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Abstract. In this paper, we present results on the asymptotic behafidhe
solutions to distributed order differential equations urckdean spaces. The paper
develops some recent results in [1] on fractional diffeéedr@quations to the case
of more general nonlocal derivatives. We utilize the dethibehavior of the
relaxation functions instead of the Mittag-Leffler functso The typical decaying
rate is logarithmic due to the ultra-slow phenomenon.
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1. Introduction

Consider a distributed order equation of the following form

{DE“’u = f(t,u(t)),t >0 (1.1)

U(O) =Ug € R¢.

where the functionu = (ug, uo,...,uq): Ry — RY, Dﬁ“) is the distributed order
differential operator with weight(¢) which acts componentwise an

t 1 —
]Dg“)ui(t) = / k(t —7)u;(T)dr, 1 < i < d, wherek(s) = / Siu(oz)doz, s> 0;
0 o I'(1—a)
the nonlinearityf : R x R? — R? is global Lipschitz continuous anf{t, 0) = 0.

The study of nonlocal in time differential equations hasrbekgreat attraction in
the last decades due to its intense connection with nonlcraport phenomena, control
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Remarks on decaying solutions to distributed order difféad equations

of stochastic jump processes, description of anomalofissivih in physics, and memory
effects in parabolic equations, see [2] and the referedmsin. In particular, distributed
fractional derivatives appear in various applicationscdbsg certain technical or
physical processes: in the theory of viscoelasticity [8]the kinetic theory [4], from
a mathematical point of view, the investigation on exiseenmiqueness and qualitative
behavior of solutions is also of interest, let us mention Warks of Pskhu [5],
Kochubei [6], Umarov and Gorenflo [7].

In a special cas&(t) = g1_a(t) :=t/T'(1 — @), a € (0,1), the term4% [k  (u —
ug)] represents the Caputo fractional derivative of ordethe corresponding equation

Deu(t) = f(t,u(t)),t > 0,u(0+) = up, (1.2)

has been studied extensively. We refer to [1, 8] for fra@latifferential equations on
finite dimensional case and [2] for results on existencequemess, certain asymptotic
behavior of the solutions to nonlocal differential equas@n Hilbert spaces. Moreover,
in [1], the author showed that the nontrivial solutions toactional differential equation
cannot converge to the fixed points faster that, wherea is the order of the Caputo
derivative.

In this paper, we aim at generalizing such an asympotic hehao the
case of distributed order differential equations. We assuahtough this work the
following conditions:

(W) The weightu(t) € C?[0,1] and eitheru(1) # 0 or u(t) ~ at” ast — 0% for
constants: > 0 andv > 0. By convention, we will write (W) agi(t) ~ at” as
t — 0T for constants > 0 andv > 0.

(F1) The nonlinearity satisfies that R, x R? — R? is continuous ang (¢, 0) = 0.

(F2) f is global Lipschitz continuous with respect to the seconibiée, that is, there
exists a constant > 0 such that

| f(t,u) — f(t,v)|| < L||u—wv|, forallt > 0,u,v € R (1.3)

Our main results are Theorem 3.1 and Theorem 3.2 about thepge and nonexistence
of decaying solutions.

The rest of the present work is organized as follows: in $ac®, we summarize
important asymptotic behavior of the kernéis > and relaxation functiom,(¢); and
existence theorem of mild solutions to Equation (1.1); ietle® 3, we state and prove
our main results (Theorem 3.1 and Theorem 3.2) and somaayx{gmmas.

2. Preliminaries
2.1. Important asymptotic behavior

In this part, we summarize important facts about the asytigpb@havior of the
kernel and the relaxation function, which will be used toestigate the behavior of the
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solutions to Problem (1.1).
Consider the eigenvalue problem

(w) s
{]D) o ()1 ux(t),t > 0, 2.1)

where) € R.
Proposition 2.1. [6, Proposition 2.1] Ifu € C3[0, 1], (1) # 0, then ass — 0

k(s) ~ s '(logs)2u(1), (2.2)
K (s) ~ s *(logs) ?u(1).

