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Abstract. The paper presents analytic expressions of the Helmholtz free energy and 

characteristic elastic deformation quantities such as the elastic moduli E, K, G and 

the elastic constants C11, C12, C44 for BCC interstitial and substitutional alloy with 

four components are determined by the statistical moment method. The obtained 

elastic quantities depend on temperature, pressure, the concentration of interstitial 

atoms, and the concentration of substitutional atoms. This is the elastic deformation 

theory of BCC interstitial and substitutional alloy with four components published 

for the first time. The elastic deformation theories of BCC metal, BCC binary 

interstitial alloy, BCC binary substitutional alloy, and BCC ternary interstitial and 

substitutional alloy are limit cases of the elastic deformation theory of BCC 

substitutional and interstitial alloy with four components. Our numerical calculations 

of the obtained theoretical results for metal Fe and alloy FeSi are in good agreement 

with other calculations and experiments. Other numerical calculations for alloys 

FeCr, FeNi, FeCrSi, FeNiSi, FeCrNiSi (some atoms Fe are substituted by atoms Cr 

and some other atoms Fe are substituted by atoms Ni) called stainless steels predict 

and orient experimental results in the future. Our numerical calculations for alloy 

FeCrNiSi are published for the first time.  

Keywords: substitutional and interstitial alloy with four components, elastic moduli, 

elastic constants, stainless steels, statistical moment method.    

1.   Introduction 

The FeCr binary system is the basis for a large class of important engineering 

materials known as stainless steel. Stainless steels combine good corrosion resistance 

with attractive mechanical properties. Some other properties of FeCr alloys are also of 

interest such as spin glass formation, sluggish formation of the σ phase, and strong 

swelling resistance in an irradiative medium. Phase equilibria and thermodynamic properties 

in the FeCr system have been reviewed comprehensively based on experimental information 
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and available computer simulations. The evaluated phase equilibria show significant 

differences from the currently accepted thermodynamic description by the CALPHAD 

approach [1]. 

Iron and its alloys are widely used in structural, electrical, and other technological 

applications; thus, it is vital to have accurate values of iron’s basic physical properties. 

Among physical properties, the elastic constants are of both fundamental and practical 

interests. Basic properties such as the bulk, shear, and Young’s moduli can be calculated 

from the monocrystal elastic constants.  Information on the influences of pressure and 

temperature on the elastic moduli and related aggregate properties of single crystals plays 

an essential role in predicting and understanding the interatomic interactions, strength, 

mechanical stability, phase transition mechanisms, and dynamical response of materials.   

There are some theoretical research results on the elastic deformation of iron for 

example using the full-potential linear response linear-muffin-tin orbital (LMTO) method [2]. 

In this work, Sha and Cohen [2006] have performed a first-principles quasiharmonic 

lattice dynamics study to examine the elastic moduli of bcc Fe with pressures and 

temperatures.  

Elastic deformation of iron and iron alloys is considered in many experiments. 

Resonant ultrasound spectroscopy was used to measure the monocrystal elastic constants 

of iron over a temperature range of 3 - 500 K [3]. The Young's modulus (E) and shear 

modulus (G) of isotropic Fe and binary Fe-C, Fe-Co, Fe-Cr, Fe-Ir, Fe-Mn, Fe-Ni, Fe-Pt, 

Fe-Re, Fe-Rh, and Fe-Ru alloys have been determined as functions of composition 

(0 to 10 at. pct) and temperature (77 to 473 K) by a pulse-echo technique (100 kHz 

elastic waves). The temperature dependence of E and G of the alloys is similar to that of 

iron, decreasing in a nonlinear manner from 77 to 473 K [4]. 

