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Abstract. On the basis of the model and the theory of nonlinear deformation for 

FCC substitutional and interstitial ternary alloy built by the statistical moment 

method, we perform numerical calculations for Au, AuSi, and AuCuSi. Some 

calculated results on the nonlinear deformation of Au obtained by SMM have 

been compared with the experimental data and have some very good 

concordance. Many calculated numerical results on nonlinear deformation of 

AuSi and AuCuSi are new and predictive, experimentally oriented 
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1.   Introduction 

Metal Au and interstitial alloys AuSi, AuCuSi have many unusual physical properties 

and functional important applications. Gold silicide is one of the numerous metal alloys 

with the trade name AE AlloysTM. They are available as ingot, ribbon, bar, shot, wire, 

foil, and sheet. Ultra-high-purity and high-purity forms also include metal powder, 

micron powder, nanoscale, pellets for chemical vapor deposition (CVD), and targets for 

thin film deposition and physical vapor deposition (PVD) applications. Custom and 

typical packaging are available. Primary applications include bearing assembly, casting, 

ballast, radiation shielding, and step soldering. 

The dependence of elastic and nonlinear deformations of materials on temperature 

and pressure has a very important role in predicting and understanding their interatomic 

interactions, strength, mechanical stability, phase transition mechanisms, and dynamical 

response. Theoretical and experimental results on the nonlinear and elastic deformation 

of gold and its interstitial alloys are given in [1-6]. The experimental data on the nonlinear 

deformation of pure gold are presented in [1-4]. Numerical   calculations   for   many metals 
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are compared with ab initio calculations and experiments [5]. Deformation mechanisms 

in the mechanical response of nanoporous gold are investigated by molecular dynamics 

simulations [6] 

 We applied the statistical moment method (SMM) [7] to study many 

thermomechanical properties of metals and alloys [8-17]. The elastic and thermodynamic 

properties   of   inert   gas crystals and metals are studied in [8, 9]. We have studied the 

thermodynamic and melting properties, the elastic deformation for body-centered cubic 

(BCC) and face-centered cubic (FCC) ternary and binary interstitial alloys [10-15], the 

melting property for BCC binary substitutional alloys [16], and the theory of nonlinear 

deformation for BCC and FCC ternary interstitial alloys [17] under pressure. 

        In this paper, we present a model of alloy, steps of calculating nonlinear deformation 

quantities for FCC substitutional and interstitial ternary alloy and carry out numerical 

calculations for Au, AuSi, and AuCuSi. 

2.   Content 

2.1. Model and calculation method  

In our model for FCC interstitial alloy AC with condition cC << cA,  

( ( , )X
X

N
c X A C

N
= =  is the concentration of atoms X, 

XN  is the number of atoms X, 

A CN N N= + is the total number of atoms of the alloy AC), the interstitial atom C stays 

in the body center, the main metal atom A1 stays in face center and the main metal atom 

A2 stays in vertice of cubic unit cell [13, 15]. 

In our model for FCC interstitial and substitutional alloy ABC with condition cC << 

cB << cA, the interstitial atom C stays in the body center, the substitutional metal atom B 

stays in the face center and the main metal atom A2 stays in the vertice of cubic unit cell [17]. 

We proceed with numerical calculations of nonlinear deformation quantities of FCC 

interstitial and substitutional alloy ABC in the following steps: 

1-Determine the nearest neighbor distance 
1 1 20 (X A,A ,A , )Xr (P, ) C=  between two 

atoms A in pure metal A and between atom A1 or A2 or C and another atom in interstitial 

alloy AC at pressure P and temperature T = 0 K from the equation of state as follows [7, 17]. 

                                      0 0
1

1 1

1

6 4

X X X
X X

X X X

u ω k
Pv r

r k r

  
= − + 

  
                                               (1) 

where 
3

1

2

X

X

r
v =  is the volume of the cubic unit cell corresponding to an atom X of the 

FCC lattice, 
0Xu is the cohesive energy for atom X, 

Xk  is the harmonic crystal parameter 

for atom X,  
0

( ,0)X
X

X

k P

m
 = is the vibrational frequency of atom X , at pressure P and 

temperature T = 0 K ,, 
Xm  is the mass of atom X and  ,

2

h
h


=  is the Planck constant. 
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2-Determine the harmonic crystal parameter 0Xk (P, ) and anharmonic crystal 

parameters 
1 20 0 0X X Xγ (P, ), γ (P, ), γ (P, ) of atom X at pressure P and temperature T = 0 K 

according to formulas in [7, 17]. 

