1∩Ḣσ + (1 + t)−

n
4σ

−1
2∥v1∥L1∩L2 , (1.13)

∥vt(t, ·)∥L2 ≲ (1 + t)−
n
4σ

−1∥v0∥L1∩Ḣσ + (1 + t)−
n
4σ

−1∥v1∥L1∩L2 , (1.14)

∥v(t, ·)∥Ḣk ≲ (1 + t)−
n
4σ

− k
2σ ∥v0∥L1∩Ḣk + (1 + t)−

n
4σ

− k
2σ ∥v1∥L1∩Ḣk−σ , (1.15)

∥vt(t, ·)∥Ḣk ≲ (1 + t)−
n
4σ

−1− k
2σ ∥v0∥L1∩Ḣk+σ + (1 + t)−

n
4σ

−1− k
2σ ∥v1∥L1∩Ḣk . (1.16)

In the case when a = const > 0 we have also the following additional L2 − L2 estimates

∥v(t, .)∥L2 ≲ ∥v0∥L2 + (1 + t)∥v1∥L2 ,

∥vt(t, .)∥L2 ≲ (1 + t)−1∥v0∥Hσ + ∥v1∥L2 ,

∥|D|σv(t, .)∥L2 ≲ (1 + t)−
1
2∥v0∥Hσ + (1 + t)−

1
2∥v1∥L2 .

The above linear estimates are essential in the study of the global solvability of various
nonlinear Cauchy problems for damping models with arbitrarily small initial data.
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2. Main results
In this section we will state our main results. First we consider the case when the

nonlinearities have the form |ut|p and |vt|q with p, q > 2. We introduce the exponent

pS := s+ 1− σ

for s > σ +
n

2
.

Let us consider the Cauchy problem for the following system of the nonlinear
external damped model

utt + a(x)(−∆)σu+ ut = |vt|p, t ≥ 0, x ∈ Rn,

vtt + a(x)(−∆)σv + vt = |ut|q, t ≥ 0, x ∈ Rn,

(u, ut, v, vt)(0, x) = (u0, u1, v0, v1)(x), x ∈ Rn,

(2.1)

with σ satisfies σ ∈ (0, 1) and n > 4σ. The coefficient a(x) is supposed to be a
continuous function satisfying condition (1.10). The data (u0, u1, v0, v1) are assumed

to belong to the function space
(
(L1 ∩ Hs) × (L1 ∩ Hs−σ)

)2

with s > σ +
n

2
. Then,

for any p, q > pS , there exists a uniquely determined global (in time) small data energy

solution from
(
C
(
[0,∞), Hs

)
∩ C1

(
[0,∞), Hs−σ

))2

. Next, let us consider the case

(F,G) = (||D|αv|p, ||D|αu|q), where α ∈ [0, σ) and 0 < a = const. For pE = n+2σ
n+α

,
we put

γ(p) :=
(n+ a)(pE − p)+

2σ
, (2.2)

γ(q) :=
(n+ a)(pE − q)+

2σ
(2.3)

- the parameters that represent the possible loss of decay with respect to the corresponding
linear estimates for u and v. We use here the notation (k)+ := max{k, 0}.

In the following study, we note that p, q can be strictly smaller than pE , which
means that γ(p) or γ(q) can be positive. Then we have the following global solvability
result for problem (1.4). Let p, q ≥ pE − 1 and p, q ∈ [2,

n

n+ 2(α− σ)

)
such that the

condition (1.5) holds for σ ∈ (0, 1). Moreover, suppose that the data (u0, u1, v0, v1) are
chosen from the space A :=

(
(L1 ∩Hσ)× (L1 ∩L2)

)2. Then there exists ε > 0 such that
for all n ≥ 2 and for any small data (u0, u1, v0, v1) with

A := ∥(u0, v0)∥L1∩Hσ + ∥(u1, v1)∥L1∩L2 < ε (2.4)

there exists the (global) solution

(u(t, x), v(t, x)) ∈
(
C([0,∞), Hσ) ∩ C1([0,∞), L2)

