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Abstract. We study the existence and uniqueness of weak solutions and the
existence of global attractors to a class of semilinear parabolic equations involving
the Grushin operator and nonlinearities of arbitrary order. The main novelty of our
result is that no restriction on the upper growth of the nonlinearities is imposed.
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1. Introduction

In recent years, a number of papers has been devoted to the study of existence
and asymptotic behavior of solutions to degenerate parabolic equations. In this paper
we consider the following semilinear parabolic equation involving an operator of
Grushin type















∂u

∂t
−Gsu+ f(u) = g(x), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω is a bounded domain inRN (N ≥ 2) with smooth boundary∂Ω, the
nonlinearity f and the external forceg satisfy some conditions specified later. The
Grushin operatorGs was first introduced in [1], is defined by

Gsu = ∆x1
u+ |x1|

2s∆x2
u, (x1, x2) ∈ Ω ⊂ R

N1 × R
N2 , s ≥ 0.

Noting thatG0 = ∆ andGs, whens > 0, is not elliptic in domainsRN1×R
N2 intersecting

with the hyperplane{x1 = 0}. The local properties ofGs were investigated in [1, 2].
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To study problem (1.1) we have usually used the natural energy spaceS1
0(Ω) defined

as the completion ofC1
0(Ω) in the following norm

‖u‖2S1

0
(Ω) :=

∫

Ω

(|∇x1
u|2 + |x1|

2s|∇x2
u|2)dx.

We have the continuous embeddingS1
0(Ω) →֒ Lr(Ω), for 1 ≤ r ≤ 2∗s =

2N(s)

N(s)− 2
, where

N(s) = N1 + (s+ 1)N2. Moreover, this embedding is compact if1 ≤ r < 2∗s (see [3]).
In [4], the authors considered problem (1.1) withf : R → R being locally Lipschitz

continuous and satisfying a Sobolev growth condition

|f(u)− f(v)| ≤ C0|u− v|(1 + |u|γ + |v|γ) , 0 ≤ γ <
4− 2α

N − 2 + α
,

and some dissipativity conditions. Under the above assumptions off , the authors proved
that problem (1.1) defines a semigroupS(t) : S1

0(Ω) → S1
0(Ω), which possesses a

compact global attractor in the spaceS1
0(Ω).

When the nonlinearityf is supposed to satisfy a growth and dissipativity condition
of polynomial type, that is,

C1|u|
p − C0 ≤ f(u)u ≤ C2|u|

p + C0, for somep ≥ 2,

f ′(u) ≥ −C3, for all u ∈ R,

the existence of a global attractor inL2(Ω) in the autonomous case [5] and the existence
of an uniform attractor inL2(Ω), Lp(Ω) andS1

0(Ω) in the non-autonomous case [6].
Note that for both above classes of nonlinearities, some restriction on the growth

of the nonlinearity is imposed and an exponential nonlinearity, for examplef(u) = eu,
does not hold. In this paper we try to remove this restrictionand we were able to prove the
existence of a weak solution and of a global attractor for a very large class of nonlinearities
that particularly covers both the above classes and even exponential nonlinearities. This
is the main novelty of our paper.

In this paper we assume that the initial datumu0 ∈ L2(Ω) is given, the
nonlinearityf and the external forceg satisfy the following conditions:

(F) f : R → R is a continuously differentiable function satisfying

f ′(u) ≥ −ℓ, (1.2)

f(u)u ≥ −µu2 − C1, (1.3)

whereC1 andℓ are two positive constants,0 < µ < λ1 with λ1 > 0 is the first
eigenvalue of the operatorAu = −Gsu in Ω, andF (u) =

∫ u

0
f(s)ds is a primitive

of f ;
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(G) g ∈ L2(Ω).

It follows from (1.2) that0 ≤
∫ u

0
(f ′(s)s+ℓs)ds, and so by integrating by parts, we obtain

F (u) = f(u)u+
ℓu2

2
−

∫ u

0

(sf ′(s) + ℓs)ds ≤ f(u)u+
ℓu2

2
for all u ∈ R.