3-Determine the displacement 
Xy (P,T) of atom X at pressure P and temperature T  

from the equilibrium position according to formulas in [7, 17]. 

4-Determine the nearest neighbor distance  
1Xr (P,T) according to the following 

formulas [7, 17]. 

11 1 1 10 0 ,C C A A A Ar (P,T) r (P, ) y (P,T),r (P,T) r (P, ) y (P,T)= + = +  

1 2 21 1 1 1( , ) ( , ), ( , ) ( ,0) ( , ).A C A A Cr P T r P T r P T r P y P T= = +                          (2) 

5-Determine the mean nearest neighbor distance  
1

AC

Ar (P,T)  between two atoms A in 

alloy AC at pressure P and temperature T  according to the following formula [7, 17]. 

( )1 1 1 1 10 0 1 0 0), ( , ),AC AC AC

A A A C A C A X X

X

r (P,T) r (P, ) y(P,T),r (P, ) c r (P, ) c r (P, y(P,T) c y P T= + = − + =    (3) 

where
1 21 10 2 0 1 15 6 8A C A C A C A Cr (P, ) r (P, ),c c ,c c ,c c = = − = =  for FCC lattice, 

1 0AC

Ar (P, )  is the 

mean nearest neighbor distance between two atoms A in alloy AC at pressure P and 

temperature T = 0 K, y(P,T)  is the mean displacement of atom A at pressure P and 

temperature T  from the equilibrium position, 
1 0Ar (P, )  is the nearest neighbor distance  

between two atoms A in pure metal A at pressure P and temperature T = 0 K and 
1 0)Ar (P,  

is nearest neighbor distance  between two atoms A in the region containing the interstitial 

atom C at pressure P and temperature T = 0 K.   

6-Determine the mean nearest neighbor distance  
ABCa  between two atoms A in alloy 

ABC at pressure P and temperature T  according to the formula [7, 17]. 

1 ,TAC TB

ABC AC AC B B

T T

B B
a c a c r

B B
= +

 
1, , ,T AC TAC B TB AC A C AC AB c B c B c c c a r (P,T)= + = +   

1
,TAC

TAC

B


=  

3 3

1

0 0
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22
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   = = =
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2 2

2

1

,AC X
X

XAC X TT

N c
a r

     
   

   
                                                   (4) 

where the cohesive energy and crystal parameters for atom B are determined analogically 

as for atom X, ,X B   respectively are the Helmholtz free energies per an atom X and per 

an atom B [7, 17], 
1 2( , , , )AC

AC X X c

X

N c TS X A A A C = − =  is the Helmholtz free 

energy of alloy AC, AC

cS  is the configurational entropy of alloy AC.  
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7-Determine the Helmholtz free energy of alloy ABC at pressure P and temperature 

T according to the formula [7, 17]. 

                                        ( ) ,AC ABC

ABC AC B B A c cNc TS TS  =  + − + −  

where ABC

cS  is the configurational entropy of alloy ABC. 

8-Determine the Young modulus of alloy ABC according to the formula [7, 17]. 

( ) ,YABC YAC B YA YBE E c E E= + −

2

2

2

2

,

X
X

X
YAC YA
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c

E E
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. 2

M
YM M M M

M M M M

E A Y Y
r A k k

 



  
= = + + +  

  
                  (5) 

 

Here, 
Bo Bo,k T k =  is the Boltzmann constant.  

9-Determine the mean nearest neighbor distance  1 ( , )ACF

Ar P T  between two atoms A 

in alloy AC, the mean nearest neighbor distance ( , )F

ABCa P T  between two atoms A in alloy 

AC, and the Helmholtz free energy ( , )F

ABC P T  at pressure P and temperature T  after 

deformation according to the formulas in [7, 17].   