)2
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to the Cauchy problem (1.4) with α ∈ [0, σ). Moreover, the following estimates are
satisfied

∥u(t, ·)∥L2 ≲ (1 + t)−
n
4σ

+γ(p)A, (2.5)

∥v(t, ·)∥L2 ≲ (1 + t)−
n
4σ

+γ(q)A, (2.6)

∥u(t, ·)∥Ḣσ ≲ (1 + t)−
n
4σ

−1
2
+γ(p)A, (2.7)

∥v(t, ·)∥Ḣσ ≲ (1 + t)−
n
4σ

−1
2
+γ(q)A, (2.8)

∥ut(t, ·)∥L2 ≲ (1 + t)−
n
4σ

−1+γ(p)A, (2.9)

∥vt(t, ·)∥L2 ≲ (1 + t)−
n
4σ

−1+γ(q)A, (2.10)

in the case when p, q ̸= pE . If p = pE or q = qE then the corresponding loss of decay
(1 + t)γ(p) or, respectively, (1 + t)γ(q), is replaced by log(e+ t).

3. The proof of main results
Proof. (of Theorem 2).

Let us denote

A := ∥(u0, v0)∥L1∩Hs + ∥(u1, v1)∥L1∩Hs−σ . (3.1)

We introduce the data space A :=
(
(L2 ∩ Hs) × (L1 ∩ Hs−σ)

)2

and the solution

space X(t) =
(
C([0, t], Hs) ∩ C1([0, t], Hs−σ)

)2

with the norm

∥(u, v)∥X(t) = sup
0≤τ≤t

(
W (u) +W (v)

)
, (3.2)

where

W (u) =
(
f0(τ)

−1∥u(τ, ·)∥L2 + fs(τ)
−1∥|D|su(τ, ·)∥L2+ (3.3)

g(τ)−1∥ut(τ, ·)∥L2 + gs−σ(τ)
−1∥|D|s−σut(τ, ·)∥L2

)
,

and similarly for v.
From the estimates of Proposition 1., we can choose

f0(τ) := (1+τ)−
n
4σ , fs(τ) := (1+τ)−

n
4σ

− s
2σ , g(τ) := (1+τ)−

n
4σ

−1, gs−σ(τ) := (1+τ)−
n
4σ

− s+σ
2σ

We define the integral operator N : (u, v) ∈ X(t) 7→ N [u, v] ∈ X(t) by

N [u, v] = L+ (Fv,Gu),
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where

L = E0(t, x) ∗x (u0, v0)(x) + E1(t, x) ∗x (u1, v1)(x),

F (v) =

∫ t

0

E1(t− τ, x) ∗x
∣∣vt(τ, x)∣∣pdτ,

G(u) =

∫ t

0

E1(t− τ, x) ∗x
∣∣ut(τ, x)

∣∣qdτ.
The local and global existence of small data solution to (2.1) will follow by the standard
contraction argument if we can show the estimates

∥N [u, v]∥X(t) ≲ A+ ∥(u, v)∥pX(t) + ∥(u, v)∥qX(t), (3.4)

and the Lipschitz property

∥N [u, v]−N [ũ, ṽ]∥X(t) ≲ (3.5)∥∥(u, v)− (ũ, ṽ)
∥∥
X(t)

(∥∥(u, v)∥∥p−1

X(t)
+
∥∥(ũ, ṽ)∥∥p−1

X(t)
+
∥∥(u, v)∥∥q−1

X(t)
+
∥∥(ũ, ṽ)∥∥q−1

X(t)

)
,

for the exponents p, q satisfying given conditions.
By the linear estimates (1.12)-(1.14) in Prop. 1., it follows immediately that

∥L∥X(t) ≲ A.

Next, we will estimate the L2-norm of Fv itself. To do that we apply the (L1 ∩
L2)− L2 estimates on the interval

[
0, t] to conclude

∥Fv(t, ·)∥L2 ≲
∫ t

0

(1 + t− τ)−
n
4σ ∥|vt(τ, ·)|p∥L1∩L2dτ. (3.6)

From the definition of Lp-norms we get directly that

∥|vt(τ, ·)|p∥L1∩L2 ≲ ∥vt(τ, ·)∥pLp + ∥vt(τ, ·)∥pL2p .

