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Abstract. In this paper, we prove a graded version of Exel’s Effros-Hahn
conjecture for Leavitt path algebras. More concretely, we show that any graded
primitive ideal of the Leavitt path algebra is the annihilator of a module induced
from a graded simple module over an isotropy group algebra. A graded version
of Steinberg’s results towards Exel’s conjecture in (B. Steinberg, Ideals of étale
groupoid algebras and Exel’s Effros-Hahn conjecture, J. Noncommut. Geom.,
Vol. 15, 2021, pp. 829-839) is also obtained for graded ample groupoid algebras.
Keywords: Chen simple module, Exel’s Effros-Hahn conjecture, graded ample
groupoid, primitive ideal, Steinberg algebra.

1. Introduction
A primitive ideal is the annihilator of a simple module. The original Effros-Hahn

conjecture [1, 2] states that every primitive ideal of a crossed product of an amenable
locally compact group with a commutative C∗-algebra is induced from a primitive ideal
of an isotropy group. This conjecture was verified for discrete groups in [3]. A more
general result than the original conjecture as well as analogues in the groupoid setting
was also achieved, see [4, 5, 6].

In [7], B. Steinberg associated to each ample groupoid G an algebra AR(G)

over a commutative ring R, which is now called the ample groupoid algebra or the
Steinberg algebra. At the PARS conference in Gramado in 2014 (see also [8]), R.
Exel conjectured that an analogue of the Effros-Hahn conjecture should hold for ample
groupoids. This means that each primitive ideal of a Steinberg algebra should be the
annihilator of an irreducible representation (equivalently, a simple module) induced from
an isotropy group.
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Towards Exel’s conjecture, Steinberg [9] proved that each ideal of AR(G) is an
intersection of annihilators of induced representations from isotropy groups, extending a
result of Demeneghi for Steinberg algebras over a field in [10]. Consequently, he obtained
that every primitive ideal is the annihilator of a single representation induced from an
isotropy group, and established Exel’s conjecture in the case that all isotropy group rings
are left max rings. Steinberg’s proof utilizes his Disintegration Theorem [11], which
interprets modules over AR(G) as sheaves of R-modules over G.

Leavitt path algebras, firstly introduced in [12, 13], are prominent examples of
Steinberg algebras. Moreover, they are naturally Z-graded. It is known that Exel’s
conjecture holds for Leavitt path algebras (see Theorem 4.1). In a recent paper [14],
L. Vaš presented a new class of graded simple modules over Leavitt path algebras, thereby
classifying all the graded simple modules up to the equality of their annihilators.

In this paper, we apply the graded version of the Disintegration Theorem in [15]
and of the induction functor in [16] to obtain the corresponding results to those in [9] for
graded Steinberg algebras. Moreover, we prove that the graded simple modules defined by
Vaš are induced from graded simple modules over isotropy group algebras. Consequently,
combining with [14, Theorem 3.8] and the results in [16], we deduce that the graded
version of Exel’s conjecture also holds for Leavitt path algebras.

Our paper is structured as follows. In the next section, we recall some of the needed
basic concepts and results. In Section 3, we verify the graded version of the main results
in [9] for graded Steinberg algebras. The graded version of Exel’s Effros-Hahn conjecture
for Leavitt path algebras is proved in Section 4, with the main results being Theorem 4.2,
Corollary 4.1 and Theorem 4.3.

2. Preliminaries
Throughout the paper, R denotes a commutative ring with identity. All modules are

assumed to be left modules unless otherwise stated.

2.1. Graded algebras and graded modules

Let Γ be a group. An R-algebra A is called Γ-graded if A =
⊕

γ∈ΓAγ , where
each Aγ is an R-submodule of A and AγAδ ⊆ Aγδ for all γ, δ ∈ Γ. Then Aγ is called
the γ-homogeneous component of A, and its nonzero elements are called homogeneous
of degree γ. If the algebra A is Γ-graded and Γ is clear from context, we say simply
that A is a graded algebra. A graded homomorphism of Γ-graded algebras is an algebra
homomorphism f : A→ B such that f(Aγ) ⊆ Bγ for all γ ∈ Γ. If such a homomorphism
is bijective, then we say that A and B are graded isomorphic.