For geologists, Earth’s core consists of an abundant source of pure iron and iron 

alloys while the mantle has silicate minerals [5]. Iron silicides have attracted a lot of 

attention in recent decades, due to their unusual physical properties and functional 

applications [6]. The distribution of the Si-atoms in alloy FeCrSi is discussed in 

comparison with some common transition metal silicide structures [7]. The electronic and 

thermodynamic properties of iron silicides such as B2-FeSi have been investigated using 

the first-principles method based on the plane-wave basis set in the ranges of 0 - 2400 K 

and 0 - 140 GPa [6]. Zhang et al. (2020) use a combination of first-principles calculation 

with special quasi-random structure and quasi-harmonic approximation methods to 

calculate the formation energy, mechanical and thermodynamic properties of binary FeCr 

and ternary FeCrSi random alloys [8]. A new FeCrSi base alloy that offers promise for 

improved corrosion resistance at a lower cost than state of the art FeCrAl and stainless 

steel alloys are reported [9]. The analytic expressions of the free energy, the mean nearest 

neighbor distance between two atoms, the elastic moduli, and the elastic constants for 

BCC substitution alloy AB with interstitial atom C under pressure are derived from the 

statistical moment method (SMM) [10-13]. The numerical results for alloy FeCrSi are 

compared with the numerical results for main metal Fe, substitution alloy FeCr, interstitial 

alloy FeSi, and experiments [14].    

In this report, we present the theory of elastic deformation for body-centered cubic 

(BCC) substitutional and interstitial alloy with four components under pressure built by 
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the statistical moment method (SMM). Our numerical calculations of the obtained 

theoretical results are performed for metal Fe and alloys FeSi, FeCr, FeNi, FeCrSi, 

FeNiSi, FeCrNiSi (some atoms Fe are substituted by atoms Cr and some other atoms Fe 

are substituted by atoms Ni) called stainless steels 

2.    Content  

2.1. Theory of elastic deformation for BCC substitutional and interstitial alloy 

AB1B2C under pressure  

 In our previous papers [10, 14, 15], we derived the analytic expressions of the 

cohesive energy 
0u  and the alloy parameters 

1 2, , ,k     for the atom C in face center of 

cubic unit cell, the atom A1 in the body center of the cubic unit cell, and the atom A2 in 

peaks of the cubic unit cell for the BCC interstitial alloy AC in the approximation of 

two and three coordination spheres. In these papers, we also determined the cohesive 

energy and the metal parameters for atom A in the clean metal A in the approximation of 

two coordination spheres 

If we know the form of the interaction potential between two atoms X (X = A, A1, A2, C), 

from the equation of state for alloy AC, we can find the nearest neighbor distance between 

two r01X(P,0) and the alloy parameters 
1( ,0), ( ,0),Xk P P  

2( ,0), ( ,0)P P  for atom X at 

temperature 0 K and pressure P. From that, we can determine the displacement  ( , )Xy P T  

of atom X from the equilibrium position [10, 15], the nearest neighbor distance 
1 ( , )Xr P T

and the mean nearest neighbor distance 
1 ( , )Ar P T between two atoms A in the alloy AC.  

The mean nearest neighbor distance between two atoms A in the BCC interstitial and 

substitutional alloy AB1B2C at pressure P and temperature T is calculated by  
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The mean nearest neighbor distance between two atoms A in the BCC interstitial and 

substitutional alloy AB1B2C at pressure P and temperature 0 K is calculated by   

1 2

1 2 1 1 2 2 1 1 2 2

0 00
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(2) 

The Helmholtz free energy of the BCC interstitial and substitutional alloy AB1B2C 

with the condition  
1 2
,C B B Ac c c c   

1 2
( , ,A B Bc c c  and 

Cc  respectively are the 

concentrations of atoms A, B1, B2 and C) is equal to  
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where 
X  is the Helmholtz free energy of an atom X in clean material X,  AC

cS  is the 

configurational entropy of the interstitial alloy AC and 1 2AB B C

cS  is the configurational 

entropy of the interstitial and substitutional alloy AB1B2C. 

The Young modulus of the alloy AB1B2C has the form  
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The bulk modulus of the alloy AB1B2C is  

( )
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where 
1 2AB B C  the Poisson ratio of the alloy AB1B2C. 