To estimate the norm ∥vt(τ, ·)∥Lkp , k = 1, 2, we apply the fractional Gagliardo-Nirenberg
inequality from Proposition 5.1. in the following form

∥w(τ, ·)∥Lq ≲ ∥|D|s−σw(τ, ·)∥θ0,s−σ(q,2)

L2 ∥w(τ, ·)∥1−θ0,s−σ(q,2)

L2 (3.7)

with w(τ, ·) = ut(τ, ·), where for q ≥ 2 we need

θ0,s−σ(q, 2) =
n

s− σ

(1
2
− 1

q

)
∈
[
0, 1

)
,

that is, 2 ≤ q if n
2(s−σ)

< 1.

8



The semilinear coupled systems for the external damping models with variable coefficients

Since θ0,s−σ(p, 2) < θ0,s−σ(2p, 2), we obtain on the interval (0, t) the estimate∫ t

0

(1 + t− τ)−
n
4σ ∥|ut(τ, ·)|p∥L1∩L2dτ ≲

∥(u, v)∥pX(t)

∫ t

0

(1 + t− τ)−
n
4σ (1 + τ)

−p
(

n
4σ

+1+
n
2σ

(
1
2
−1
p
)
)
dτ. (3.8)

Similarly, we get the L2 estimate for Gu.

Now we recall that, for max{α; β} > 1, the inequality∫ t

0

(1 + t− τ)−α(1 + τ)−βdτ ≲ (1 + t)−min(α,β) (3.9)

holds.
If p, q > pS , then in that case,

p
(

n
4σ

+ 1 + n
2σ
(1
2
− 1

p
)
)
>

n

4σ
> 1,

thus ∫ t

0

(1 + t− τ)−
n
4σ (1 + τ)

−p
(

n
4σ

+1+
n
2σ

(
1
2
−1
p
)
)
dτ ≲ (1 + t)−

n
4σ (3.10)

Therefore the L2-norm of Fv is bounded by C(1+ t)−
n
4σ ∥(u, v)∥pX(t). Similarly, the same

argument is applied for Gu

By this approach we have proved the L2-norm estimate in (3.4) for Fv and Gu.
Differentiating the equations for N [u, v] with respect to t we obtain

∂tN [u, v] = Lt +

∫ t

0

∂t
(
G1(t− τ, x) ∗(x) [Fv,Gu]

)
dτ.

Using the above technique to estimate Fv we arrive at

(1 + τ)
n
4σ

+1∥∂tFv(τ, ·)∥L2 ≤ C∥(u, v)∥pX(t) for all τ ∈ [0, t] (3.11)

under the same assumption for p, q.

Now we turn to estimate ∥∂t|D|s−σN [u(t, ·), v(t, ·)]∥L2 . We use the following

∂t|D|s−σN [u, v] = |D|s−1Lt(t, x)+

∫ t

0

∂t|D|s−σ
(
E1(t−τ, x)∗(x)(|vt(τ, ·)|p, |ut(τ, ·)|p)

)
dτ.
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Taking account of the linear estimate (1.16) with k = s− σ and using the (L1 ∩L2)−L2

estimates on the interval (0, t) we obtain

∥∂t|D|s−σ(Fv)∥L2 ≲
∫ t

0

(1 + t− τ)−
n+2(s+σ)

4σ
(
∥|vt(τ, ·)|p∥L1∩L2 + ∥|vt(τ, ·)|p∥Ḣs−σ

)
dτ.

(3.12)

The integral with ∥|vt(τ, ·)|p∥L1∩L2 will be estimated by the Gagliardo-Nirenberg
inequality, as before, in the following manner∫ t

0

(1 + t− τ)−
n+2(s+σ)

4σ ∥|vt(τ, ·)|p∥L1∩L2 dτ

≲ ∥(u, v)∥pX(t)

∫ t

0

(1 + t− τ)−
n+2(s+σ)

4σ (1 + τ)
−p
(

n
4σ

+1+
n
2σ

(
1
2
−1
p

))
dτ.

