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PREDICTING ELASTIC MODULUS OF THE BODY-CENTERED CUBIC
METALLIC FILMS

Duong Dai Phuong
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Abstract. The elastic modulus of the body-centered cubic (BCC) films is studied
based on the moment method. For Fe, Ta, and W films a clear elastic modulus
dependence of the thickness at ambient conditions and under temperatures up to 2000 K.
The obtained results of the values of elastic modulus metallic films are smaller than
the corresponding values of bulk material. Calculated results show the effects of
temperature and thickness of elastic modulus for Fe, Ta, and W metallic films. On the
other hand, when the thickness of thin films is about 60nm then the elastic
modulus of the BCC films approaches the values of bulk material. Our results
are compared with the other theoretical results and experimental values of bulk materials.
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1. Introduction

To date, metallic thin films have received much attention in material sciences due
to their novel applications in technology and industry [1, 2]. They exhibit different thermal,
mechanical, electrical, and optical properties compared to those of bulk materials [3-5].
The knowledge about the elastic quantities of the metallic films as bulk modulus B, ,

Young’s modulus Y, and shear modulus G enable to determine the stability and
reliability of manufactured materials.

Great efforts with experimental and theoretical studies have been made to estimate
the elastic property of metallic and nonmetallic films. Using both nano- and micro-
indentation methods, F. Seifried et al. [6] measured Young’s modulus of Mo, Nb, and Ta
thin films on various scales. The measured data of thin films showed good agreement with
bulk data. Progressive scratch tests showed the important role of plastic deformation on the
metallic thin films at larger normal forces. D. Bernoulli et al. [7] deposited Ta and TaNi thin
films by the Direct current (DC) magnetron sputtering method. The effects of the
underlying substrate and N2/Ar ratio on hardness and phase of Ta and TaNi thin films were
observed. Various methods such as X-ray diffraction [8], Brillouin scattering [9] were
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also used to determine the elastic properties of nonmetallic films. Literature data
showed a significant difference between the mechanical properties of metallic thin films
and the values of bulk [10, 11]. The measured elastic modulus of Cu, Ag, and Al films
were smaller than the values of bulk [10, 12]. However, the previous studies estimated
the elastic properties of films at low temperatures, and the effects of thickness on the
elastic properties have not been studied in detail.

In this paper, we study the elastic quantities of films (Fe, Ta, W) by the moment
method [12, 13]. The effects of thickness and temperature and thickness on the elastic
quantities of Fe, Ta, and are evaluated in detail. The mechanical quantities of Fe, Ta, and W
thin films are calculated under temperatures up to 2000 K using the Lennard-Jones potential.

2. Content

2.1. Theory
2.1.1. Expressions of the displacement

One separates metallic films has the thickness b into n, layers. These layers are as
Figure 1.
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Figure 1. The metallic films

Equation of the displacement < u; > for internal layers atoms of metallic films [12, 13]
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with m, is the atomic mass of internal layers atoms, e, is the vibrational frequency of

internal layers atoms; k., 7., 7x, 7. are the anharmonicity parameters; @), is the
effective interatomic potential.
The solution to equation (1) is as follows:

<Up >=<Uf > +A P+ AP’ ()
when the supplemental force p is at zero then the solution <u; > is given by
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with the parameters a},(n =1,2...,6) have the same forms as in Ref. [12, 13].

Similar to the internal layer atoms, the displacement of the next surface layers
atoms is the solution of the equation as follows:
nl
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The displacement of the surface layers atoms <u > can be calculated by moment
method formulation as follows:
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when the supplemental force p is at zero then the solution <u: > is given by
<u >=<u’ >, +A'p+ A p°. (12)
here, <u’ >, can be calculated by moment method formulation. The expression of
<u' >, is given by
<y >o= —7%9 X, coth x, . (13)
2.1.2. The expression of average displacement and free energy

The Helmholtz free energies of the internal layers and next surface layers are given
by Ref. [12].
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with X, =xcothx,, X, =x,cothx, and

Uy =2 3l (1) U8 =2 3 (1) (16)

In the harmonic approximation, the Helmholtz free energy of the surface layers is
determined as [13]

P = {ug +3N,0[ x, +In(1-e ™ )}} (17)
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One considers the system consisting of N, atoms and the number of atoms in each
layer is N, , then