Let M be a (left) A-module. Then M is said to be unital if AM = M . If A is a
Γ-graded R-algebra, M is called a graded A-module if M =

⊕
γ∈ΓMγ , where each Mγ

is an R-submodule of M and AδMγ ⊆ Mδγ for all γ, δ ∈ Γ. A graded homomorphism
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between graded A-modules is an A-module homomorphism f : M → N such that
f(Mγ) ⊆ Nγ for all γ ∈ Γ. We denote by A -Mod the category of unital A-modules
and by A - Gr the category of unital graded A-modules with graded homomorphisms.
The notions such as graded submodule, graded simple module, etc. are counterparts in
A - Gr of the familiar concepts in A -Mod. In particular, graded isomorphic modules
M,N will be denoted as M ∼=gr N . A graded primitive ideal of A is the annihilator of a
graded simple A-module.

For a graded A-module M and α ∈ Γ, the α-shifted graded A-module M(α) is

M(α) =
⊕
γ∈Γ

M(α)γ,

where M(α)γ =Mγα. This defines the shifted functor: A - Gr → A - Gr,M 7→M(α).

2.2. Groupoids and Steinberg algebras

A groupoid is a small category in which every morphism has an inverse. Let G be a
groupoid. The set of objects of G is denoted by G(0) and called the unit space, where we
identify objects with their identity morphisms. If x ∈ G, then d(x) = x−1x is the domain
and c(x) = xx−1 is the codomain of x. Thus we have maps d, c : G → G(0) such that
xd(x) = x and c(x)x = x for all x ∈ G. Moreover, a pair (x, y) ∈ G×G is composable
(with product written as xy) if and only if d(x) = c(y); we write G(2) for the set of all
composable pairs.

Let x ∈ G(0). We denote by Lx = d−1(x) the set of all morphisms whose domain
is x. The set

Gx = {y ∈ G | d(y) = x = c(y)}
is a group with identity x, called the isotropy group of G at x. The orbit of x is defined
to be

Ox = {y ∈ G(0) | there exists z ∈ G with d(z) = x, c(z) = y}.
It is clear that if x and y are in the same orbit, then the isotropy groups Gx and Gy are
isomorphic.

A topological groupoid is a groupoid endowed with a topology such that the
inversion map G → G and the composition map G(2) → G are continuous, where G(2)

has the relative product topology. In addition, if the map d is a local homeomorphism,
then G is called an étale groupoid; in this case, c is also a local homeomorphism. An
open bisection of G is an open subset U ⊆ G such that d|U and c|U are homeomorphisms
onto an open subset of G(0). An étale groupoid G is called ample if it has a topological
basis consisting of compact open bisections and G(0) is Hausdorff. Let B co(G) = {U ⊆
G | U is a compact open bisection}.

Definition 2.1 (see [7]). Let G be an ample groupoid. Define AR(G) to be the
R-submodule of RG spanned by the set {1U | U ∈ B co(G)}, where 1U denotes the
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characteristic function of U . The convolution product of f, g ∈ AR(G) is defined by

f ∗ g(x) =
∑

d(y)=d(x)

f(xy−1)g(y) for all x ∈ G.

The R-module AR(G), with the convolution product, is called the Steinberg algebra of G
over R.

2.3. Graded groupoids and graded Steinberg algebras

Let Γ be a discrete abelian group with identity ε and G be a topological groupoid.
The groupoid G is said to be Γ-graded if there is a continuous map κ : G → Γ such that
κ(xy) = κ(x)κ(y) for all (x, y) ∈ G(2). Equivalently, G is Γ-graded if it decomposes as
a disjoint union

⊔
γ∈ΓGγ , where Gγ’s are clopen subsets of G such that GγGδ ⊆ Gγδ for

all γ, δ ∈ Γ (to see the equivalence, one takes Gγ = κ−1(γ)). The set Gγ is called the
γ-homogeneous component of G.

If G is a Γ-graded ample groupoid, then we denote by B co
γ (G) the set of all

γ-homogeneous compact open bisections of G. An important observation is that the set
of all homogeneous compact open bisections is a basis for the topology on G.

Lemma 2.1. [17, Lemma 3.1] Let G be a Γ-graded ample groupoid. Then

AR(G) =
⊕
γ∈Γ

AR(G)γ

is a Γ-graded algebra, where AR(G)γ is the R-submodule spanned by the set {1U | U ∈
B co

γ (G)}.

