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Abstract. Based on our previous result and by using the technique on α-minimal
and χ-minimal sets with respect to the Kuratowski and Hausdorff measures of
noncompactness, we give some new geometric characterizations of extremal sets
in Hilbert spaces.
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1. Introduction
In [1] the authors introduced the notion of extremal sets of a Banach space with

respect to Jung constant. Given a Banach space (X, ∥ · ∥), the Jung constant of X is
defined by

J(X) = sup

{
rX(A)

d(A)
: A is a bounded subset ofX with diameter d(A) > 0

}
,

where d(A) = sup{∥x − y∥ : x, y ∈ A} and rX(A) = inf
x∈X

sup
y∈A

∥y − x∥ denote the

diameter and the absolute Chebyshev radius of A, respectively. A point c ∈ X is called a
Chebyshev center of A, if rX(A) = rc(A) = sup

y∈A
∥y − c∥.

Recall that a bounded subset A of a Banach space X consisting of at least two
points is extremal, if rX(A) = J(X)d(A). For given an n-dimensional Euclidean

space En, the Jung’s theorem asserts that J(En) =

√
n

2(n+ 1)
. Furthermore, a

bounded subset A of En is extremal if and only if A contains all vertices of a regular
n-simplex with edges of length d(A) (see [2]). For H is an infinite-dimensional Hilbert

space, it is well known that J(H) =
1√
2

(see [3]). Therefore, a bounded subset A
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of H is extremal if and only if rH(A) =
1√
2
d(A). We now recall the main result

of [1] involving geometrically characterizing extremal sets in a Hilbert space, which is an
infinite-dimensional generalization of classical Jung’s theorem.

Theorem 1.1. ([1]) A bounded subset A of a Hilbert space H with d(A) = d > 0 is
extremal if and only if for any ε ∈ (0, d) and positive integer m, there exists an m–simplex
∆(ε,m) with vertices in A and edges of length not less than d− ε. Furthermore, for such
a subset A, we have α(A) = d and χ(A) = rH(A), where α(A) and χ(A) denote the
Kuratowski and Hausdorff measures of noncompactness of A which are defined as inf
{ε > 0 : A can be covered by finitely many sets of diameter ⩽ ε} and inf {ε > 0 : A can
be covered by finitely many balls of radius ⩽ ε}, respectively.

In [4], Domingez-Benavides introduced the notions of α-minimal and χ-minimal
sets. We say that an infinite set A of a metric space X is α-minimal (resp. χ-minimal) if
for any infinite subset B of A one has α(B) = α(A) (resp. χ(B) = χ(A)). A sequence
{xn}n∈N is said to be α-minimal (resp. χ-minimal) if the set {xn}n∈N is α-minimal (resp.
χ-minimal). For the properties of α-minimal and χ-minimal sets we refer the reader
to [4, 5, 6].

In this note we give three more geometric characterizations of extremal sets in
Hilbert spaces.

Theorem 1.2. Let A be a bounded subset of a Hilbert space H with diameter d(A) > 0.
Then A is an extremal set of H if and only if for any ε ∈ (0, d(A)), there exists an infinite
simplex ∆(ε,∞) with vertices in A and edges of length not less than d(A)− ε.

Theorem 1.3. Let A be a bounded subset of a Hilbert H with diameter d(A) > 0. Then A
is an extremal set of H if and only if A contains a sequence {xn} satisfying the following
properties

(i) {xn} is both α–minimal and χ–minimal;

(ii) {xn} converges weakly to the Chebyshev center of A in H;

(iii) α({xn}) = d(A) and χ({xn}) = rH(A).

Definition 1.1. We say that a sequence {xn} in a Hilbert space H is an asymptotically
orthonormal sequence, if

lim
n→∞

∥xn∥ = 1 and lim
m,n→∞
m̸=n

⟨xm , xn⟩ = 0,

where ⟨·, ·⟩ denote the inner product of H .