N
N=nN, =n=—. (18)
NI
The numbers of atoms in the internal, next surface, and surface layers are
determined as follows, respectively

N, =(n —4)N, :(%—4JN,:N—4N,, (19
|
N,=2N,=N-(n—-2)N, and N, =2N,=N-(n, —2)N,. (20)
The Helmholtz free energies of the system and an atom, respectively, are given by
Y=NY, +N ¥, +N W, =(N-4N)¥ +2N¥  +2N,¥, (21)
E={1—i}11t +3‘Pm+3‘1’n (22)
N n n n

The average nearest-neighbor distance (NND) is denoted as a, and b, is the
average two-layers thickness, then we have

By,
="t 23
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On the other hand, the thickness b can be calculations
b=2b, +2b,, +(n, —5)b, =(n, —1)b, =(n, 1), (24)
J3
From Eqg. (24), we have
n,:1+i:1+d\/§. (25)
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The average nearest-neighbor distance is given by
_2a,+2a, +(n-5a . (26)
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In Eq. (25), a,, a, and &, have the from
a, =ay,+ <U">g,a, =ay,+<U™>;a =a,+<U >, (27)

From Egs. (22) and (25), Substituting Eq. (24) into Eq. (23), we determined the
expression of the Helmholtz free energy
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2.1.3. The elastic quantities of the BCC metallic films
The elastic quantities of metallic films are derived based on thermodynamic
relations. The bulk modulus B, is determined

oP
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The Helmholtz free energy for surface layers atoms v/, | is given by
O-ngn Yngr?
\Pp,n = lPO,n T = LPO,n + T, (30)
with & is the elastic strain, o, =Y, &, is the stress.
From Eq. (30), one derives
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From Egs. (34), (35), (36), and (31), for surface layers atoms of metallic thin film,
expression of Young's modulus is given by
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Similar to the next surface layers atoms and internal layers, we can be determined
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The Young's modulus and shear modulus of metallic films with body-centered cubic
structure is given respectively

g _ 2o+ 2V, +(n -5)Y

L 42
e, (42)
G= Y : (43)
2(1+v)
In Eq. (25), the Poisson's ratio determined as
2 3B,

2.2. Numerical results and discussion

To calculate the elastic quantities of Fe, Ta, and W films, one uses the expressions
derived in the previous section and the using the Lennard-Jones potential [14]

o= |3 (3] ]

In Eq. (45), the values of potential parameters for Fe, Ta, and W films are presented in
Table 1.

Table 1. Lennard-Jones potential parameters of Fe, Ta, and W metallic thin films [14]

Metals n m I, (A%) D/kg(K)
Fe 8.26 3.58 2.4775 12576.70
Ta 11.16 2.52 2.8648 21305.51
W 8.58 4.06 2.7365 25608.93

From Eqg. (26), we obtain the average NND of BCC metallic thin films. Based on
the expressions obtained in Section 2, the elastic quantities including the analytic
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expressions for bulk modulus (B, ), Young’s modulus (Y), and shear modulus (G) for Fe,

Ta, and W films are calculated as functions of temperatures and thickness.

Figure 2 shows the temperature dependence of bulk modulus of Fe thin films. The
bulk modulus with the various number of layers is presented as a function of
temperature. One can see that when the temperature increases the bulk modulus
decreases. The bulk modulus increases when the thickness of the thin film increases and
approaches the value of bulk material [15]. Furthermore, at room temperature, the bulk
modulus of the thin film is smaller than that of the bulk material. Our results are in
accordance with the values presented in Ref. [15] for Fe bulk material. when the
thickness of thin films is about 60nm then the bulk modulus of the thin film
approaches the values of bulk material.
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Figure 2. Temperature dependence of bulk modulus of Fe thin films

Figure 3 shows the temperature dependence of the shear modulus of Fe thin films.
The shear modulus with the various number of layers is presented as a function of
temperature. One can see that the shear modulus decrease with increasing temperature.
With increasing thickness b then shear modulus G increases and approaches the value of
bulk material at a number of 300 layers. Our results depend on the thickness and
temperature of elastic quantities for Fe, Ta, and W films in accordance with the values
presented in Ref. [16, 17].
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Figure 3. Temperature dependence of shear modulus of Fe thin film
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Figure 4. Thickness dependence of Young’s modulus of Ta and Fe thin films