Note that any ample groupoid G admits a trivial grading from the trivial group {ε},
which gives rise to a trivial grading on AR(G).

2.4. Leavitt path algebras

Leavitt path algebras [12, 13] are Z-graded algebras presented by generators and
relations that are determined by a directed graph. We review the description of a
Leavitt path algebra as a (graded) Steinberg algebra of some graph groupoid. For a
comprehensive account of the theory of Leavitt path algebras, we refer to [18].

A (directed) graph E = (E0, E1, s, r) consists of two sets E0 and E1 together
with maps s, r : E1 → E0. The elements of E0 are called vertices and the elements of
E1 are called edges of E. For an edge e ∈ E1, its source and range are s(e) and r(e),
respectively. A vertex v ∈ E0 is called a sink if it emits no edges, i.e., if s−1(v) = ∅, and
v is called an infinite emitter if s−1(v) is an infinite set. A vertex which is a sink or an
infinite emitter is said to be singular.
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A finite path in E is a finite sequence of edges µ = e1e2 · · · en with r(ei) = s(ei+1)

for all i = 1, . . . , n − 1. In this case, we set s(µ) = s(e1), r(µ) = r(en) and call
|µ| = n > 0 the length of µ. An exit for µ is an edge e such that s(e) = s(ei) for some
i but e ̸= ei. The finite path µ is called closed if s(µ) = r(µ); then µ is said to be based
at the vertex s(µ). Following [19], a closed path µ is called simple in case µ ̸= cn for
any closed path c and integer n ≥ 2. The closed path µ is called a cycle if it does not
pass through any of its vertices twice. Following [14], a cycle µ is exclusive if ”no exit
returns”, i.e., no vertex on µ is the base of a cycle distinct from µ. By convention, a vertex
v ∈ E0 is considered as a finite path of length 0 with v as the source and the range. We
denote by F (E) the set of all finite paths (including the paths of length 0) in the graph E.

An infinite path in E is an infinite sequence of edges p = e1e2 · · · with r(ei) =

s(ei+1) for all i. Again, s(p) = s(e1) is called the source of p. For instance, if c is
a closed path, then c∞ = ccc · · · is an infinite path. We denote by E∞ the set of all
infinite paths in E. If p ∈ F (E) ∪ E∞ and µ ∈ F (E) are such that p = µq for some
q ∈ F (E) ∪ E∞, then we say that µ is an initial subpath of p.

For each e ∈ E1, we introduce a symbol e∗ and call it a ghost edge. We define
s(e∗) = r(e) and r(e∗) = s(e). For v ∈ E0 and µ = e1e2 · · · en ∈ F (E), let v∗ = v and
µ∗ = e∗n · · · e∗2e∗1. The extended graph Ê of the graph E is the graph with vertices E0 and
edges E1 ∪ {e∗ | e ∈ E1}.

Let K be any field. Given an arbitrary graph E, the path algebra PK(E) of E over
K is the free K-algebra generated by the set E0 ∪ E1 subject to the relations:

(V) vw = δv,wv for all v, w ∈ E0,

(E) s(e)e = e = er(e) for all e ∈ E1.

The Leavitt path algebra of E over K, denoted LK(E), is the path algebra of the
extended graph Ê over K subject to the relations:

(CK1) e∗f = δe,fr(e) for all e, f ∈ E1,

(CK2) v =
∑

e∈s−1(v)

ee∗ for each non-singular vertex v ∈ E0.

It is well-known that the algebra LK(E) is spanned as a K-vector space by the set
{µν∗ | µ, ν ∈ F (E) with r(µ) = r(ν)}. Moreover, LK(E) has a canonical Z-grading
with the homogeneous component of degree k spanned by

{µν∗ | µ, ν ∈ F (E), r(µ) = r(ν), |µ| − |ν| = k}.

We now describe LK(E) as a graded Steinberg algebra associated with a graded
ample groupoid GE . Let

∂E = E∞ ∪ {µ ∈ F (E) | r(µ) is singular}.
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Let x, y ∈ ∂E and k ∈ Z. Then x is said to be tail-equivalent to y with lag k,
denoted x ∼k y, if there exist µ, ν ∈ F (E) and p ∈ ∂E with r(µ) = r(ν) = s(p) such
that x = µp, y = νp and |µ| − |ν| = k. Thus two paths in ∂E are tail-equivalent if they
differ only by initial subpaths, and the lag is the difference of lengths of these subpaths.
Following [19], an infinite path is called rational if it is tail-equivalent to c∞ for some
closed path c, and called irrational otherwise.