In order to apply inequality (3.9) with a := n+2(s+σ)
4σ

and b := p
(

n
4σ

+ 1+ n
2σ

(
1
2
− 1

p

))
we

need the condition a ≤ b, that is equivalent to the following condition for p:

p > 1 + nσ+2(s−σ)
2(n+2σ)

. (3.13)

To estimate the integrals with ∥|vt(τ, ·)|p∥Ḣs−σ we apply the composition result (see
Corollary 5.2. in Appendix) for p > s. Thus we can proceed further as follows:∫ t

0

(1 + t− τ)−
n
4σ

− s+σ
2σ ∥|vt(τ, ·)|p∥Ḣs−σdτ

≲
∫ t

0

(1 + t− τ)−
n
4σ

− s+σ
2σ ∥|vt(τ, ·)|∥Ḣs−σ∥|vt(τ, ·)|∥p−1

L∞ dτ

≲
∫ t

0

(1 + t− τ)−
n
4σ

− s+σ
2σ ∥|vt(τ, ·)|∥Ḣs−σ∥|vt(τ, ·)|∥p−1

Hs0dτ (3.14)

≲
∫ t

0

(1 + t− τ)−
n
4σ

− s+σ
2σ ∥|vt(τ, ·)|∥Ḣs−σ

(
∥|vt(τ, ·)|∥L2 + ∥|vt(τ, ·)|∥Ḣs−σ

)p−1

dτ,

with s− σ > s0 >
n
2
.

Using again the linear estimates we get∫ t

0

(1 + t− τ)−
n
4σ

− s+σ
2σ ∥|vt(τ, ·)|p∥Ḣs−σdτ ≲ ∥(u, v)∥pX(t)·

·
∫ t

0

(1 + t− τ)−
n
4σ

− s+σ
2σ (1 + τ)−

n
4σ

−1
(
(1 + τ)−

n
4σ

−1 + (1 + τ)−
n
4σ

− s+σ
2σ

)p−1

dτ.

(3.15)

It is obvious that for p > 2 and s > 1 the integral in the right-hand side of (3.15) can be
estimated by application of inequality (3.9), therefore it implies∫ t

0

(1 + τ)−
n
4σ

− s+σ
2σ ∥|vt(τ, ·)|p∥Ḣs−1dτ ≲ (1 + t)−

n
4σ

− s+σ
2σ ∥(u, v)∥pX(t).
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An analogous reasoning leads to the other estimates in (3.4) which are required in the
definition of X(t)-norm.

The second inequality (3.5) is obtained by Hölder’s and Kato - Ponce’s inequalities.
Namely, the L1 ∩ L2-norm of F (vt(τ, x)) − F (ṽt(τ, x)) for F (vt) = |vt|p is estimated
by using

|F (vt)− F (ṽt)| ≲ |vt − ṽt|(|vt|p−1 + |ṽt|p−1).

Applying Hölder’s inequality we obtain

∥F (vt(τ, ·))− F (ṽt(τ, ·))∥L1 ≲ ∥vt(τ, ·)− ṽt(τ, ·)∥Lp

(
∥vt(τ, ·)∥p−1

Lp + ∥ṽt(τ, ·)∥p−1
Lp

)
,

∥F (vt(τ, ·))− F (ṽt(τ, ·))∥L2 ≲ ∥vt(τ, ·)− ṽt(τ, ·)∥L2p

(
∥vt(τ, ·)∥p−1

L2p + ∥ṽt(τ, ·)∥p−1
L2p

)
.

The Lp and L2p norms of the difference vt − ṽt are estimated again by the fractional
Gagliardo-Nirenberg inequality. Therefore, these norms can be bounded from above by
the norms of ∥vt − ṽt∥L2 and ∥vt − ṽt∥Ḣs−σ that are included in the X(t)- norm.

