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Abstract. In this paper, we present results on the asymptotic behaviorof the
solutions to distributed order differential equations in Euclidean spaces. The paper
develops some recent results in [1] on fractional differential equations to the case
of more general nonlocal derivatives. We utilize the detailed behavior of the
relaxation functions instead of the Mittag-Leffler functions. The typical decaying
rate is logarithmic due to the ultra-slow phenomenon.
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1. Introduction

Consider a distributed order equation of the following form
{
D

(µ)
t u = f(t, u(t)), t > 0

u(0) = u0 ∈ R
d.

(1.1)

where the functionu = (u1, u2, . . . , ud) : R+ → Rd, D
(µ)
t is the distributed order

differential operator with weightµ(t) which acts componentwise onu

D
(µ)
t ui(t) =

∫ t

0

k(t− τ)u′

i(τ)dτ, 1 ≤ i ≤ d, wherek(s) =
∫ 1

0

s−α

Γ(1− α)
µ(α)dα, s > 0;

the nonlinearityf : R+ × R
d → R

d is global Lipschitz continuous andf(t, 0) = 0.
The study of nonlocal in time differential equations has been of great attraction in

the last decades due to its intense connection with nonlocaltransport phenomena, control
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Remarks on decaying solutions to distributed order differential equations

of stochastic jump processes, description of anomalous diffusion in physics, and memory
effects in parabolic equations, see [2] and the references therein. In particular, distributed
fractional derivatives appear in various applications describing certain technical or
physical processes: in the theory of viscoelasticity [3], in the kinetic theory [4], from
a mathematical point of view, the investigation on existence, uniqueness and qualitative
behavior of solutions is also of interest, let us mention theworks of Pskhu [5],
Kochubei [6], Umarov and Gorenflo [7].

In a special casek(t) = g1−α(t) := t−α/Γ(1− α), α ∈ (0, 1), the term d
dt
[k ∗ (u−

u0)] represents the Caputo fractional derivative of orderα, the corresponding equation

Dα
Cu(t) = f(t, u(t)), t > 0, u(0+) = u0, (1.2)

has been studied extensively. We refer to [1, 8] for fractional differential equations on
finite dimensional case and [2] for results on existence, uniqueness, certain asymptotic
behavior of the solutions to nonlocal differential equations on Hilbert spaces. Moreover,
in [1], the author showed that the nontrivial solutions to a fractional differential equation
cannot converge to the fixed points faster thant−α, whereα is the order of the Caputo
derivative.

In this paper, we aim at generalizing such an asympotic behavior to the
case of distributed order differential equations. We assume through this work the
following conditions:

(W) The weightµ(t) ∈ C3[0, 1] and eitherµ(1) 6= 0 or µ(t) ∼ atν as t → 0+ for
constantsa > 0 andν > 0. By convention, we will write (W) asµ(t) ∼ atν as
t → 0+ for constantsa > 0 andν ≥ 0.

(F1) The nonlinearity satisfies thatf : R+ × R
d → R

d is continuous andf(t, 0) = 0.

(F2) f is global Lipschitz continuous with respect to the second variable, that is, there
exists a constantL > 0 such that

‖f(t, u)− f(t, v)‖ ≤ L‖u− v‖, for all t ≥ 0, u, v ∈ R
d. (1.3)

Our main results are Theorem 3.1 and Theorem 3.2 about the existence and nonexistence
of decaying solutions.

The rest of the present work is organized as follows: in Section 2, we summarize
important asymptotic behavior of the kernelsk, κ and relaxation functionuλ(t); and
existence theorem of mild solutions to Equation (1.1); in Section 3, we state and prove
our main results (Theorem 3.1 and Theorem 3.2) and some auxiliary lemmas.

2. Preliminaries

2.1. Important asymptotic behavior

In this part, we summarize important facts about the asymptotic behavior of the
kernel and the relaxation function, which will be used to investigate the behavior of the
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solutions to Problem (1.1).
Consider the eigenvalue problem

{
D

(µ)
t uλ(t) = λuλ(t), t > 0,

uλ(0) = 1,
(2.1)

whereλ ∈ R.

Proposition 2.1. [6, Proposition 2.1] Ifµ ∈ C3[0, 1], µ(1) 6= 0, then ass → 0

k(s) ∼ s−1(log s)−2µ(1), (2.2)

k′(s) ∼ s−2(log s)−2µ(1).

It follows from (2.2) thatk ∈ L1(0, T ), butk(t) /∈ Lp(0, T ) for anyp > 1.
Applying the Laplace transform to (2.1), denote byK(p) = L(k(t))(p) we have the

Laplace transform ofuλ(t):

ũλ(t) =
K(p)

pK(p)− λ
.