It is easy to see that ∼ is an equivalence relation on ∂E that respects the partition
between finite and infinite paths. For x ∈ ∂E, we denote by [x] the equivalence class of
all paths in ∂E which are tail-equivalent (with some lags) to x.

Remark 2.1. It follows from the definition that two finite paths x, y ∈ ∂E are
tail-equivalent if and only if r(x) = r(y) = v, which is either a sink or an infinite emitter.
In this case, we have [x] = [y] = [v] consists of all finite paths ending at v.

The groupoid of the graph E is

GE = {(x, k, y) ∈ ∂E × Z×∂E | x ∼k y}
= {(µp, |µ| − |ν|, νp) | µ, ν ∈ F (E), p ∈ ∂E, r(µ) = r(ν) = s(p)},

with the multiplication, inversion, domain and codomain maps given by

(x, k, y)(y, l, z) = (x, k + l, z), (x, k, y)−1 = (y,−k, x),
d(x, k, y) = (y, 0, y), c(x, k, y) = (x, 0, x).

The unit space of GE is G(0)
E = {(x, 0, x) | x ∈ ∂E}, which will be identified with ∂E

via the map (x, 0, x) 7→ x. It is clear that for x ∈ ∂E, the orbit Ox of x is the same as the
equivalence class [x].

For µ, ν ∈ F (E) with r(µ) = r(ν) and a finite set F ⊆ s−1(r(µ)), define

Z(µ, ν) = {(µp, |µ| − |ν|, νp) | p ∈ ∂E, r(µ) = s(p)}

and
Z((µ, ν)\F ) = Z(µ, ν)\

⋃
e∈F

Z(µe, νe).

The sets Z((µ, ν)\F ) form a basis of compact open bisections for a topology under
which GE is a Hausdorff ample groupoid (see, e.g., [20, Theorem 2.4]). Moreover, the
continuous groupoid homomorphism κ : GE → Z, (x, k, y) 7→ k provides GE with the
structure of a Z-graded groupoid, that is,

GE =
⊔
k∈Z

GE,k with GE,k = {(x, k, y) | x, y ∈ ∂E, x ∼k y}. (2.1)
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By Lemma 2.1, the graded Steinberg algebra of the Z-graded ample groupoid GE is

AK(GE) =
⊕
k∈Z

AK(GE)k, where AK(GE)k = spanK{1Z((µ,ν)\F ) | |µ| − |ν| = k}.

By [17, Example 3.2], the Leavitt path algebra LK(E) is naturally graded isomorphic to
AK(GE) via the map π : LK(E) → AK(GE) given by

π(v) = 1Z(v,v) for all v ∈ E0,

π(e) = 1Z(e,r(e)), π(e∗) = 1Z(r(e),e) for all e ∈ E1.
(2.2)

In particular, we have π(µν∗) = 1Z(µ,ν), where µ, ν ∈ F (E) with r(µ) = r(ν). As
a result, we may consider (graded) modules over AK(GE) as (graded) modules over
LK(E), or vice versa.

3. Graded version of Exel’s Effros-Hahn conjecture
Let G be an ample groupoid and x ∈ G(0). In [7], the induction and the restriction

functors between the category of AR(G)-modules and the category of modules over the
group algebra RGx were constructed. It was also shown that the induction functor sends
simple modules to simple modules. If G is a graded ample groupoid, then these functors
are graded functors between the graded categories (see [16]). Let us recall some needed
results from [16].

Let Lx = d−1(x) denotes the set of morphisms starting at x. Let RLx be the
free R-module with basis Lx. The isotropy group Gx acts freely on the right of Lx by
composition of morphisms. Thus RLx is a free right RGx-module with basis being a
transversal for Lx/Gx. Also, a left AR(G)-module structure on RLx is given by

ft =
∑

d(y)=c(t)

f(y)yt,

for f ∈ AR(G) and t ∈ Lx, making RLx an AR(G)-RGx-bimodule. By [7,
Definition 7.9], the induction functor

Indx : RGx -Mod → AR(G) -Mod

is given by
Indx(N) = RLx ⊗RGx N.