To obtain other Sobolev norms estimates for the difference (u, v) − (ũ, ṽ) we will
use a version of Kato-Ponce inequality (see Proposition 5.2.) that is formulated in the
homogeneous Sobolev scale. That inequality is also known as the fractional Leibniz rule.
Let us denote γ = s− σ. We can estimate

∥|vt(s, ·)|p − |ṽt(s, ·)|p∥Ḣγ ≲
∫ 1

0

∥∥(vt(s, ·)− ṽt(s, ·))f
(
θvt(s, ·) + (1− θ)ṽt(s, ·)

)∥∥
Ḣγ dθ

(3.16)

with f(w) = w|w|p−2.

Now we apply the Kato-Ponce inequality from Proposition 5.2. with the following
constants p1, q1, p2, q2 > 0:

r = p2 = q1 = 2, p1 = q2 = ∞,

to estimate the Ḣγ-norm of the product fg, with f := f(θvt+(1−θ)ṽt) and g := vt− ṽt,
in the right-hand side of (3.16).

∥|D|γ(fg)∥L2 ≲ ∥f∥L∞∥|D|γg∥L2 + ∥|D|γf∥L2∥g∥L∞ . (3.17)

With the assumption p− 1 > γ = s−σ the norm in Ḣγ,2 ≡ Ḣγ of f(θvt+(1− θ)ṽt) can
be estimated if we apply a general composition result for homogeneous Sobolev spaces
(see Corollary 5.2.).

By this way we obtain the second inequality (3.5) for the operator N [u, v], since
p − 1 > γ = s − σ is equivalent to our condition p > s + 1 − σ and both of the norms
∥vt(t, ·)∥L2 and ∥vt(t, ·)∥Ḣγ are included in the norm ∥(u, v)∥X(t).

We can summarize now all conditions for the exponents p and q that have been
derived from the above considerations as follows:

11
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• From the application of the Gagliardo - Nirenberg inequality: p, q > 2.

• From (3.13): p, q > 1 + nσ+2(s−σ)
2(n+2σ)

.

• From the above application of composition result: p, q > s+ 1− σ .

It is clear that these conditions are reduced to the last one

p, q > s+ 1− σ,

since s+ 1− σ > 2 and s+ 1− σ > 1 + nσ+2(s−σ)
2(n+2σ)

for s > σ + n
2
.

Thus we have verified the required sufficient condition p, q > s + 1 − σ for the
existence of global (in time) small data solution to the Cauchy problem for system (2.1).

Theorem 2. has been proved completely.

Proof. (of Theorem 2.) We introduce for all t > 0 the function space

X(t) :=
(
C
(
[0, t], Hσ

)
∩ C1

(
[0, t], L2

))2

with the norm

∥(u, v)∥X(t) = sup
0≤τ≤t

(
(1 + τ)−γ(p)W (u) + (1 + t)−γ(q)W (v)

)
, (3.18)

where

W (u) =
(
f0(τ)

−1∥u(τ, ·)∥L2 + fσ(τ)
−1∥|D|σu(τ, ·)∥L2 + g(τ)−1∥ut(τ, ·)∥L2

)
, (3.19)

and similarly for v.
From the linear estimates in Proposition 1. we can choose

f0(τ) := (1 + τ)−
n
4σ , fσ(τ) := (1 + τ)−

n
4σ

−1/2, g(τ) := (1 + τ)−
n
4σ

−1.

In the case p = pE (or q = pE) then we will replace (1 + τ)−γ(p) (respectively,
(1 + τ)−γ(q)) by (log(e+ t))−1.

In the following we denote by E0(t, x) and E1(t;x) the fundamental solutions to
the linear equation, corresponding to the two initial data, namely the solution for the linear
problem (1.11) with the Cauchy data (u0, u1) is given by

u = E0(t, x) ∗x u0(x) + E1(t, x) ∗x u1(x).