Thus,

F (u) ≤ f(u)u+
ℓu2

2
for all u ∈ R.

Using (1.2) we have

F (u) =

∫ u

0

((f(s)− f(0)) + f(0))ds =

∫ u

0

(f ′(c)s+ f(0))ds ≥ −
ℓu2

2
+ f(0)u.

Therefore,

F (u) ≥ −
ℓu2

2
+ f(0)u, ∀u ∈ R. (1.4)

It is noticed that the class of nonlinearities satisfying(F) is very large in the sense that
no upper bound on the growth of nonlinearity is imposed, besides the standard dissipative
condition (1.3) and the well-known condition (1.2) ensuring the uniqueness of solutions.
In particular, this class contains all nonlinearities of Sobolev type and polynomial type,
and even exponential nonlinearities.

The paper is organized as follows: In Section 2, we prove the existence and
uniqueness of weak solutions by utilizing the compactness method and weak convergence
techniques in Orlicz spaces [7]. In Section 3, we prove the existence of global attractors
for the semigroup generated by the problem in various spaces. The main novelty of
the paper is that the nonlinearity can grow arbitrarily fast, and in particular, the results
obtained here extend previous ones in [8, 9, 10, 11].

2. Existence and uniqueness of a weak solution

Definition 2.1. A functionu is called a weak solution of problem(1.1) on (0, T ) if u ∈
C([0, T ];L2(Ω)) ∩ L2(0, T ;S1

0(Ω)), f(u) ∈ L1(QT ), u(0) = u0, and
∫

Ω

∂u

∂t
wdx+

∫

Ω

(∇x1
u∇x1

w + |x1|
2s∇x2

u∇x2
w)dx+

∫

Ω

f(u)wdx =

∫

Ω

gwdx (2.1)

for all test functionsw ∈ W := S1
0(Ω) ∩ L∞(Ω) and for a.e.t ∈ (0, T ).

Theorem 2.1.Assume(F)–(G) hold. Then for anyu0 ∈ L2(Ω) andT > 0 given, problem
(1.1)has a unique weak solutionu on the interval(0, T ). Moreover, the weak solutionu
depends continuously on the initial data inL2(Ω).
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Proof. i) Existence. We will prove the existence of a weak solution by using the
compactness method. To overcome the essential difficulty due to no restriction on the
upper bound of the nonlinearity is imposed, so the nonlinearterm f(u) only belongs
to L1(Ω), we will exploit the weak convergence techniques in Orlicz spaces introduced
in [7].

Let {ej}∞j=1 be a basis ofS1
0(Ω) consisting of eigenvectors of the operatorAu =

−Gsu in Ω with the homogeneous Dirichlet boundary condition, that isorthonormal in
L2(Ω). We look for an approximate solutionun(t) of the form

un(t) =
n

∑

j=1

unj(t)ej

that solves the following problem






〈

∂un

∂t
, ej

〉

+ 〈Aun, ej〉+ 〈 f(un), ej〉 = (g, ej),

(un(0), ej) = (u0, ej), j = 1, . . . , n.

This is a system of first-order ordinary differential equations for the functions
un1, un2, . . . , unn

{

u′
nj + λjunj + 〈f(un), ej〉 = (g, ej), j = 1, . . . , n

unj(0) = (u0, ej).