Now let G =
⊔

γ∈ΓGγ be a Γ-graded ample groupoid. Then Gx =
⊔

γ∈ΓGx,γ ,
where Gx,γ = Gx ∩ Gγ . Thus RGx is a Γ-graded R-algebra whose γ-homogeneous
component is the free R-module with basis Gx,γ; in other words, RGx =

⊕
γ∈ΓRGx,γ .
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Analogously, there is a decomposition Lx =
⊔

γ∈Γ Lx,γ with Lx,γ = Lx ∩ Gγ .
Then RLx =

⊕
γ∈ΓRLx,γ is a graded AR(G)-RGx-bimodule. Consequently, by [16,

Proposition 3.2],
Indx : RGx - Gr → AR(G) -Gr

is a functor between the categories of graded modules, and it commutes with the
shifted functors. Moreover, Indx maps graded simple RGx-modules to graded simple
AR(G)-modules [16, Proposition 3.6].

Theorem 3.1 (see Theorem 3.1 in [16]). LetG be a Γ-graded ample groupoid. Then each
spectral graded simple AR(G)-module is of the form Indx(N) for a pair (x,N), where
x ∈ G(0) and N is a graded simple RGx-module. Two pairs (x,N) and (y,N ′) give rise
to isomorphic graded AR(G)-modules, i.e., Indx(N) ∼=gr Indy(N

′), if and only if x, y are
in the same orbit and N ∼=gr N

′(γ) for some γ ∈ Γ such that there exists z ∈ Gγ with
d(z) = x, c(z) = y.

For an ample groupoid G, Steinberg proved that the category of AR(G)-modules
is equivalent to the category of G-sheaves of R-modules [11]. This result (which is
called the Disintegration Theorem) was used, for instance, to study Exel’s Effros-Hahn
conjecture for Steinberg algebras in [9]. A graded version of the Disintegration Theorem
was proved in [15]. We cite the following result; for a detailed description of the involved
functors and the category Bgr

R G of graded G-sheaves of R-modules, we refer to [15, 11].

Proposition 3.1. [15, Proposition 3.14] Let G be a Γ-graded ample groupoid. Then Γc :

Bgr
R G → AR(G) -Gr and Sh : AR(G) -Gr → Bgr

R G are mutually inverse equivalences
of categories.

By using Proposition 3.1 and analyzing the proofs of Theorem 5, Theorem 7 and
Theorem 8 in [9], we see that they still hold in the case G is a graded ample groupoid and
the involved ideals are graded (with minor changes in the proofs). Namely, we have the
graded version of these results as follows:

Proposition 3.2 (cf. Theorem 5 in [9]). Let G be a Γ-graded ample groupoid and E =

(E, p) be a graded G-sheaf of R-modules. Then the equality

Ann(Γc(E)) =
⋂

x∈G(0)

Ann(Indx(Ex))

holds. Consequently, every graded ideal I of AR(G) is an intersection of annihilators of
induced graded modules.

The proof of Proposition 3.2 is the same as that of [9, Theorem 5]. Note that Ex is
a graded RGx-module (see [15, Definition 3.4]).
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Theorem 3.2 (cf. Theorem 7 in [9]). Let G be a Γ-graded ample groupoid and let I be
a graded primitive ideal of AR(G). Then I = Ann(Indx(M)) for some x ∈ G(0) and
graded RGx-module M .

Proof. The proof is almost the same as that of [9, Theorem 7], where a section s therein
is replaced by a homogeneous section as in the sense of [15, Lemma 3.13].

A Γ-graded ring S is called a graded left max ring if each nonzero graded S-module
has a maximal graded (proper) submodule.

Theorem 3.3 (cf. Theorem 8 in [9]). Let G be a Γ-graded ample groupoid such that RGx

is a Γ-graded left max ring for all x ∈ G(0). Then the graded primitive ideals of RG are
exactly the ideals of the form Ann(Indx(M)), where M is a graded simple RGx-module.

Proof. The proof is almost the same as that of [9, Theorem 8], where the submodule N
therein is taken to be graded.

4. Graded simple modules over Leavitt path algebras
Let E be an arbitrary graph and K an arbitrary field. Let x ∈ ∂E. Recall that

Lx = d−1(x) = {(y, k, x) | y ∈ ∂E, y ∼k x for some k ∈ Z}.