The shearing modulus of the alloy AB1B2C is given by 
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The elastic constants of the alloy AB1B2C are counted by 
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The Poisson ratio of the alloy AB1B2C is equal to  

1 2 1 1 2 2 1 1 2 2
,AB B C A A B B B B C C A A B B B B A Ac c c c c c c c        = + + +  + +   (10) 

where 
1 2( , , , )X X A B B C =  is the Poisson ratio of the material X. 

When the concentration of interstitial atoms 0,Cc =  the theory of elastic deformation 

for above mentioned BCC substitutional and interstitial ternary alloy AB1B2C becomes 

the theory of elastic deformation for the BCC ternary substitutional alloy AB1B2. When 

the concentration of substitutional atoms 
1

0,Bc =  the theory of elastic deformation for 

BCC substitutional and interstitial alloy AB1B2C becomes the theory of elastic 

deformation for the BCC ternary interstitial and substitutional alloy AB2C. When the 

concentration of substitutional atoms 
2

0,Bc =  the theory of elastic deformation for BCC 

substitutional and interstitial alloy AB1B2C becomes the theory of elastic deformation for 

the BCC ternary interstitial and substitutional alloy AB1C. When the concentrations of 

substitutional atoms 
1 2

0,B Bc c= =  the theory of elastic deformation for BCC 

substitutional and interstitial alloy AB1B2C becomes the theory of elastic deformation for 

the BCC binary interstitial alloy AC. When the concentrations of substitutional atoms 

1 2
0B Bc c= =  and the concentration of interstitial atoms 0,Cc =  the theory of elastic 

deformation for BCC substitutional and interstitial alloy AB1B2C becomes the theory of 

elastic deformation for the BCC main metal A [15]. 
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2.2. Numerical results and discussions for metal Fe and alloys FeCr, FeNi, 

FeSi, FeCrSi, FeNiSi, FeCrNiSi  

In order to study alloys FeCr, FeNi, FeSi, FeCrSi, FeNiSi and FeCrNiSi, we use the 

Mie-Lennard-Jones (MLJ) pair interaction potential as follows [16]:  

0 0( ) ,

n m
r rD

r m n
n m r r


    

= −    
−      

 
 

(11) 

where D is the depth of potential well corresponding to the equilibrium distance r0, m and 

n are determined empirically. Then, the potential parameters for the interaction Fe-Si are 

determined by [17]  

( )Fe Si Fe Fe Si Si 0Fe Si 0Fe Fe 0Si Si

1
, .

2
D D D r r r− − − − − −= = +  (12) 

We find mFe-Si and nFe-Si by fitting the theoretical result with the experimental data for the 

Young modulus of interstitial alloy FeSi at room temperature. the potential parameters for 

the interactions Fe-Cr and Fe-Ni are determined analogically. The Mie-Lennard-Jones 

potential parameters for the interactions Fe-Fe, Cr-Cr, Ni-Ni, and Si-Si are given in Table 1. 

Here, we ignore the interactions Cr-Si, Ni-Si, and Cr-Ni.  

Table 1. Mie-Lennard-Jones potential’s parameters  

for interactions Fe-Fe, Cr-Cr, Ni-Ni and Si-Si  

Interaction D/kB(K) r0 (10-10 m) m n 

Fe-Fe [16] 4649.60 2.4775 7 11.5 

Cr-Cr [16] 4792 2.4950 6 15.5 

Ni-Ni [16] 4327.20 2.4780 8 9 

Si-Si [16] 32701.70 2.2950 6 12 

Our calculated results are summarised in tables from Table 2 to Table 16 and are 

illustrated in figures from Figure 1 to Figure 11. The comparison results are presented in 

Tables 4 and 5, and Tables 8-10.   