By the theory of ODEs, we obtain the existence of approximatesolutionsun(t).
We now establish somea priori estimates forun. Multiplying the first equation in

(1.1) byunj(t), then summing from1 to n, we obtain

1

2

d

dt
‖un‖

2
L2(Ω) + ‖un‖

2
S1

0
(Ω) +

∫

Ω

f(un)undx =

∫

Ω

gundx. (2.2)

Hence using (1.3) and the Cauchy inequality, we have

1

2

d

dt
‖un(t)‖

2
L2(Ω) + ‖un(t)‖

2
S1

0
(Ω) − µ‖un(t)‖

2
L2(Ω) − C1|Ω|

≤
1

2(λ1 − µ)
‖g‖2L2(Ω) +

λ1 − µ

2
‖un(t)‖

2
L2(Ω).

Therefore,

d

dt
‖un(t)‖

2
L2(Ω) + 2‖un(t)‖

2
S1

0
(Ω) − 2µ‖un(t)‖

2
L2(Ω) − (λ1 − µ)‖un(t)‖

2
L2(Ω)

≤
1

λ1 − µ
‖g‖2L2(Ω) + 2C1|Ω|.

(2.3)
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Since‖u‖2
S1

0
(Ω)

≥ λ1‖u‖
2
L2(Ω), whereλ1 > 0 is the first eigenvalue of the operatorAu =

−Gsu, we get

d

dt
‖un(t)‖

2 + (λ1 − µ)‖un(t)‖
2
L2(Ω) ≤

1

λ1 − µ
‖g‖2L2(Ω) + 2C1|Ω|.

By the Gronwall inequality, we obtain

‖un(t)‖
2
L2(Ω) ≤ C = C(‖u0‖L2(Ω), ‖g‖L2(Ω), λ1, µ, |Ω|, C1, T ), for all t ∈ [0, T ]. (2.4)

Integrating (2.3) from0 to t, 0 ≤ t ≤ T , and using (2.4), we arrive at

‖un(t)‖
2 +

∫ t

0

‖un(s)‖
2
S1

0
(Ω)ds ≤ C, for all t ∈ [0, T ].

This inequality yields

{un} is bounded inL∞(0, T ;L2(Ω)),

{un} is bounded inL2(0, T ;S1
0(Ω)).

Using the boundedness of{un} in L2(0, T ;S1
0(Ω)), it is easy to check that{Aun} is

bounded inL2(0, T ;S−1(Ω), whereS−1(Ω) is the dual space ofS1
0(Ω). From the above

results, we can assume that

un ⇀ u in L2(0, T ;S1
0(Ω)),

un ⇀∗ u in L∞(0, T ;L2(Ω)),

Aun ⇀ Au in L2(0, T ;S−1(Ω)).

On the other hand, integrating (2.2) from0 to T , using the Cauchy inquality and
‖u‖2

S1

0
(Ω)

≥ λ1‖u‖
2
L2(Ω), we have

∫ T

0

‖un‖
2
S1

0
(Ω)dt+ 2

∫

QT

f(un)undxdt ≤ ‖u0‖
2
L2(Ω) +

1

λ1
‖g‖2L2(Ω)T.

Hence
∫

QT

f(un)undxdt ≤ C.

We now prove that{f(un)} is bounded inL1(QT ). Puttingh(s) = f(s) − f(0) + κs,
whereκ > ℓ. Note thath(s)s = (f(s)− f(0))s+ κs2 = f ′(c)s2 + κs2 ≥ (κ− ℓ)s2 ≥ 0
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for all s ∈ R, we have
∫

QT

|h(un)|dxdt ≤

∫

QT∩{|un|>1}

|h(un)un|dxdt+

∫

QT∩{|un|≤1}

|h(un)|dxdt

≤

∫

QT

h(un)undxdt+ sup
|s|≤1

|h(s)||QT |

≤

∫

QT

f(un)undxdt+ κ‖un(t)‖
2
L2(QT ) + |f(0)|‖un(t)‖L1(QT )

+ sup
|s|≤1

|h(s)||QT |

≤ C.