10-Determine the density of deformation energy ( )ABCf   according to formula [7, 17].   

( )
22

2
01

012

1 1

01

01

1 1

21 1
( ) 2

2

21 1
           2

F F F
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v r r

        
+ + =    

       

                (6) 

where   is the strain. 

11-Determine the strain F corresponding to the maximum value of density of 

deformation energy 
maxABCf . 

12-Determine the maximum real stress 1max according to the formula [7, 17].   

                                
( )

max
1max ,

1

ABC

F F

ABC

f
σ

C ε ε
=

+
                                                       (7) 
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where 
( )0.2

0.2 0 .2

ABC

ABC

.

f ε
C

σ ε
= with 

0.2 0 .2, .σ ε  are  the experimental values of the stress and the 

strain of the alloy ABC at 0.2%ε = .  

13-Determine the limit of elastic deformation 
e  according to formula [7, 17].   

                                             

α

e 0

e

.
1

ABC

e

e ABC ABCE


  


= =
+

                                            (8) 

Here, 
e  is the strain corresponding to the limit of elastic deformation 

e , the constants 

0ABC  and ABC  have different values for different alloys ABC.  

14-When the substitutional atom concentration is zero, we obtain the nonlinear 

deformation quantities of the interstitial alloy AC. 

15-When the substitutional atom concentration and the interstitial atom concentration 

are zero, we obtain the nonlinear deformation quantities of the main metal A. 

        We perform numerical calculations according to above mentioned steps for Au, 

AuSi, and AuCuSi in subsection 2.2. 

2.2. Numerical results and discussions for Au, AuSi, and AuCuSi  

For interactions Au-Au, Cu-Cu, Si-Si in Au, AuSi, and AuCuSi, we use the  Mie-

Lennard-Jones potential [18, 19]. 

                          0 0( ) ,

n m
r rD

r m n
n m r r


    

= −    
−      

                                          (9) 

where D is the depth of potential well corresponding to the equilibrium distance 
0r , m 

and n are determined empirically. In our model of ternary alloy, we do not use the 

interaction A-B and neglect the interaction B-C because the concentration of 

substitutional atoms B and the concentration of interstitial atoms C are small. The 

potential parameters 
0, , ,D r m n  are given in Table 1. Considering the interaction between 

Au and Si and between Au and Cu, we use the following approximation 

( )
1

2
A X A A X X  − − − +  ( ), .X B C=  

Table 1. The parameters 
0, , ,D r m n  of the Mie-Lennard-Jones potential [18, 19] 

Interaction m n        D/kBo r0(10-10m) 

Si-Si [18] 6 12 32701.7 2.295 

Au-Au [19] 1.96 15.56 7411.5 2.8751 

Cu-Cu [19] 3.03 8.37 6841.3 2.5487 
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SMM calculations for nonlinear deformation of Au, AuSi are summarised in tables 

from Table 2 to Table 4 and illustrated in figures from Figure 1 to Figure 4.  At P = 0, we 

choose the value of experimental stress 
0.2%  for Au and AuSi according to each 

temperature from the experimental results of Chang and Himmel (1966) [20]  by the 

formula 
0.2% 0.2%. .E =  The graphị ( )f   always exits   = 

F  so that f  = 
max.f  

Specifically when cSi = 0 then 
F = 9.7% corresponding to 

maxf = 24.69 GPa. When cSi = 1% 

then 
F = 9.7% corresponding to 

maxf = 22.91 GPa. From that, we calculate the values of 

the maximum real stress 
1max  and the elastic deformation limit 

e  corresponding to the 

strain .e  The graphs of ( )f   and 
1( )   for Au and AuSi are described in figures from 

Figure 1 to Figure 3, where we compare SMM calculations with experiments of Khatibi 

et al. (2018) [21]. Numerical calculations are summarised in Table 2 và Table 3.  