It follows from (2.2) thatk € L,(0,T), butk(t) ¢ L,(0,T) foranyp > 1.

Applying the Laplace transform to (2.1), denote/dp) = L(k(t))(p) we have the
Laplace transform o (¢):

.~ Kp)
BT OES)
Therefore, )
_d (1 ePt P
0= g (5m L 5o L) 23

Using these expressions, we recall the asymptotic betswfdt (p) andu,(t).
Proposition 2.2. [6, Proposition 2.2]
1. If p € C?[0,1] thenifp € C\ R_ and|p| — oo, it holds

p(l)  p(1) 1
logp  (logp)? " O((log p|)?

K(p) = ).

2. If u(t) satisfiegW) then ifp € C\ R_ andp — 0, it holds
1 —1-v
K(p) ~al'(1 4+ v)p ! <log ];) :

These asymptotic expansions and a version of the Karanedea-Hauberian
theorem allow us to get the asymptotic behaviors of the fandt andu, (¢).

Theorem 2.1.[6, Theorem 2.3]
1. The functioru,(¢) is continuous at the origin = 0 and belongs t@'>(0, co).
2. If XA < 0, thenu,(t) is completely monotone.
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3. LetA < 0. If u(t) satisfieqW), then
uy(t) ~ C(logt) 7", ast — co. (2.4)

Consider the linear problem

]D)(N) —
u(0) =0,
Applying again the Laplace transform, we arrive at the fdaraf the Laplace transform

of the solution .

pK(p)

From Proposition 2.2, the asymptotic behaviop%ll— guarantees that it is the Laplace
PAAP

L(u)(p) = L(g)(p)-

transform of a function. This function is determined by tbldwing expression:

d (1 et 1

By definition, it is obvious thak * »» = 1. We recall the asymptotic behavior gft).
Proposition 2.3. [6, Proposition 3.1] Letu(¢) satisfy the conditioiW) . Then

1. x(t) € C*°(0, 00) and s is completely monotone.

2. Ast — 0" . )
»x(t) < C'log o and|s/(t)] < Ct 'log T (2.7)

By (2.7),5¢ € Ly 0c(0, 00). We can rewrite Problem (2.1) in the integral form
t
un(t) = 14 A / st — TYux(r)dr 2.8)
0

2.2. Gronwall type inequality

We first recall the definitions of relaxation functiosig, 1), (¢, 1) for general pair
of kernel(k, ¢) such thatk = ((t) = 1 for ¢ > 0 andk is a nonnegative, nondecreasing
function onR,. For a givernu € R, denote bys(¢, 11), (¢, 1) the unique solution of the
following Volterra integral equations, respectively:

t
s(t, p) + ,u/ It —7)s(m,p)dr =1,t >0
0

t
r(t, p) + u/ It —7)r(r,pw)dr =1(t),t > 0.
0
Note that in our special case of the distributed ortiej,= »(t) ands(t, \) = u_,(1).
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Proposition 2.4. [2, Lemma 2.2] Let be a nonnegative function satisfying
v(t) < s(t, p)vg + /Otr(t — 7, w)|ow(r) + B(T)]dr, t >0,
for u > 0,09 > 0,a > 0andg € L} (R"). Then
v(t) < s(t, p— a)vg + /t r(t—7,p— a)p(T)dr.
Particularly, if 5 is constant then :
v(t) < s(t, p— a)vy + M%(l —s(t,p— a)).