By (2.2) and the bimodule structure of KLx, we obtain immediately as follows:

Lemma 4.1. The LK(E)-module structure on KLx is given by

(µν∗).(y, k, x) = 1Z(µ,ν)(y, k, x) =

{
(µp, |µ| − |ν|+ k, x) if y = νp (p ∈ ∂E),

0 else.

In particular, if (y, k, x) = (µp, k, νp) ∈ Lx, then (y, k, x) = µν∗(x, 0, x).

Moreover, the Z-grading on GE (2.1) induces a Z-grading on KLx, namely

KLx =
⊕
k∈Z

KLx,k with Lx,k = Lx ∩GE,k = {(y, k, x) ∈ GE}.

We now review the construction of Chen simple modules over the Leavitt path
algebra LK(E) in [19], [21] and [22] under the groupoid approach. Let x ∈ ∂E. Let V[x]
be the K-vector space having the equivalence class [x] as a basis. In view of Remark 2.1,
we may assume that x is a singular vertex or an infinite path in E. Then V[x] is a left
LK(E)-module by defining, for all p ∈ [x] and v ∈ E0, e ∈ E1,

v.p = δv,s(p)p ,

e.p = δr(e),s(p)ep ,

e∗.p =

{
p′, if p = ep′

0, otherwise.

33



Nguyen Quang Loc and Le Thi Ha

In addition, if p is a sink or an infinite emitter, we define e∗.p = 0. By [23, Proposition
3.6] (see also [16, Corollary 4.6]), the module V[x] is graded (so graded simple) if and
only if x is not a rational path.

More concretely, there are four types of Chen simple modules (with the notations
as in [19, 21, 22]) over LK(E):

(1) The infinite-path type V[x], where x is an infinite path in E.
(2) The twisted type V f

[x], where x is an infinite rational path. This is the module
which is twisted from V[x] by an irreducible polynomial f in the Laurent polynomial ring
K[t, t−1]. This module is simple but not graded simple. We refer to [21] for details.

(3) The sink type Nv = V[x], where x = v is a sink in E.
(4) The infinite-emitter type Nv = V[x], where x = v is an infinite emitter in E.
By [21, Theorem 5.9], any primitive ideal of LK(E) is the annihilator of some Chen

simple module. On the other hand, these Chen simple modules were shown to be modules
induced from simple modules over isotropy group algebras (see [16, Propositions 4.1, 4.2,
Corollaries 4.3, 4.5]). Therefore, we deduce that Excel’s Effros-Hahn conjecture holds for
Leavitt path algebras, that is:

Theorem 4.1. Let E be an arbitrary graph and K an arbitrary field. Then any primitive
ideal of the Leavitt path algebra LK(E) is the annihilator of a module induced from a
simple module over an isotropy group algebra.

Among the four types of Chen simple modules above, the types (3), (4), and type
(1) for x being an irrational path are graded simple modules. By [16, Proposition 4.1],
these modules are induced from graded simple modules over isotropy group algebras.
In a recent paper [14], L. Vaš introduced a new type of graded simple LK(E)-modules,
denoted N v

c , by using the notion of graded branching systems. Then it was proved that
any graded primitive ideal of LK(E) is the annihilator of some graded Chen module or
the graded module of type N v

c . We now show that the module N v
c is also induced from a

graded simple module over an isotropy group.
Assume c is an exclusive cycle in the graph E and v is a vertex of c. Let Y be the

set of the basis elements of the path algebra PK(Ê) of the extended graph Ê which have
the form pq∗, where p, q are finite paths inE with s(q) = v and r(p) = r(q) being a vertex
of c. Note that c is exclusive implies all edges of q must be in c. An element pq∗ ∈ Y is
said to be not reduced if p and q have positive lengths and they end with the same edge e.
There is a reduction function red on Y defined by

red(ee∗q∗) = q∗ and red(pee∗q∗) = red(pq∗)

for an edge e in c (see [14]). An element pq∗ ∈ Y is said to be reduced if red(pq∗) = pq∗.
Then N v

c is the K-vector space with basis

{pq∗ ∈ Y | pq∗ is reduced}
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and the LK(E)-module structure on N v
c is given by

w · pq∗ = δw,s(p)pq
∗;

e · pq∗ =

{
red(epq∗) if r(e) = s(p),

0 otherwise;

e∗ · pq∗ =

{
red(µν∗) if pq∗ = red(eµν∗) for some eµν∗ ∈ Y,

0 otherwise

for w ∈ E0 and e ∈ E1. A basis element pq∗ is defined to be homogeneous of degree
|p| − |q|.