According to SMM calculations for Au at P = 0 and T = 300 K when F = 9.7% then 

1 = 1max and when e = 0.16% then 1 = e.. Figure 1 describes the real stress – strain  

1() of  Au at T = 300 K and P = 0, where the SMM calculations are compared with 

experiments of Khatibi et al. (2018) [21]. When the strain   is in the range from zero to 

near 4%, the SMM calculations are in very good agreement with experiments [21] 

(the error of maximum real stress is   0.6%). 

Table 2. 
F  corresponding to 

max ,f  
1max  and 

e  corresponding to 
e (%) for AuSi  

at T = 300 K and P = 0 calculated by SMM and from EXPT of Khatibi et al. (2018) [21] 

Sic (%) Method 
1max (MPa) 

F (%) 
e (MPa) 

e (%) 

0 SMM 207.85 9.7 158.48 0.16 

0 EXPT [21] 209.00 3.5 130.00 - 

1 SMM 205.75 9.7 158.35 0.18 

2 SMM 203.92 9.7 158.43 0.20 

 

Table 3. ( ),F SiT c  corresponding to 
maxf  and ( ),e SiT c corresponding to ( ),e SiT c

for  AuSi at  P = 0 

 T(K) 
Sic (%) 1max (MPa) 

F (%) e (MPa) 
e (%) 

500 

0 207.10 7.9 170.15 0.20 

1 190.11 7.9 156.48 0.20 

2 174.32 7.9 143.74 0.21 

800 

0 199.11 6.0 176.43 0.27 

1 185.52 6.0 164.78 0.28 

2 167.07 6.0 148.48 0.29 
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Figure 1. 
1( )   of Au at T = 300 K and P = 0 calculated by SMM  

from EXPT of Khatibi et al. (2018) [21] 
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Figure 2.  (a) ( , )f T and (b) 
1( , )T   for  AuSi at 

Sic  = 1% and P = 0  

calculated by SMM 

When considering the nonlinear deformation of AuSi with respect to pressure, the 

values of experimental stress 
0.2%  of AuSi at  T = 300 K, pressures  P = 2.55 GPa, 4.88 

GPa, 9.47 GPa, and 18.78 GPa are chosen according to experiments of Yoneda et al. 

(2017) [22]. Figure 4 describes the dependence of the deformation energy density and the 

real stress on strain and pressure for AuSi. 
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According to tables from Table 2 to Table 4 for AuSi at the same temperature and 

pressure when the interstitial atom concentration increases, the maximum real stress 

1max and the limit of elastic deformation 
e slightly decrease. For example for AuSi at P = 0 

and T = 300 K when the interstitial atom concentration cSi tăng từ 0 đến 2%, 
1max

decreases from 207.85 to 203.92 MPa (down 1.89%) and  
e  decreases from 158.48 to 

158.43 MPa (down 0.03%).  

Table 4. F (P,cSi) corresponding to  fmax, 1max (P,cSi) 

and e(P,cSi) corresponding to  e (P,cSi) for AuSi at T = 300 K 

P(GPa) 
Sic (%) 

1max (MPa) 
F (%) 

e (MPa) 
e (%) 

2.55 

0 253.23 10.1 192.29 0.18 

1 235.26 10.1 179.24 0.19 

2 218.47 10.1 167.02 0.19 

4.88 

0 324.48 10.4 248.07 0.22 

1 301.66 10.4 231.43 0.22 

2 280.45 10.4 215.95 0.23 

9.47 

0 373.12 10.9 280.66 0.21 

1 347.16 10.9 262.10 0.22 

2 322.98 10.9 244.76 0.23 

18.78 

0 597.41 11.8 448.39 0.28 

1 555.91 11.8 418.90 0.29 

2 517.47 11.8 391.52 0.30 
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Figure 3. (a) 
Si( , )f c  and (b) 

1 Si( , )c   for AuSi  

at T = 300 K and P = 0 calculated by SMM 
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For Au and AuSi at the same pressure and interstitial atom concentration when 

temperature increases, 
1max and 

e  decrease. For example for AuSi at P = 0 and cSi = 

2% when temperature increases from 300 to 800 K, 
1max decreases from 203.92 to 

167.07 MPa (down 18.07%) and 
e decreases  from 158.43 to 148.48 MPa (down 

6.28%). This rule is consistent with the SMM calculations of Hoa (2007) [23] for 

metals and substitutional alloys.  