We define the integral operator N : (u, v) ∈ X(t) 7→ N [u, v] ∈ X(t) by:

N [u, v] = L+ (Fv,Gu),

12
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where

L = E0(t, x) ∗x (u0, v0)(x) + E1(t, x) ∗x (u1, v1)(x),

F (v) =

∫ t

0

E1(t− τ, x) ∗x
∣∣|D|αv(τ, x)

∣∣pdτ,
G(u) =

∫ t

0

E1(t− τ, x) ∗x
∣∣|D|αu(τ, x)

∣∣qdτ.
The local and global existence of small data solutions to (1.4) will follow by the standard
contraction argument if we can show that the estimates

∥N [u, v]∥X(t) ≲ A+ ∥(u, v)∥pX(t) + ∥(u, v)∥qX(t), (3.20)

and the Lipschitz property

∥N [u, v]−N [ũ, ṽ]∥X(t) ≲ (3.21)∥∥(u, v)− (ũ, ṽ)
∥∥
X(t)

(∥∥(u, v)∥∥p−1

X(t)
+
∥∥(ũ, ṽ)∥∥p−1

X(t)
+
∥∥(u, v)∥∥q−1

X(t)
+
∥∥(ũ, ṽ)∥∥q−1

X(t)

)
are valid for the exponents p, q satisfying the given conditions.

First, we will prove the inequality (3.20).
By the linear estimates (1.12)-(1.14) in Prop. 1., it immediately follows that

∥L∥X(t) ≲ A.

Now we will estimate the L2 and Ḣσ norms of Fv and Gu.
We use the L1 ∩ L2 − L2 estimates if τ ∈ [0, t/2] and the L2 − L2 estimates if

τ ∈ [t/2, t]. Then

∥∂j
t |D|kσFv∥L2 ≲

∫ t/2

0

(1 + t− τ)−
n
4σ

−(k/2+j)
∥∥∣∣|D|αv(τ, ·)

∣∣p∥∥
L1∩L2dτ

+

∫ t

t/2

(1 + t− τ)1−(3k/2+j)
∥∥∣∣|D|αv(τ, ·)

∣∣p∥∥
L2dτ,

where j, k = 0, 1 and (j, k) ̸= (1, 1). We will estimate
∣∣|D|αv(τ, ·)

∣∣p in L1∩L2 and in L2.

Obviously
∥∥∣∣|D|αv(τ, ·)

∣∣p∥∥
L1∩L2 ≲

∥∥|D|αv(τ, ·)
∥∥p

Lp +
∥∥|D|αv

∥∥p

L2p , and∥∥∣∣|D|αv
∣∣p∥∥

L2 =
∥∥|D|αv

∥∥p

L2p .

We apply the fractional Gagliardo-Nirenberg inequality with the interpolation
exponents θα,σ(p, 2) and θα,σ(2p, 2) from the interval [0, 1) (see [3, 5, 10] and Appendix
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for the formulation, proof and notations). This gives the condition 2 ≤ p <
n

n+ 2(α− σ)
. Accordingly

∥∥∣∣|D|αv(τ, ·)
∣∣p∥∥

L1∩L2 ≲ (1 + τ)
−p(n+α)+n

2σ
+pγ(q)∥(u, v)∥pX(τ),

because of θα,σ(p, 2) < θα,σ(2p, 2), meanwhile∥∥∣∣v(τ, ·)∣∣p∥∥
L2 ≲ (1 + τ)p

(
− n
4σ

−
θα,σ(2p,2)

2

)
+pγ(q)∥(u, v)∥pX(τ)

= (1 + τ)−
p(n+α)−n/2

2σ
+pγ(q)∥(u, v)∥pX(τ).

Combining the last estimates we conclude

∥∂j
t |D|kσFv∥L2 ≲ (1 + t)−

n
4σ

−(k/2+j)∥(u, v)∥pX(t)

∫ t/2

0

(1 + τ)
−p(n+α)+n

2σ
+pγ(q)dτ

+ (1 + t)−
p(n+α)−n/2

2σ ∥(u, v)∥pX(t)

∫ t

t/2

(1 + t− τ)1−(3k/2+j)+pγ(q)dτ.

and similarly for Gu

∥∂j
t |D|kσGu∥L2 ≲ (1 + t)−

n
4σ

−(k/2+j)∥(u, v)∥pX(t)

∫ t/2

0

(1 + τ)
−q(n+α)+n

2σ
+qγ(p)dτ

+ (1 + t)−
q(n+α)−n/2

2σ ∥(u, v)∥pX(t)

∫ t

t/2

(1 + t− τ)1−(3k/2+j)+qγ(p)dτ.