2.3. Existence result

Definition 2.1. A functionu € C([0, T]; R¢) is said to be a mild solution t(1.1)on [0, 7]
if and only if it satisfies the Volterra integral equation

t
u(t) = uo + / x(t —7)f(r,u(r))dr.
0
Let us define an operatdr: C([0, 7]; RY) — C([0, T]; R?Y) as follows:

t
O(u)(t) = up + / w(t — 1) f(r,u(r))dr.
0
It is obvious that a mild solution to (1.1) if and onlyuifis a fixed point of®. We obtain
a global existence theorem by fixed point argument.
Theorem 2.2. Assume thaf satisfies (F1) and (F2). Then Problefh.1) has a unique
solutionU (-, uy) € C([0, T); RY).

Proof. Becausef: R, x R? — R?is continuous® is well-defined orC([0, T]; R?). Fix
a positivew > 0 such that

T
L / s(t)e “hdt < 1/2. (2.9)
0
We furnish the spac€/([0, T]; R?) with the following equivalent norm:
lullo = sup [lu(®)]]e™, u € C([0, T];RY). (2.10)
t€[0,T]

Using the global Lipschitz continuity of, we can estimate

e[ @(u)(t) — (v)(t)]| = e /0 st —7)[f(r,u) = f(7,0)]dr

t
< L sup fuls) — v(s)e* [ [pett = e s
0

s€[0,t]

T
< Ll|ju— va/ »(s)e “*ds.
0
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Therefore, thanks to (2.9)®(u) — ®(v)||., < 3|lu —v]|,. So® is a contraction mapping,
it has a unique solutiofl (¢, ug) € C([0, T]; R?). O

Remark 2.1. By this result, Problen(1.1) has a unique solution in eacld, 7. In
particular, if all the assumptions hold iR, then the solution is defined globally T, .
In the next section, we investigate the asymptotic beha¥itiris global solutions.

3. Asymptotic behavior of the solutions

In this part, let us consider first a special form of the nogdrity
f(t,u) = —bu+ h(t,u), (3.1)

whereb is positive constant and the functiéan R, x R? — R¢ is Lipschitz continuous
with respect to the second variable with the Lipschitz camst,, < b andh(t,0) = 0.

Theorem 3.1. The zero solution of Probleifi.1)is globally asymptotically stable with
the logarithmic decaying rate. More precisely, for an araiy v, € R?, there exists a
constant”' > 0 such that

1U(t, uo) | < Cllog ). (32)

Furthermore, this decaying rate is optimal.

Proof. By Definition 2.1 of mild solution and fundamental propestiaf eigenfunction,
the global solutiort/ (¢, ug) fulfills the following integral identity:

t
U(t, uo) = u_s(t)uo + / ry(t — 5)h(s, U(s, uo))ds, (3.3)
0
wherer,(t) is given by
1 du,b(t)
=—= : 4
() b dt (3.4)
Moreover,r,(t) > 0 due to Theorem 2.1. Hence, we get
t
1U(#; uo)|| < up(t) [uoll +Lh/ ry(t = 8)[|U(s, uo)||ds. (3.5)
0

Setw(t) = ||U(t,up)|| > 0 thenw satisies the integral inequality
t

w(t) <u_p(t) + Lh/ ry(t — s)w(s)ds,t > 0.
0

Applying Gronwall type inequality (Lemma 2.4), we finallyiga

w(t) < u_pyr, (O)]luol, forall ¢t > 0.
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Using the asymptotic expansionf,, , (t) with —b + L, < 0, we conclude that there
existsC' > 0 such that

(U (t,uo)|| < C(logt)~*7", forall t > 0. (3.6)
In the casef(t,u) = —bu + buwith b > b > 0 thenU(t,up) = u_,,;(t)uo. Since
u_y.5(t) ~ C(logt)~'" ast — +oo, the decaying rat€'(log t)~'~ is optimal.
U
t
Lemma 3.1. For a givenp > 0, 11+m #(s)ds = 0.
oo J, p

t
Proof. We have/ x(s)ds = 1% x(t) — 1% 3(t — p). By [6, Theorem 4.3 (i)], we obtain
t—p

m(t)

Lxoelt) = 2n(2m)"

~ C(logt)"*! ast — +oo. (3.7)

Therefore, we conclude that s+ +oco

/t  #(s)ds =C [(log t)** — (log(t — p)**"]
< C(v+1)(logt)"[logt — log(t — p)]
=C(v+1)(logt)” [ log <1 - g)]

~ C(v+1)(logt)” %
Consequently,
t vP
Jim | sds)ds < lim O(1+)(ogt)" G = 0.