Therefore,

uλ(t) =
d

dt

(
1

2πi

∫

ℜp=γ

ept

p

K(p)

pK(p)− λ
dp

)
. (2.3)

Using these expressions, we recall the asymptotic behaviors ofK(p) anduλ(t).

Proposition 2.2. [6, Proposition 2.2]

1. If µ ∈ C3[0, 1] then ifp ∈ C \ R− and |p| → ∞, it holds

K(p) =
µ(1)

log p
−

µ′(1)

(log p)2
+O(

1

(log |p|)3
).

2. If µ(t) satisfies(W) then ifp ∈ C \ R− andp → 0, it holds

K(p) ∼ aΓ(1 + ν)p−1

(
log

1

p

)−1−ν

.

These asymptotic expansions and a version of the Karamata-Feller Tauberian
theorem allow us to get the asymptotic behaviors of the function k anduλ(t).

Theorem 2.1. [6, Theorem 2.3]

1. The functionuλ(t) is continuous at the origint = 0 and belongs toC∞(0,∞).

2. If λ < 0, thenuλ(t) is completely monotone.
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3. Letλ < 0. If µ(t) satisfies(W), then

uλ(t) ∼ C(log t)−1−ν , ast → ∞. (2.4)

Consider the linear problem
{
D

(µ)
t u(t) = g(t), t > 0,

u(0) = 0,
(2.5)

Applying again the Laplace transform, we arrive at the formula of the Laplace transform
of the solution

L(u)(p) =
1

pK(p)
L(g)(p).

From Proposition 2.2, the asymptotic behavior of
1

pK(p)
guarantees that it is the Laplace

transform of a function. This function is determined by the following expression:

κ(t) =
d

dt

(
1

2πi

∫

ℜp=γ

ept

p

1

pK(p)
dp

)
, γ > 0. (2.6)

By definition, it is obvious thatk ∗ κ = 1. We recall the asymptotic behavior ofκ(t).

Proposition 2.3. [6, Proposition 3.1] Letµ(t) satisfy the condition(W) . Then

1. κ(t) ∈ C∞(0,∞) andκ is completely monotone.

2. Ast → 0+

κ(t) ≤ C log
1

t
, and|κ′(t)| ≤ Ct−1 log

1

t
. (2.7)

By (2.7),κ ∈ L1,loc(0,∞). We can rewrite Problem (2.1) in the integral form

uλ(t) = 1 + λ

∫ t

0

κ(t− τ)uλ(τ)dτ. (2.8)

2.2. Gronwall type inequality

We first recall the definitions of relaxation functionss(t, µ), r(t, µ) for general pair
of kernel(k, ℓ) such thatk ∗ l(t) = 1 for t > 0 andk is a nonnegative, nondecreasing
function onR+. For a givenµ ∈ R, denote bys(t, µ), r(t, µ) the unique solution of the
following Volterra integral equations, respectively:

s(t, µ) + µ

∫ t

0

l(t− τ)s(τ, µ)dτ = 1, t > 0

r(t, µ) + µ

∫ t

0

l(t− τ)r(τ, µ)dτ = l(t), t > 0.

Note that in our special case of the distributed order,l(t) = κ(t) ands(t, λ) = u−λ(t).
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Proposition 2.4. [2, Lemma 2.2] Letv be a nonnegative function satisfying

v(t) ≤ s(t, µ)v0 +

∫ t

0

r(t− τ, µ)[αv(τ) + β(τ)]dτ, t ≥ 0,

for µ > 0, v0 ≥ 0, α > 0 andβ ∈ L1
loc(R

+). Then

v(t) ≤ s(t, µ− α)v0 +

∫ t

0

r(t− τ, µ− α)β(τ)dτ.

Particularly, if β is constant then

v(t) ≤ s(t, µ− α)v0 +
β

µ− α
(1− s(t, µ− α)).

2.3. Existence result

Definition 2.1. A functionu ∈ C([0, T ];Rd) is said to be a mild solution to(1.1)on [0, T ]
if and only if it satisfies the Volterra integral equation

u(t) = u0 +

∫ t

0

κ(t− τ)f(τ, u(τ))dτ.

Let us define an operatorΦ: C([0, T ];Rd) → C([0, T ];Rd) as follows:

Φ(u)(t) = u0 +

∫ t

0

κ(t− τ)f(τ, u(τ))dτ.