Consider the case of FeCrNiSi when the concentrations 
Cr Ni Si 0.c c c= = =  Our calculated 

results for Fe in Tables 2 and 3 are similar to the results of Hoc and Hien (2018) [14]. The 

calculated results for the nearest neighbor distance, the elastic moduli, and the elastic 

constants for Fe at T = 300 K and P = 0 in [14] are in good agreement with experiments 

[18-20] and other calculations [20]. 

 Table 2. Temperature dependence of elastic moduli for Fe at P = 0 from SMM 

T(K) 100 300 500 700 1000 

E(1010Pa) 22.48 20.83 18.79 16.37 12.25 

K(1010Pa) 15.61 14.47 13.05 11.37 6.50 

G(1010Pa) 8.92 8.27 7.46 6.50 4.86 
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Table 3. Pressure dependence of nearest neighbor distance, relative change  

of volume, elastic moduli and elastic constants for Fe at T = 300 K from SMM 

P(GPa) 10 30 50 70 

1r (10-10m) 2.3797 2.3486 2.3247 2.3052 

/V V  9.7 7.8 6.6 5.8 

E(1010Pa) 3.19 4.11 4.98 5.82 

K(1010Pa) 2.21 2.86 3.46 4.04 

C11(1011Pa) 3,90 5.03 6.09 7.12 

C12(1011Pa) 1.37 1.77 2.14 2.50 

C44(1011Pa) 1.26 1.63 1.98 2.31 

      Consider the case of FeCrNiSi when the concentrations 
Ni Si 0.c c= =  Our calculated 

results for FeCr in Table 4 are similar to the results of Hoc and Hien (2018) [14]. 

Table 4. Dependences of elastic moduli and elastic constants on concentration  

of substitutional atoms Cr for FeCr at T = 300 K and P = 0 

Cr (%)c  3 6 9 12 15 

E(1010Pa) 20.91 20.99 21.08 21.17 21.25 

K(1010Pa) 16.69 16.85 17.02 17.19 17.37 

C11(1010Pa) 27.50 27.68 27.89 28.09 28.30 

C12(1010Pa) 11.29 11.44 11.59 11.74 11.90 

C44(1010Pa) 8.09 8.12 8.15 8.17 8.20 

      Consider the case of FeCrNiSi when the concentrations 
Ni Cr 0.c c= =  Our calculated 

results for FeSi at cSi = 1% and T = 300 K in Table 5 are similar to the results of Hoc and 

Hien (2018) [14]. The calculated results for the lattice constant, the volume of unit cell 

and the bulk modulus for FeSi at cSi = 1%, P = 0 and T = 300 K are in good agreement 

with experiments [5, 25], ab initio calculations [8, 22] and DFT calculations [22-25].  

Table 5. Dependence of elastic moduli and elastic constants on pressure 

for FeSi at cSi = 1% and T = 300 K 

P(GPa) 10 30 50 70 

E(1010Pa) 33.93 54.01 72.53 90.22 

K(1010Pa) 26.69 42.48 57.04 70.96 

C11(1010Pa) 44.26 70.43 94.58 117.65 

C12(1010Pa) 17.91 28.50 38.28 47.61 

C44(1010Pa) 13.17 20.96 28.15 35.02 
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      Consider the case of FeCrNiSi when the concentration 
Ni 0.c =  Our calculated results 

for FeCrSi in figures from Figure 1 to Figure 4 are similar to the results of Hoc and Hien 

(2018) [14]. 
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Figure 1. E(P), G(P), K(P),C11(P), C12(P), C44(P) for FeCrSi 

at cCr = 4%, cSi = 1%,T = 300 K 
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Figure 2. E(T), G(T), K(T), C11(T), C12(T), C44(T) for FeCrSi  

at cCr = 4%, cSi = 1%, P = 30 GPa 
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Figure 3. E(cCr), G(cCr), K(cCr), C11 (cCr), C12 (cCr), C44 (cCr) for FeCrSi 

at cSi = 1%, P = 70 GPa, T = 300 K 

For FeCrSi at the same pressure, the concentration of substitutional atoms Cr and the 

concentration of interstitial atoms Si when temperature increases, the mean nearest 

neighbor distance increases, the elastic moduli and the elastic constants decrease.  For 