Table 2. Temperature dependence of elastic modulus of Ta thin films

Quantities n, T (K) 100 300 500 700 1000 1200

10 | 15.8302 | 14.9387 | 14.0871 | 12.4157 | 10.7137 | 7.7427

10 20 | 16.8630 | 15.9891 | 15.1557 | 13.5298 | 11.8916 | 9.1298

By (107Pa) | SMM 200 | 17.9151 | 17.0691 | 16.2663 | 14.7185 | 13.1976 | 10.8854
bulk 18.18

10 | 15.2322 | 14.4170 | 13.4771 | 11.2525 | 8.6672 | 4.6044

20 | 16.4132 | 15.6151 | 14.7012 | 12.5499 | 10.0303 | 5.9276

Y(lolo Pa) SMM 200 | 17.3746 | 16.5905 | 15.6976 | 13.6061 | 11.1400 | 7.0048
bulk 17.45
Ex. [15] | bulk 17.62

10 | 5.5245 | 5.4123 5.2476 5.1437 | 4.8758 | 4.7169

20 | 5.7856 | 5.6832 55114 | 5.3006 | 5.1320 | 4.9585

G(lOlO Pa) SMM | 200 | 6.2453 6.2213 6.0118 5.8612 | 5.5655 | 5.2579
bulk 6.51
Ex. [15] | bulk 6.52

Figure 4 displays the thickness dependence of the elastic modulus of Ta and Fe
films at room temperature. The calculated values of elastic modulus are substantially
lower than the bulk values. One can see that Young's modulus increases when the
thickness of thin film increases and approaches the values of bulk material at a thickness of
60 nm [15]. On the other hand, when the thickness is larger than 60 nm then the elastic
modulus for Fe, Ta, and W films less depends on the thickness. Furthermore,
calculated results show Young's modulus in accordance with the law presented by X.
Zhou et al. [16] and [17].
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Similarly, the calculated results of elastic quantities for Ta and W metallic films are
in Table 2 and Table 3. The mechanical quantities have a clear dependence on the
thickness and temperature of metallic films.

Table 3. Temperature dependence of elastic modulus of W thin films

Quantities n T(K) 200 300 500 800 1500 2000
|
10 | 21.9515 | 21.4528 | 20.4374 | 18.9188 | 15.4582 | 13.0619
SMM 20 | 275565 | 27.0515 | 26.0523 | 24.5748 | 21.2078 | 18.862
B (1010 Pa) 200 | 29.5883 | 29.0825 | 28.0965 | 26.6478 | 23.3495 | 21.0462
bulk 31.36
[Elé] bulk 30.00
10 | 34.8352 | 34.5856 | 34.0717 | 33.2747 | 31.2992 | 29.7831
SMM 20 | 36.6436 | 36.3723 | 35.8084 | 34.9345 | 32.7923 | 31.1713
Y (1010 Pa) 200 | 40.6337 | 40.3024 | 39.6002 | 38.5144 | 35.9123 | 34.002
bulk 41.40
[El)é] bulk 41.50
10 | 13.0149 | 12.9279 | 12.7476 | 12.4663 | 11.7628 | 11.2179
20 | 13.7870 | 13.6919 | 13.4931 | 13.1833 | 12.4176 | 11.8330
G(lolopa) SMM | 200 | 14.9745 14.8566 14.6053 | 14.2150 | 13.2731 | 12.5764
bulk 16.17
[El)é] bulk 16.00

3. Conclusions

The elastic modulus is performed based on the Lennard-Jones potential for Fe, Ta,
and W of BCC metallic films. According to this study, the elastic modulus of BCC
metallic films is predicted and the elastic modulus increases with increasing thickness.
The bulk modulus B;, Young’s modulus Y, and shear modulus G of metallic thin

films decrease with the increase in temperature. While they increase as the thickness
for metallic films increases and approach the values of bulk materials with the
thickness of 60 nm. Numerical calculations are performed for Fe, Ta, and W thin
films. The calculated elastic modulus results are in accordance with the laws presented
by the other theoretical and experimental results of bulk materials.
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