Hence it implies that{h(un)}, and therefore{f(un)} is bounded inL1(QT ). Since

dun

dt
= −Aun − f(un) + g,

we deduce that{
dun

dt
} is bounded inL2(0, T ;S−1(Ω)) + L1(QT ), and therefore in

L1(0, T ;S−1(Ω) + L1(Ω)). BecauseS1
0(Ω) ⊂⊂ L2(Ω) ⊂ S−1(Ω) + L1(Ω)), by the

Aubin-Lions-Simon compactness lemma (see e.g. [12, Theorem II.5.16, p. 102]), we have
that{un} is compact inL2(0, T ;L2(Ω)). Hence we may assume, up to a subsequence,
thatun → u a.e. inQT . Applying Lemma 6.1 in [13], we obtain thath(u) ∈ L1(QT ) and
for all test functionξ ∈ C∞

0 ([0, T ];S1
0(Ω) ∩ L∞(Ω)),

∫

QT

h(un)ξdxdt →

∫

QT

h(u)ξdxdt.

Hencef(u) ∈ L1(QT ) and
∫

QT

f(un)ξdxdt →

∫

QT

f(u)ξdxdt, for all ξ ∈ C∞
0 ([0, T ];S1

0(Ω) ∩ L∞(Ω)).

Thus,u satisfies equality (2.1).
It remains to be shown thatu(0) = u0. To do this, we choose test functionsϕ ∈

C1([0, T ];S1
0(Ω)∩L∞(Ω)) with ϕ(T ) = 0. Integrating by parts in thet variable, we have

∫ T

0

−(u, ϕ′)dt+

∫ T

0

((u, ϕ))S1

0
(Ω)dt+

∫

QT

(f(u)− g)ϕdxdt = (u(0), ϕ(0)).

Doing the same in the Galerkin approximations yields
∫ T

0

−(un, ϕ
′)dt+

∫ T

0

((un, ϕ))S1

0
(Ω)dt+

∫

QT

(f(un)− g)ϕdxdt

= (un(0), ϕ(0)).
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Taking limits asn → ∞ we arrive at

∫ T

0

−(u, ϕ′)dt+

∫ T

0

((u, ϕ))S1

0
(Ω)dt+

∫

QT

(f(u)− g)ϕdxdt = (u0, ϕ(0))

sinceun(0) → u0. Thus,u(0) = u0 and this implies thatu is a weak solution to
problem (1.1).

ii) Uniqueness and continuous dependence on the initial data. Let u andv be two
weak solutions of (1.1) with initial datau0, v0 ∈ L2(Ω). Puttingw = u− v, we have







dw

dt
+ Aw + f̃(u)− f̃(v)− ℓw = 0

w(0) = u0 − v0,
(2.5)

wheref̃(s) = f(s) + ℓs. Here becausew(t) does not belong toW := S1
0(Ω) ∩ L∞(Ω),

we cannot choosew(t) as a test function as in [8]. Consequently, the proof will be more
involved.

We use some ideas in [7]. LetBk : R → R be the truncated function

Bk(s) =











k if s > k

s if |s| ≤ k

−k if s < −k.

Consider the corresponding Nemytskii mappingB̂k : W → W defined as follows:

B̂k(w)(x) = Bk(w(x)), for all x ∈ Ω.

By Lemma 2.3 in [7], we have that‖B̂k(w)−w‖W → 0 ask → ∞. Now multiplying the
first equation in (2.5) bŷBk(w), then integrating overΩ× (ε, t), wheret ∈ (0, T ), we get

∫ t

ε

∫

Ω

d

ds
(w(s)B̂k(w(s))dxds−

∫ t

ε

∫

Ω

w
d

ds
B̂k(w(s))dxds

+

∫ t

ε

∫

{x:|w(x,s)|≤k}

(|∇x1
w|2 + |x1|

2s|∇x2
w|2)dxds

+

∫ t

ε

∫

Ω

(

f̃(u)− f̃(v)
)

B̂k(w)dxds− ℓ

∫ t

ε

∫

Ω

wB̂k(w)dx

= 0.
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Noting thatw
d

dt
B̂k(w(s)) =

1

2

d

dt
(B̂k(w(s))

2) we have

∫

Ω

w(t)B̂k(w)(t)dx−
1

2
‖B̂k(w)(t)‖

2
L2(Ω)

+

∫ t

ε

∫

{x:|w(x,s)|≤k}

(|∇x1
w|2 + |x1|

2s|∇x2
w|2)dxds

+

∫ t

ε

∫

Ω

(f ′(ξ))wB̂k(w)dxds

=

∫

Ω

w(ε)B̂k(w)(ε)dx−
1

2
‖B̂k(w)(ε)‖

2
L2(Ω) + ℓ

∫ t

ε

∫

Ω

wB̂k(w)dx.