We will proceed with the integrals over (0, t/2) first.

If p, q >
n+ 2σ

n+ α
= pE , then γ(p) = γ(q) = 0, and the terms (1 + τ)

−p(n+α)+n
2σ ,

(1 + τ)
−q(n+α)+n

2σ are integrable.

Moreover, we have

(1 + t)−
p(n+α)−n/2

2σ ∥(u, v)∥pX(t)

∫ t

t/2

(1 + t− τ)1−(3k/2+j)dτ

= (1 + t)−
p(n+α)−n/2

2σ ∥(u, v)∥pX(t)

∫ t/2

0

(1 + τ)1−(3k/2+j)dτ ≲ (1 + t)−
n
4σ

−(k/2+j)∥(u, v)∥pX0(t)
.

Now consider the more interesting case, when min{p, q} ≤ pE . Suppose that
q ≥ p. Then our condition implies that q > pE and γ(q) = 0. In that case∫ t/2

0

(1 + τ)
−p(n+α)+n

2σ dτ ≲

{
(1 + t)γ(p) if p < pE,

log(e+ t) if p = pE.
(3.22)
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On the other hand, it is easy to verify that condition (1.5) is equivalent to

−q(n+ α) + n

2σ
+ qγ(p) < −1,

therefore the term (1 + τ)
−q(n+α)+n

2σ
+qγ(p) again is integrable over (0, t/2).

The second integrals over (t/2, t) are easier to be estimated thanks to the condition
p, q ≥ pE − 1.

Summarizing the above we arrive at estimates of the L2 and Ḣσ of Fv and Gu.
The L2 norms of (Fv)t and (Gu)t can be estimated in the similar way if we apply again
the linear estimates from Prop. 1.

Hence the first inequality (3.20) has been verified. The second inequality (3.21) can
be proved by the same arguments as in the proof of Theorem 2, with the application of
Kato - Ponce’s inequality in the homogeneous Sobolev spaces.

Theorem 2. thus has been proved completely.

It is obvious, thanks to the linear estimates, that the statement of Theorem 2.
remains valid for the following model

utt + a1(x)(−∆)σu+ b1ut = |vt|p, t ≥ 0, x ∈ Rn,

vtt + a2(x)(−∆)σv + b2vt = |ut|q, t ≥ 0, x ∈ Rn,

(u, ut, v, vt)(0, x) = (u0, u1, v0, v1)(x), x ∈ Rn,

(3.23)

where a1(x), a2(x) are continuous functions, b1, b2 are positive constants, and

0 < C1 < ai(x) < C2,

for i = 1, 2 with some positive constants C1, C2.

4. Conclusion
We have obtained two results on the global solvability of the Cauchy problems

for nonlinear coupled systems for external damping models. Our results generalize
previous works in [1] for the classical damping model and in [2] for the coupled system
of structurally damped waves with constant coefficients, where the authors considered the
nonlinearity of the form (F,G) = (|v|p, |u|q). We have developed a new approach to using
the diffusion phenomenon to deal with the difficulties that arose in the external damping
models with the variable coefficients. In order to apply the contraction arguments
with new nonlinearities containing the derivatives of solutions, such as (|vt|p, |ut|q)
or (||D|αv|p, ||D|αu|q), we need some advanced technical results from the harmonic
analysis: the composition results, the fractional Gagliardo-Nirenberg inequalities, the
Kato-Ponce’s inequality, that allow us to obtain estimates for the nonlinearities in Sobolev
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spaces with non-integer orders. In the limit case σ = 1 and α = 0 the exponent
pE for solvability obtained in Theorem 2. becomes pE(1, 0) = n+2

n
= pF , and thus

our result coincides with the result in [1] for the coupled system of classical damping
wave equations.