Using the above notations, we have the following auxiliary results.

Lemma 4.2. [14, Lemma 3.4] If pq∗ ∈ Y and s(p) is a vertex of c, then p∗ ·red(pq∗) = q∗.

Lemma 4.3. If pq∗ ∈ Y , then p · q∗ = red(pq∗).

Proof. We use induction on the length |p|. If |p| = 0, then p = r(q) is a vertex of c and
p · q∗ = q∗ = red(pq∗). Assuming the induction hypothesis for pq∗ ∈ Y , we prove the
claim for epq∗ ∈ Y with e ∈ E1 and r(e) = s(p). Indeed, if pq∗ is reduced, then

(ep) · q∗ = e · (p · q∗) = e · (red(pq∗)) = e · (pq∗) = red(epq∗).

If pq∗ is not reduced, then p = p1e1 · · · et and q = q1e1 · · · et for some edges e1, . . . , et in
c, so that red(pq∗) = p1q

∗
1 is reduced. Hence

(ep) · q∗ = e · (p · q∗) = e · (red(pq∗)) = e · (p1q∗1) = red(ep1q
∗
1)) = red(epq∗).

When c is an exclusive cycle, by [24, Proposition 4.2], the isotropy group of GE at
c∞ is

(GE)c∞ = {(c∞, kn, c∞) | k ∈ Z}
with n = |c|. Consequently, K(GE)c∞ is Z-graded isomorphic to K[tn, t−n], where
K[tn, t−n] is the graded subalgebra of the Laurent polynomial algebra K[t, t−1] with
support nZ (i.e., its m-homogeneous components is Ktm if m ∈ nZ, and is zero
otherwise). The algebra K[tn, t−n] is graded simple, so the only nonzero graded ideal
of K(GE)c∞ is K(GE)c∞ itself. It follows that up to graded isomorphisms, all the graded
simple K(GE)c∞-modules are the shifted modules K[tn, t−n](m) for m ∈ Z. Moreover,
it suffices to take m ∈ {0, 1, . . . , n − 1}, as K[tn, t−n] and K[tn, t−n](k) are graded
isomorphic for all k ∈ nZ. Since the induction functor sends graded simple modules
to graded simple modules by [16, Proposition 3.6], the modules Indc∞(K[tn, t−n](m))

are graded simple LK(E)-modules. These modules are not simple, as K[tn, t−n] is not a
simple K[tn, t−n]-module.
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Theorem 4.2. Let c be an exclusive cycle based at a vertex v in E. Then the graded
LK(E)-modules Indc∞(K(GE)c∞) and N v

c are graded isomorphic.

Proof. Since

Indc∞(K(GE)c∞) = KLc∞ ⊗K(GE)c∞ K(GE)c∞ ∼= KLc∞ ,

we need to show that KLc∞
∼= N v

c as Z-graded modules.
Consider the K-linear map φ : KLc∞ −→ N v

c given by

φ(y, k, c∞) = red(pq∗),

where p, q ∈ F (E) and z ∈ ∂E are such that y = pz, c∞ = qz, |p| − |q| = k. Note
that z = c∞i for some i since q is a subpath of cm for some m ≥ 1. We claim that φ is
well-defined. Indeed, let p1, p2, q1, q2 ∈ F (E) and z1, z2 ∈ ∂E be such that y = p1z1 =

p2z2, c
∞ = q1z1 = q2z2, |p1| − |q1| = |p2| − |q2| = k. We may assume |p1| ≥ |p2|, so

p1 = p2q for some q ∈ F (E). Then z2 = qz1, thus q1z1 = q2qz1. Moreover, |p1| − |q1| =
|p2| − |q2| implies |q1| − |q2| = |q|. Hence q1 = q2q. Therefore,

red(p1q
∗
1) = red(p2qq

∗q∗2) = red(p2q
∗
2),

so φ is well-defined. We also define the K-linear map ψ : N v
c −→ KLc∞ given by

ψ(pq∗) = (pc∞i , |p| − |q|, c∞),

where c∞ = qc∞i . Now we check that φ and ψ are inverses of eath other. For (y, k, c∞) =