For Au and AuSi at the same temperature and interstitial atom concentration when 

pressure  increases, 
1max and 

e  strongly increases. For example for AuSi at T = 300 K 

and cSi = 1% when pressure increases from 2.55 to 18.78 GPa, 
1max  increases from 

235.26 to 555.91 MPa (up 136.30%) and 
e increases from 179.24 to 418.90 MPa 

(up 133.71%). 
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Figure 4. (a) ( , )f P  and (b) 
1( , )P   for AuSi at 

Sic  = 2% and T = 300 K  

calculated by SMM 

SMM calculations for nonlinear deformation of Au, AuSi are summarised in tables 

from Table 5 to Table 7 and illustrated in figures from Figure 5 to Figure 8. 
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Figure 5. (a)
Si( , )f c  and (b)

1 Si( , )c   for AuCuSi at 
Cuc  = 10%, T = 300 K and P = 0 
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Table 5. 
Si( , )F c T corresponding to 

max Si( , ),f c T  
1max Si( , )c T  and 

Si( , )e c T  

corresponding to 
Si( , )e c T  for AuCuSi  at 

Cuc  = 10% and  P = 0 

 

T(K) 
Sic (%) 

F (%) 
1max (MPa) 

e (%) 
e (MPa) 

300 

0 8.4 217.91 0.17 174.67 

1 8.6 198.64 0.17 158.13 

2 8.9 181.89 0.17 143.34 

500 

0 7.1 219.56 0.21 187.74 

1 7.3 184.33 0.19 154.43 

2 7.6 174.56 0.20 144.84 

700 

0 5.8 184.14 0.21 162.16 

1 6.3 160.71 0.20 139.42 

2 6.5 148.26 0.20 127.51 

800 

0 5.2 174.63 0.22 156.94 

1 5.6 157.59 0.22 139.89 

2 5.9 142.29 0.22 125.11 
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Figure 6. (a) ( , )f T  and (b) 
1( , )T   for AuCuSi  

at cCu = 10%, cSi = 2% and P = 0 
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Figure 7. (a) ( , )f P  and (b) 
1( , )P   for AuCuSi at 

Cuc =10%, 
Sic = 1% and T = 300 K 

 

Table 6. 
Si( , )F P c  corresponding to 

max Si( , ),f P c  
1max Si( , )P c  and 

Si( , )e P c  

corresponding to 
Si( , )e P c  for AuCuSi at 

Cuc  = 10% and T = 300 K 

 P(GPa) 
Sic (%) 

F (%) 
1max (MPa) 

e (%) 
e (MPa) 

0 

0 8.4 217.91 0.17 174.67 

1 8.6 198.64 0.17 158.13 

2 8.9 181.89 0.17 143.34 

2.55 

0 9.0 264.42 0.19 209.44 

1 9.3 241.07 0.19 188.99 

2 9.4 218.74 0.19 170.84 

4.88 

0 9.5 333.63 0.23 263.56 

1 9.7 306.75 0.23 240.95 

2 9.7 269.01 0.22 210.59 

9.47 

0 10.5 376.35 0.22 287.19 

1 10.6 324.28 0.21 245.25 

2 11.0 282.83 0.19 209.92 

18.78 

0 11.8 530.56 0.24 392.89 

1 11.7 484.18 0.25 360.00 

2 11.7 442.08 0.25 328.88 
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Figure 8. (a) 
Cu( , )f c  and (b) 

1 Cu( , )c   for AuCuSi at cSi = 1%, T = 300 K and P = 0  

 

Table 7. 
Cu( , )F P c  corresponding to  

max Cu( , ),f P c  
1max Cu( , )P c  and 

Cu( , )e P c  

corresponding to  
Cu( , )e P c  for  AuCuSi  at cSi = 1% and T = 300 K  

P(GPa) 
Cuc (%) 

F (%) 
1max (MPa) 

e (MPa) 
e (%) 