It is obvious that a mild solution to (1.1) if and only ifu is a fixed point ofΦ. We obtain
a global existence theorem by fixed point argument.

Theorem 2.2. Assume thatf satisfies (F1) and (F2). Then Problem(1.1) has a unique
solutionU(·, u0) ∈ C([0, T ];Rd).

Proof. Becausef : R+ ×Rd → Rd is continuous,Φ is well-defined onC([0, T ];Rd). Fix
a positiveω > 0 such that

L

∫ T

0

κ(t)e−ωtdt < 1/2. (2.9)

We furnish the spaceC([0, T ];Rd) with the following equivalent norm:

‖u‖ω = sup
t∈[0,T ]

‖u(t)‖e−ωt, u ∈ C([0, T ];Rd). (2.10)

Using the global Lipschitz continuity off , we can estimate

e−ωt‖Φ(u)(t)− Φ(v)(t)‖ = e−ωt

∥∥∥∥
∫ t

0

κ(t− τ)
[
f(τ, u)− f(τ, v)

]
dτ

∥∥∥∥

≤ L sup
s∈[0,t]

‖u(s)− v(s)‖e−ωs

∫ t

0

‖κ(t− τ)‖e−ω(t−τ)dτ

≤ L‖u− v‖ω

∫ T

0

κ(s)e−ωsds.
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Therefore, thanks to (2.9),‖Φ(u)−Φ(v)‖ω ≤ 1
2
‖u−v‖ω. SoΦ is a contraction mapping,

it has a unique solutionU(t, u0) ∈ C([0, T ];Rd).

Remark 2.1. By this result, Problem(1.1) has a unique solution in each[0, T ]. In
particular, if all the assumptions hold inR+ then the solution is defined globally inR+.
In the next section, we investigate the asymptotic behaviorof this global solutions.

3. Asymptotic behavior of the solutions

In this part, let us consider first a special form of the nonlinearity

f(t, u) = −bu+ h(t, u), (3.1)

whereb is positive constant and the functionh : R+ × Rd → Rd is Lipschitz continuous
with respect to the second variable with the Lipschitz constantLh < b andh(t, 0) = 0.

Theorem 3.1. The zero solution of Problem(1.1) is globally asymptotically stable with
the logarithmic decaying rate. More precisely, for an arbitrary u0 ∈ R

d, there exists a
constantC > 0 such that

‖U(t, u0)‖ ≤ C(log t)−1−ν . (3.2)

Furthermore, this decaying rate is optimal.

Proof. By Definition 2.1 of mild solution and fundamental properties of eigenfunction,
the global solutionU(t, u0) fulfills the following integral identity:

U(t, u0) = u−b(t)u0 +

∫ t

0

rb(t− s)h(s, U(s, u0))ds, (3.3)

whererb(t) is given by

rb(t) = −
1

b

du−b(t)

dt
. (3.4)

Moreover,rb(t) ≥ 0 due to Theorem 2.1. Hence, we get

‖U(t, u0)‖ ≤ u−b(t)‖u0‖+ Lh

∫ t

0

rb(t− s)‖U(s, u0)‖ds. (3.5)

Setw(t) = ‖U(t, u0)‖ ≥ 0 thenw satisies the integral inequality

w(t) ≤ u−b(t) + Lh

∫ t

0

rb(t− s)w(s)ds, t > 0.

Applying Gronwall type inequality (Lemma 2.4), we finally gain

w(t) ≤ u−b+Lh
(t)‖u0‖, for all t > 0.
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Using the asymptotic expansion ofu−b+Lh
(t) with −b + Lh < 0, we conclude that there

existsC > 0 such that

‖U(t, u0)‖ ≤ C(log t)−1−ν , for all t > 0. (3.6)

In the casef(t, u) = −bu + b̃u with b > b̃ > 0 thenU(t, u0) = u
−b+b̃(t)u0. Since

u
−b+b̃(t) ∼ C(log t)−1−ν ast → +∞, the decaying rateC(log t)−1−ν is optimal.

Lemma 3.1. For a givenρ > 0, lim
t→+∞

∫ t

t−ρ

κ(s)ds = 0.

Proof. We have
∫ t

t−ρ

κ(s)ds = 1∗κ(t)−1∗κ(t−ρ). By [6, Theorem 4.3 (i)], we obtain

1 ∗ κ(t) =
m(t)

2n(2π)n
∼ C(log t)ν+1 ast → +∞. (3.7)

Therefore, we conclude that ast → +∞
∫ t

t−ρ

κ(s)ds = C
[
(log t)1+ν − (log(t− ρ)1+ν

]

≤ C(ν + 1)(log t)ν [log t− log(t− ρ)]

= C(ν + 1)(log t)ν
[
− log

(
1−

ρ

t

)]

∼ C(ν + 1)(log t)ν
ρ

t
.