FeCrSi at the same temperature, the concentration of substitutional atoms Cr and the 

concentration of interstitial atoms Si when pressure increases, the mean nearest neighbor 

distance decreases, the elastic moduli, and the elastic constants increase.  For FeCrSi at 

the same temperature, pressure, the concentration of substitutional atoms Cr when the 

concentration of interstitial atoms Si increases, the mean nearest neighbor distance 

increases, the elastic moduli, and the elastic   constants     increase. For   FeCrSi   at   the   

same temperature, pressure, the concentration of interstitial atoms Si when the 

concentration of substitutional atoms Cr increases, the mean nearest neighbor distance 

decreases, the elastic moduli and the elastic constants decrease [14].        
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Figure 4. E(T), G(T), K(T), C11(T), C12(T), C44(T) for FeCrSi  

at cCr = 4%, cSi = 1%, P = 70 GPa 
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Consider the case of FeCrNiSi when the concentrations Cr Si 0.c c= =  Our 

calculated results for FeNi are summarized in Table 6. 

 

Table 6. Dependences of elastic moduli and elastic constants on concentration  

of substitutional atoms Ni for FeNi at T = 300 K and P = 0 

Ni (%)c  3 6 9 12 15 

E(1010Pa) 20.71 20.61 20.51 20.42 20.14 

K(1010Pa) 16.46 16.41 16.35 16.30 16.24 

C11(1010Pa) 27.16 27.05 26.95 26.84 26.73 

C12(1010Pa) 11.11 11.08 11.05 11.03 11.00 

C44(1010Pa) 8.03 7.99 7.95 7.91 7.86 

Consider the case of FeCrNiSi when the concentration 
Cr 0.c =  Our calculated results 

for FeNiSi are summarized in tables from Table 7 to Table 9 and illustrated in figures 

from Figure 5 to Figure 7. 

 

Table 7. Dependence of elastic moduli and elastic constants on pressure 

for FeNiSi at cNi = 4%, cSi = 1% and T = 300 K 

P(GPa) 10 30 50 70 

E(1010Pa) 33.79 53.80 72.26 89.89 

K(1010Pa) 26.68 42.48 57.05 70.97 

C11(1010Pa) 44.15 70.31 94.42 117.46 

C12(1010Pa) 17.94 28.56 38.36 47.72 

C44(1010Pa) 13.11 20.87 28.03 34.87 

 

Table 8. Dependence of elastic moduli and elastic constants on concentration  

of interstitial atoms Si for FeNiSi at cNi = 4%, P = 30 GPa and  T = 300 K 

cSi (%) 1 3 5 

E(1010Pa) 53.80 72.22 90.64 

K(1010Pa) 42.48 56.01 69.07 

C11(1010Pa) 70.31 93.48 116.23 

C12(1010Pa) 28.56 37.28 45.49 

C44(1010Pa) 20.87 28.10 35.37 

 

Consider the case of FeCrNiSi. Our calculated results for this alloy with four 

components are summarized in Table 10 to Table 11 and illustrated in Figures 8 and 9. 



Study on elastic property of stainless steel under pressure    

93 
 

Table 9. Dependence of elastic moduli and elastic constants on temperature  

for FeNiSi at cNi = 4%, cSi = 1% and P = 70 GPa 

T(K) 50 100 300 500 

E(1010Pa) 91.53 91.20 89.89 88.41 

K(1010Pa) 72.26 72.01 70.97 69.81 

C11(1010Pa) 119.61 119.18 117.46 115.54 

C12(1010Pa) 48.59 48.42 47.7 46.94 

C44(1010Pa) 35.51 35.38 34.87 34.30 

        