(pc∞i , |p| − |q|, qc∞i ) ∈ Lc∞ , we may write p = µe1e2 · · · et and q = νe1 · · · et, where
no edges of µ are in c and r(µ) = r(ν) = s(e1) = j, r(et) = i are vertices of c. Then
pq∗ = (µe1 · · · et)(e∗t · · · e∗1ν∗), so that red(pq∗) = µν∗. Thus

ψφ(y, k, c∞) = ψ(red(pq∗)) = ψ(µν∗) = (µc∞j , |µ| − |ν|, c∞) = (µc∞j , |p| − |q|, c∞).

Observe that
µc∞j = µe1e2 · · · etc∞i = pc∞i = y.

Hence ψφ is the identity map. On the other hand, for pq∗ ∈ N v
c and c∞ = qc∞i , we have

φψ(pq∗) = φ(pc∞i , |p| − |q|, c∞) = red(pq∗) = pq∗.

Thus φ and ψ are inverses of each other; moreover, it is clear that they preserve the
gradings on KLc∞ and N v

c . Since KLc∞ is a cyclic module generated by (c∞, 0, c∞) [7,
Corollary 7.11], to show that φ is an LK(E)-homomorphism it suffices to check that

φ(µν∗.(c∞, 0, c∞)) = µν∗ · φ((c∞, 0, c∞)) (4.1)
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for all µ, ν ∈ F (E) with r(µ) = r(ν). Indeed, by Lemma 4.1, we have

µν∗.(c∞, 0, c∞) =

{
(µz, |µ| − |ν|, c∞) if c∞ = νz

0 else.

Consequently, if ν is a subpath of c∞, then the left-hand side of (4.1) equals red(µν∗).
Meanwhile, its right-hand side equals

µν∗ · red(νν∗) = µ · (ν∗ · red(νν∗)) = µ · ν∗ = red(µν∗),

by Lemmas 4.2 and 4.3. If ν is not a subpath of c∞, then both sides of (4.1) are zero.
Hence we conclude that Indc∞(K(GE)c∞) and N v

c are graded isomorphic.

As a consequence of Theorems 4.2 and 3.1, we recover [14, Proposition 3.6(2)–(5)]
with a different proof.

Corollary 4.1. Let c be an exclusive cycle based at a vertex v in the graph E. Then we
have the following:

1. The LK(E)-module N v
c is graded simple and not simple.

2. If c has more than one vertex and if w ̸= v are vertices of c, then N v
c and Nw

c (m)

are graded isomorphic, where m is the length of the path from v to w in c.

3. If d is an exclusive cycle and w is a vertex of d, the modules N v
c and Nw

d are graded
isomorphic if and only if c = d and v = w. The modulesN v

c andNw
d are isomorphic

if and only if c = d.

4. The module N v
c is not isomorphic to any of the Chen simple modules.

Proof. (1) Indc∞(K(GE)c∞) ∼=gr N v
c and Indc∞(K(GE)c∞) is a graded simple,

non-simple LK(E)-module.
(2) and (3) Let d be the rotation of c which is based at w. By Theorem 4.2, we have

Nw
c (m) = Nw

d (m) ∼=gr Indd∞(K(GE)d∞)(m) ∼=gr Indd∞(K(GE)d∞(m)).

On the other hand, (d∞,−m, c∞) ∈ GE,−m and K(GE)c∞ ∼=gr K(GE)d∞ as graded
K(GE)c∞-modules. Therefore, it follows from Theorem 3.1 that

N v
c
∼=gr Indc∞(K(GE)c∞) ∼=gr Indd∞(K(GE)d∞(m)) ∼=gr N

w
c (m).

Now (3) is clear.
(4) The Chen simple modules are induced from different orbits of x ∈ ∂E by [16,

Proposition 4.1] (the twisted Chen modules are not graded).
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Finally, it follows from [16, Proposition 4.1], [14, Theorem 3.8] and Theorem 4.2
that the graded version of Excel’s Effros-Hahn conjecture holds for Leavitt path algebras.

Theorem 4.3. Let E be an arbitrary graph and K an arbitrary field. Then any graded
primitive ideal of the Leavitt path algebra LK(E) is the annihilator of a module induced
from a graded simple module over an isotropy group algebra.
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