O

Lemma 3.2. Every nontrivial solution of1.1) does not converge to the equilibrium with
exponential rate.

Proof. Assume that the nontrivial solutiof/(t,u,) converges to the origin with an
exponential rate, namely, there exist positive constanend7; such that

U (t,up)|| < e, forall t > Tj. (3.8)

Let K be a constant such thaf||uy|| > 1. Moreover, according to (2.4), there
exists a positive constaifit such that

e Mt < %(t), forall t > T5. (3.9)
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SetT, = max{Ty, T»}. By Definition 2.1 of a mild solution, we have

ug = U(t,ug) — /0 w(t — 1) f(m,U(T,up))dr.

Combining with the Lipschitz continuity of: || f (7, U(7,ug)) — f(¢,0)|| < L||U (T, uo)||,
and (3.8), (3.9), we obtain

t
luoll < UG, wo) + L / selt = 1)U, o) |dr
0

t

<ot +2( [ "t -l +

At = DU, w0l )
To
To L t
< |U(t, uo)|| + L sup [|[U(7,up)]| / »(t — 1)dT + —/ 7(t — T)u_p(t)dr.
[OvTO} 0 K 0
(3.10)

Moreover, by (2.8)
t —
/ #x(t —Tu_p(t)dr = ﬂ
0 L

Therefore, passing to the limit as+ oo in (3.10), thanks to Lemma 3.1, we conclude that
1 t
— < Jjug|| < lim e " 4+ L sup ||U(7, up)|| lim sup/ #(s)ds+
K t=o0 [0,T0] t=oo  Jt-Tp

1 —wu_s(t 1
+timaup =t <

which is a contradiction. Hence, there does not exist anytrivied solution which
converges to the origin with an exponential rate. This catgs the proof. O

We now can verify a stronger result on the decaying rate aftsols to (1.1).

Theorem 3.2.LetU(-, ug) denote an arbitrary solution of Equatida.1)with the initial
conditionU (0, ug) = ug # 0 and 8 > 1 + v be an arbitrary positive number. Then

lim sup(log t)? ||U (¢, uo)|| = +o0. (3.11)

t——+o00

Proof. Assume the contrary that there exist8 & 1 + v such that

lim sup(log )?||U (¢, uo)|| = M < +oo0. (3.12)

t——+o0
Therefore, there existg; > 0 such that for alt > T3, it holds

M+1

HU(t7u0>H < (10gt)ﬁ‘

(3.13)
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Again, according to (2.4) and conditigh > 1 + v, there exists a positive constdrit

such that
M+1 U,L(t)

(logt)B SR
The estimates (3.13) and (3.14) play the same roles as (BBX39), respectively.
We proceed as in the proof of Lemma 3.2 and obtain that fafpat max{73, 74}

, forallt > Ty. (3.14)

1 M+1 !
— < |lup]] < lim % + L sup ||U(7, up)]| lim sup/ #(s)ds+
t—o0 (]_Og t) [07,1/—70] t—00 tff()

K
. 1-— U,L(t) 1
+ limsup —= < —,
K K
which is a contradiction.
Hence lim sup(logt)?||U (¢, uo)|| = +oo. O

t—4o00

4. Conclusions

In this paper, we establish the decaying rate of the solsttonthe equilibrium
v = 0 for distributed order equations iR?. Constrast to the fractional differential case,
where the typical decaying rate is power, the new logarithd@caying rate is proved
to be optimal for distributed derivative. These results barextended to more general
equations with completely positive kernels or equatiorth wiore complicated structures,
for instance, equations involving delays or impulses.
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