0 

5 8.6 209.96 0.19 168.13 

7.5 8.5 200.92 0.18 160.81 

10 8.6 198.64 0.17 158.13 

2.55 

5 9.3 255.95 0.21 201.98 

7.5 9.3 250.19 0.20 196.92 

10 9.3 241.07 0.19 188.99 

4.88 

5 9.7 323.48 0.24 255.63 

7.5 9.8 314.46 0.23 246.88 

10 9.7 306.75 0.23 240.95 

9.47 

5 11.0 364.39 0.23 275.33 

7.5 11.1 355.69 0.22 267.00 

10 10.6 324.28 0.21 245.25 

18.78 

5 11.8 522.18 0.27 390.48 

7.5 11.7 506.47 0.26 378.61 

10 11.7 484.18 0.25 360.00 

 

According to tables from Table 5 to Table 7 and figures from Figure 5 to Figure 8 

for AuCuSi at the same temperature and pressure when the interstitial atom concentration 

increases, the maximum real stress 
1max and the limit of elastic deformation 

e decrease. 



Nguyen Quang Hoc and Nguyen Duc Hien 

52 
 

For example for AuSi at T = 300 K, P = 2.55 GPa, 300 K cCu = 10% when cSi increases 

from 0 to 2%, 
1max decreases from 264.42 to 218.74 MPa (down 17.27%) and  

e  decreases 

from 209.44 to 170.84 MPa (down 18.43%).  

For AuCuSi at the same temperature, pressure, and interstitial atom concentration 

when the substitutional atom concentration increases, 
1max and 

e  decrease. For 

example for AuCuSi at T = 300 K, P = 0 and cSi = 1% when cCu increases from 5 to 10%, 

then 
1max  decreases from 209.96 to 198.64 MPa (down 5.39%) and 

e  decreases from 

168.13 to 158.13 MPa (down 5.7%).  

For AuCuSi at the same pressure, interstitial atom concentration and substitutional 

atom concentration when temperature increases, then 
1max and 

e  decrease. For 

example for AuCuSi at P = 0, cCu = 10% and cSi = 2% when temperature increases from 

300 to 800 K, then 
1max  decreases from 181.89 to 142.29 MPa (down 21.77%) and 

e  

decreases from 143.34 to 125.11 MPa (down 12.72%).  

For AuCuSi at the same temperature, interstitial atom concentration and 

substitutional atom concentration when pressure increases, then 
1max and 

e  strongly 

increase. For example for AuCuSi  at T = 300 K, cSi = 2% and cCu = 10% when pressure 

increases from zero to 18.78 GPa, then 
1max increases from 198.64 to 484.18 MPa 

(up 143.75%) and 
e  increases from 143.34 to 328.88 MPa (up 129.44%).  

3.   Conclusions 

On the basis of the model and the theory of nonlinear deformation for FCC 

substitutional and interstitial ternary alloy built by the statistical moment method, we 

perform numerical calculations for Au, AuSi, and AuCuSi in the temperature range from 

300 to 800 K, in the pressure range from zero to 18.78 GPa, in the range of interstitial 

atom concentration from zero to 2% and in the range of substitutional atom concentration 

from 5 to 10%. When the strain   is in the range from zero to near 4%, the SMM 

calculations for the real stress-strain  1() of  Au at T = 300 K and P = 0 are in very good 

agreement with experiments [21] (the error of maximum real stress is 0.6%). The 

maximum real stress and the elastic strain limit of FCC substitutional and interstitial  

ternary alloy decrease as the interstitial atom concentration increases. This rule is similar 

to that of FCC binary interstitial alloy. The nonlinear deformation quantities of FCC 

substitutional and interstitial  ternary alloy both decrease with increasing temperature and 

increase with increasing pressure. This rule is similar to that of FCC interstitial binary 

alloy and that of FCC main metal. The nonlinear deformation quantities of FCC 

substitutional and interstitial ternary alloy all change slowly with the substitution atom 

concentration. This rule is similar to that of FCC substitutional binary alloy. When the 

interstitial and substituted atom concentrations are zero, the stress-strain curve obtained 

by SMM agrees well with experiments. Numerical results without comparative data are 

new results and are a reference source for prediction and experimental orientation in the future. 
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