Theorem 1.4. Let A be a subset of the closed unit ball of a Hilbert space H with
diameter d(A) =

√
2. Then A is an extremal if and only if A contains an asymptotically

orthonormal sequence.
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2. Two auxiliary lemmas
Lemma 2.1. If A is an extremal subset of a Hilbert space H with diameter d, then there
exists a separable Hilbert subspace H ′ of H such that AH′ = A ∩H ′ is also an extremal
subset of H ′. Furthermore, rH′(AH′) = rH(A) and d(AH′) = d.

Proof. From the proof of Theorem 1 in [1], it follows that for every positive integer m
there exists a subset Am = {x1, x2, . . . , xm} ⊂ A such that

∥xi − xj∥ > d− 1

m
∀ i ̸= j; i, j = 1, 2, ...,m.

Take c arbitrarily in the convex hull coAm of Am, then there exist non-negative numbers
t1, t2, . . . , tm such that

m∑
i=1

tixi = c and
m∑
i=1

ti = 1.

For each j ∈ {1, 2, . . . , m}, we have

(1− tj)

(
d− 1

m

)2

⩽
m∑
i=1

ti∥xi − xj∥2 =
m∑
i=1

ti∥(xi − c)− (xj − c)∥2

=
m∑
i=1

ti
(
∥xi − c∥2 + ∥xj − c∥2 − 2 ⟨xi − c , xj − c⟩

)
⩽ 2r2c (Am) + 2

〈
m∑
i=1

tixi − c , xj − c

〉
= 2r2c (Am).

Hence,

(m− 1)

(
d− 1

m

)2

=
m∑
j=1

(1− tj)

(
d− 1

m

)2

⩽ 2m.r2c (Am),

or

rc(Am) ⩾

√
m− 1

2m

(
d− 1

m

)
.

By a result of Garkavi and Klee (see [7, 8]), the Chebyshev center of Am lies in the convex
hull coAm of Am. Since c is arbitrary in coAm, one gets

rH(Am) ⩾

√
m− 1

2m

(
d− 1

m

)
.

Cleary A∞ =
∞⋃

m=1

Am is a countable subset of A. From the estimates above we get

d(A∞) = d(A) = d,
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rH(A∞) =
1√
2
d = rH(A).

Now consider H ′ = span A∞ the closed subspace of H which is generated by A∞, and
AH′ = A ∩H ′. Clearly H ′ is a separable subspace of H . Since A∞ ⊂ AH′ ⊂ A one gets

rH(A∞) ⩽ rH(AH′) ⩽ rH(A),

d(A∞) ⩽ d(AH′) ⩽ d(A).

Hence, rH(AH′) = rH(A) and d(AH′) = d(A), so AH′ is an extremal set in H . By
using the orthogonal projection of H on the closed subspace H ′, it is easy to see that the
Chebyshev center of AH′ lies in H ′. So rH(AH′) = rH′(AH′). Hence AH′ also is extremal
in H ′. The proof of Lemma 2.1 is completed.

Lemma 2.2. Let A be an α-minimal and χ-minimal subset of a Hilbert space. Then

χ(A) =
1√
2
α(A).

Proof. From Lemma 3.5 of [4], let us omit it here.

3. Proofs of the main results
Proof of Theorem 1.2. First, assume that A is an extremal set of a Hilbert space H with
diameter d(A) = d > 0. By Lemma 2.1, we can assume that H is a separable Hilbert

space. By Theorem 1.1, one has α(A) = d and χ(A) = rH(A) =
1√
2
d. From [4]

(Propositions 3.2, 3.3) it follows that there exists a subset B of A which is both α-minimal
and χ-minimal with χ(B) = χ(A). In view of Lemma 2.2 one obtains

1√
2
=

χ(B)

α(B)
⩾

χ(A)

α(A)
=

1√
2
.

Hence α(B) = α(A) = d. By using Ramsey’s argument of (see [4], Lemma
3.4) there exists an infinite subset Bε ⊂ B, ∀ε ∈ (0, d), such that ∥x − y∥ >
d − ε ∀x, y ∈ Bε, x ̸= y. So we can choose an infinite simplex ∆(ε,∞) with
vertices in Bε and its edges have length not less than d(A)− ε.