5. Appendix
5.1. The fractional Gagliardo - Nirenberg inequality

We will present here the formulation of the fractional Gagliardo - Nirenberg
inequality in homogeneous Sobolev spaces (see [10]). [Fractional Gagliardo - Nirenberg
inequality for the homogeneous Sobolev spaces] Let a ∈ (0, σ). Then for all m ∈ (1,∞)

∥|D|au∥Lq ≲ ∥|D|σu∥θa,σ(q,m)
Lm ∥u(τ, ·)∥1−θa,σ(q,m)

Lm (5.1)

for all u ∈ Ḣσ,m, whenever the condition

θa,σ(q,m) :=
n

σ

( 1

m
− 1

q
+

a

n

)
∈
[a
σ
, 1
)
.

is satisfied. We note that the condition θa,σ(q,m) ∈
[a
σ
, 1
)

is equivalent to

m ≤ q <
mn

n+m(a− σ)
.

5.2. The composition results

We introduce the class Lip µ as follows (see [11]). Let µ > 0, N ∈ N0 and
0 < α ≤ 1 such that µ = N + α. We define

Lip µ =
{
f ∈ CN,loc(R) : f (j)(0) = 0, j = 0, ..., N, and sup

t0 ̸=t1

|f (N)(t0)− f (N)(t1)|
|t0 − t1|α

< ∞
}
.

(5.2)

Further, we put

∥f∥Lip µ =
N−1∑
j=0

|f (j)(t)|
|t|µ−j

+ sup
t0 ̸=t1

|f (N)(t0)− f (N)(t1)|
|t0 − t1|α

. (5.3)

It is clear that |t|µ ∈ Lip µ, t|t|µ−2 ∈ Lip (µ − 1) for µ > 1. The following useful
general composition result for the class Lip µ was obtained in [11]. Let us denote σp =
nmax{0; 1

p
− 1}. [Theorem 6.3.4 (i) in [11]] Let σp < s < µ and µ > 1.

Then there exists some constant c such that

∥G(f)∥F s
p,q

≤ c∥G∥Lip µ∥f∥F s
p,q
∥f∥µ−1

L∞
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holds for all f ∈ F s
p,q ∩ L∞ and all G ∈ Lip µ. Proposition 5.2. together with the

Sobolev embedding imply immediately the following result in the supercritical case s >
n
2
. [Composition result]Let s ∈ (n

2
, p). Denote either G(u) = |u|p or G = ±u|u|p−1 with

p > 1. Then for all u ∈ Hs the following composition estimate holds:

∥G(u)∥Hs ≲ ∥u∥pHs .

In the homogeneous spaces, we can obtain the composition result by the following
estimate Let p > 1, 1 < r < ∞ and u ∈ Hs,r, where s ∈

(
n
r
, p
)
. Let us denote by

F (u) one of the functions |u|p, ±|u|p−1u with p > 1. Then the following estimate holds:

∥F (u)∥Hs,r ≲ ∥u∥Hs,r∥u∥p−1
L∞ .

Under the assumptions of Proposition 5.2, it holds

∥F (u)∥Ḣs,r ≲ ∥u∥Ḣs,r∥u∥p−1
L∞ .

The proof can be found in [5]. [The Kato-Ponce inequality for homogeneous Sobolev
spaces] For all functions f ∈ Ḣs,p2 ∩ Lq1 and g ∈ Ḣs,q2 ∩ Lp1 it holds

∥|D|s(fg)∥Lr ≲ ∥f∥Lp1∥|D|sg∥Lq1 + ∥|D|sf∥Lp2∥g∥Lq2 , (5.4)

where s > 0 and 1
r
= 1

p1
+ 1

q1
= 1

p2
+ 1

q2
for 1 < r < ∞, 1 < p1, q2 ≤ ∞, 1 < p2, q1 < ∞.

The proof of this harmonic analysis result can be found in [12].
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