Consequently,

lim
t→+∞

∫ t

t−ρ

κ(s)ds ≤ lim
t→+∞

C(1 + ν)(log t)ν
ρ

t
= 0.

Lemma 3.2. Every nontrivial solution of(1.1)does not converge to the equilibrium with
exponential rate.

Proof. Assume that the nontrivial solutionU(t, u0) converges to the origin with an
exponential rate, namely, there exist positive constantsλ0 andT1 such that

‖U(t, u0)‖ < e−λ0t, for all t ≥ T1. (3.8)

Let K be a constant such thatK‖u0‖ > 1. Moreover, according to (2.4), there
exists a positive constantT2 such that

e−λ0t <
u−L(t)

K
, for all t ≥ T2. (3.9)
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SetT0 = max{T1, T2}. By Definition 2.1 of a mild solution, we have

u0 = U(t, u0)−

∫ t

0

κ(t− τ)f(τ, U(τ, u0))dτ.

Combining with the Lipschitz continuity off : ‖f(τ, U(τ, u0))−f(t, 0)‖ ≤ L‖U(τ, u0)‖,
and (3.8), (3.9), we obtain

‖u0‖ ≤ ‖U(t, u0)‖+ L

∫ t

0

κ(t− τ)‖U(τ, u0)‖dτ

≤ ‖U(t, u0)‖+ L

(∫ T0

0

κ(t− τ)‖U(τ, u0)‖dτ +

∫ t

T0

κ(t− τ)‖U(τ, u0)‖dτ

)

≤ ‖U(t, u0)‖+ L sup
[0,T0]

‖U(τ, u0)‖

∫ T0

0

κ(t− τ)dτ +
L

K

∫ t

0

κ(t− τ)u−L(t)dτ.

(3.10)

Moreover, by (2.8) ∫ t

0

κ(t− τ)u−L(t)dτ =
1− u−L(t)

L
.

Therefore, passing to the limit ast → ∞ in (3.10), thanks to Lemma 3.1, we conclude that

1

K
< ‖u0‖ ≤ lim

t→∞
e−λ0t + L sup

[0,T0]

‖U(τ, u0)‖ lim sup
t→∞

∫ t

t−T0

κ(s)ds+

+ lim sup
t→∞

1− u−L(t)

K
≤

1

K
,

which is a contradiction. Hence, there does not exist any nontrivial solution which
converges to the origin with an exponential rate. This completes the proof.

We now can verify a stronger result on the decaying rate of solutions to (1.1).

Theorem 3.2.LetU(·, u0) denote an arbitrary solution of Equation(1.1)with the initial
conditionU(0, u0) = u0 6= 0 andβ > 1 + ν be an arbitrary positive number. Then

lim sup
t→+∞

(log t)β‖U(t, u0)‖ = +∞. (3.11)

Proof. Assume the contrary that there exists aβ > 1 + ν such that

lim sup
t→+∞

(log t)β‖U(t, u0)‖ = M < +∞. (3.12)

Therefore, there existsT3 > 0 such that for allt ≥ T3, it holds

‖U(t, u0)‖ <
M + 1

(log t)β
. (3.13)
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Again, according to (2.4) and conditionβ > 1 + ν, there exists a positive constantT4

such that
M + 1

(log t)β
<

u−L(t)

K
, for all t ≥ T4. (3.14)

The estimates (3.13) and (3.14) play the same roles as (3.8) and (3.9), respectively.
We proceed as in the proof of Lemma 3.2 and obtain that for allT̂0 = max{T3, T4}

1

K
< ‖u0‖ ≤ lim

t→∞

M + 1

(log t)β
+ L sup

[0,T̂0]

‖U(τ, u0)‖ lim sup
t→∞

∫ t

t−T̂0

κ(s)ds+

+ lim sup
t→∞

1− u−L(t)

K
≤

1

K
,

which is a contradiction.
Hence,lim sup

t→+∞

(log t)β‖U(t, u0)‖ = +∞.

4. Conclusions

In this paper, we establish the decaying rate of the solutions to the equilibrium
u ≡ 0 for distributed order equations inRd. Constrast to the fractional differential case,
where the typical decaying rate is power, the new logarithmic decaying rate is proved
to be optimal for distributed derivative. These results canbe extended to more general
equations with completely positive kernels or equations with more complicated structures,
for instance, equations involving delays or impulses.
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