   Table 10. Dependence of elastic moduli and elastic constants on pressure 

for FeCrNiSi at cCr = cNi = 2%, cSi = 1% and T = 300 K 

P(GPa) 10 30 50 70 

E(1010Pa) 33.88 53.81 72.18 89.74 

K(1010Pa) 26.80 42.56 51.10 70.99 

C11(1010Pa) 44.32 70.38 101.60 117.39 

C12(1010Pa) 18.04 28.65 38.37 47.79 

C44(1010Pa) 13.14 20.87 27.99 34.03 

 

Table 11. Dependence of elastic moduli and elastic constants on temperature 

for FeCrNiSi at cNi = 10%, cSi = 1% and T = 300 K 

T(K) 100 300 500 

E(1010Pa) 97.76 96.26 94.78 

K(1010Pa) 77.28 76.22 75.05 

C11(1010Pa) 127.70 126.00 124.10 

C12(1010Pa) 52.05 51.34 50.54 

C44(1010Pa) 37.84 37.33 36.75 

        

The dependences of the elastic moduli and the elastic constants on temperature, 

pressure, the concentration of substitutional atoms, and concentration of interstitial atoms 

for alloys FeNiSi and FeCrNiSi are similar to that for alloy FeCrSi.  

Figure 10 is the pressure dependence of the Young modulus for alloys FeNi4%, 

FeSi4%, FeCr4%Si1%, FeNi4%Si1%, FeCr2%Ni2%Si1% at T = 300 K. Figure 11 is the 

temperature dependence of the Young modulus for alloys FeNi4%, FeSi4%, FeCr4%Si1%, 

FeNi4%Si1%, FeCr2%Ni2%Si1% at P = 30 GPa. 
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Figure 5. E(P), G(P), K(P), C11(P), C12(P), C44(P) for FeNiSi  

at cNi = 4%, cSi = 1%, T = 300 K 
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Figure 6. E(cSi), G(cSi), K(cSi), C11(cSi), C12(cSi), C44(cSi)  for FeNiSi  

at cNi = 4%, T = 300 K, P = 30 GPa 
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Figure 7. E(T), G(T), K(T), C11(T), C12(T), C44(T) for FeNiSi  

at cNi = 4%, cSi = 1%, P = 70 GPa 
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Figure 8. E(P), G(P), K(P), C11(P), C12(P), C44(P) for FeCrNiSi  

at cCr = 2%, cNi = 2%, cSi = 1%, T = 300 K 
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Figure 9. E(T), G(T), K(T), C11(T), C12(T), C44(T) for FeCrNiSi  

at cCr = 2%, cNi = 2%, cSi = 1%, P = 70 GPa 
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Figure 10. E(P) for FeNi4%, FeSi4%, FeCr4%Si1%,  

FeNi4%Si1%, FeCr2%Ni2%Si1% at T = 300 K 
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Figure 11. E(T) for FeNi4%,FeSi4%, FeCr4%Si1%,  

FeNi4%Si1%, FeCr2%Ni2%Si1% at P = 30 GPa 

3.   Conclusions 

The paper presents the theory of elastic deformation for BCC substitutional and 

interstitial alloy with four components at zero pressure and under pressure. The obtained 

elastic quantities depend on temperature, pressure, the concentration of substitutional 

atoms, and concentration of interstitial atoms. The elastic deformation theories of BCC 

metal, BCC binary interstitial alloy, BCC binary substitutional alloy, and BCC ternary 

interstitial and substitutional alloy are limit cases of the elastic deformation theory of 

BCC substitutional and interstitial alloy with four components. Our numerical 

calculations are carried out for alloys FeCr, FeNi, FeSi, FeCrSi, FeNiSi, FeCrNiSi, and 

metal Fe in the range of pressure from zero to 70 GPa, in the range of temperature from 

zero to 1000 K, in the range of concentration of substitutional atoms from zero to 15% 

and in the range of concentration of interstitial atoms from zero to 5%.  Our calculated 

results for Fe and FeSi are compared with other calculations and experiments. Many of 

our new calculations predict and orient experimental results in the future. 
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