Conversely, for given ε ∈ (0, d) if A contains an infinite simplex ∆(ε,∞) with
vertices in A and edges of length not less than d(A) − ε. Consequently by Theorem 1.1,
A is an extremal set. The proof of Theorem 1.2 is completed.

Proof of Theorem 1.3. If A is an extremal set of a Hilbert space H , then from the proof
of Theorem 1.2 it follows that there exists a subset B ⊂ A which is both α–minimal
and χ–minimal and such that χ(B) = χ(A) = rH(A), α(B) = α(A) = d(A). Let
{xn} be a sequence in B, then {xn} also is both α–minimal and χ–minimal. Furthermore
α({xn}) = d(A) and χ({xn}) = rH(A). Since H is reflexive, we may assume that {xn}
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converges weakly to a point, say c. It is known that the function Φ : H → R defined by
Φ(z) = lim sup

n→∞
∥xn − z∥ attains its unique minimum at c and Φ(c) = χ({xn}) = rH(A)

(see [9], cf. [4]). Thus c is the Chebyshev center of A. Hence the sequence {xn} satisfies
the conditions (i)–(iii).

Conversely if A contains a sequence {xn} satisfying the conditions (i)–(iii), then
by Lemma 2.2 one has

rH(A)

d(A)
=

χ({xn})
α({xn})

=
1√
2
.

Hence A is an extremal set in H . The proof of Theorem 1.3 is completed.

Proof of Theorem 1.4. Assume that A is a subset of closed unit ball B(O, 1) of H with
diameter d(A) =

√
2. If A is an extremal, then rH(A) = 1 and O is a unique Chebyshev

center of A. By Theorem 1.3 there exists a sequence {xn} ⊂ A satisfying the properties
(i)–(iii). Hence we have lim sup

n→∞
∥xn − O∥ = χ({xn}) = rH(A). By proceeding to a

subsequence if necessary, one may assume that lim
n→∞

∥xn∥ = rH(A) = 1. Since {xn}
is an α–minimal sequence and by Lemma 3.4 in [4], there exists a decreasing chain of
subsequences of {xn}:

{xn} ⊃ {xn1,1 , xn1,2 , . . .} ⊃ {xn2,1 , xn2,2 , . . .} ⊃ · · · ⊃ {xnk,1
, xnk,2

, . . .} ⊃ · · ·

satisfying
√
2− 1

k
⩽ ∥xnk,i

− xnk,j
∥ ⩽

√
2 , ∀k ⩾ 1, ∀i ̸= j.

Taking the diagonal sequence {zk}, defined by zk = xnk,k
one sees that

√
2− 1

k
⩽ ∥zp − zk∥ ⩽

√
2 , ∀p > k ⩾ 1.

Since lim
k→∞

∥zk∥ = 1 and ∥zp − zk∥2 = ∥zp∥2 + ∥zk∥2 − 2 ⟨zp , zk⟩, one gets

lim
p,k→∞
p ̸=k

⟨zp , zk⟩ = 0,

i.e. {zk} is an asymptotically orthornormal sequence.
Conversely, if d(A) =

√
2 and A contains an asymptotically orthonormal sequence

{zk}, then we have
lim

p,k→∞
p ̸=k

∥zp − zk∥ =
√
2 = d(A).

Hence for every ε ∈ (0, d(A)) there exists a positive integer n0 such that

∥zp − zk∥ > d(A)− ε, ∀p > k ⩾ n0.

It follows that the infinite simplex ∆(ε,∞) with vertices zn0 , zn0+1, zn0+2, . . . has all
edges of length not less than d(A)− ε. Therefore, by Theorem 1.1, A is an extremal set.
The proof of Theorem 1.4 is completed.
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4. Conclusions
In this paper, we study the geometrical properties of extremal sets in Hilbert spaces.

Based on our results in [1], and by using the technique on α-minimal and χ-minimal sets
with respect to the Kuratowski and Hausdorff measures of noncompactness, we obtain
three new geometric characterizations of extremal sets in Hilbert spaces.
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