So, we have

∫

Ω

w(t)B̂k(w)(t)dx−
1

2
‖B̂k(w)(t)‖

2
L2(Ω) − ℓ

∫ t

ε

∫

Ω

wB̂k(w)dx

≤

∫

Ω

w(ε)B̂k(w)(ε)dx−
1

2
‖B̂k(w)(ε)‖

2
L2(Ω) + ℓ

∫ t

ε

∫

Ω

wB̂k(w)dx.

Note thatf̃ ′(s) ≥ 0 andsBk(s) ≥ 0 for all s ∈ R, by lettingε → 0 andk → ∞ in the
above inequality, we obtain

‖w(t)‖2L2(Ω) ≤ ‖w(0)‖2L2(Ω) + 4ℓ

∫ t

0

‖w(t)‖2L2(Ω).

Hence by the Gronwall inequality of integral form, we get

‖w(t)‖2L2(Ω) ≤ ‖w(0)‖2L2(Ω)(1 + 4ℓte4ℓt), for all t ∈ [0, T ].

This implies the desired result.

3. Existence of global attractors inL2(Ω)

By Theorem 2.1, we can define a continuous (nonlinear) semigroup S(t) :
L2(Ω) → L2(Ω) associated to problem (1.1) as follows:

S(t)u0 := u(t),

whereu(·) is the unique weak solution of (1.1) with the initial datumu0. We will prove
that the semigroupS(t) has a global attractorA in the spaceS1

0(Ω).
For the sake of brevity, in the following lemmas we give some formal calculations,

the rigorous proof is done by use of Galerkin approximationsand Lemma 11.2 in [14].
We first prove the existence of a bounded absorbing set inL2(Ω).
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Lemma 3.1. The semigroup{S(t)}t≥0 has a bounded absorbing set inL2(Ω), i.e.,
there exists a positive constantρ1 such that for any bounded subsetB in L2(Ω), the
corresponding solutionu(.) of (1.1)with initial datumu0 ∈ B satisfies

‖u(t)‖2L2(Ω) ≤ ρ1, for all t ≥ T1 = T1(B). (3.1)

Proof. Multiplying the first equation in (1.1) byu, we have

1

2

d

dt
‖u(t)‖2L2(Ω) + ‖u(t)‖2S1

0
(Ω) +

∫

Ω

f(u)udx =

∫

Ω

gudx. (3.2)

Using (1.3), the inequality‖u‖2
S1

0
(Ω)

≥ λ1‖u‖
2
L2(Ω) and the Cauchy inequality, we arrive at

d

dt
‖u(t)‖2L2(Ω) + (λ1 − µ)‖u(t)‖2L2(Ω) ≤ 2C1|Ω|+

1

λ1 − µ
‖g‖2L2(Ω).

Hence, thanks to the Gronwall inequality, we obtain

‖u(t)‖2L2(Ω) ≤ ‖u0‖
2e−(λ1−µ)t +R1,

whereR1 = R1(λ1, µ, |Ω|, ‖g‖L2(Ω)). This completes the proof if we choose, for instance,
ρ1 = 2R1.

We now prove the existence of a bounded absorbing set inS1
0(Ω).

Lemma 3.2. The semigroup{S(t)}t≥0 has a bounded absorbing set inS1
0(Ω), i.e.,

there exists a positive constantρ2 such that for any bounded subsetB in L2(Ω), the
corresponding solutionu(.) of (1.1)with initial datumu0 ∈ B satisfies

‖u(t)‖2S1

0
(Ω) ≤ ρ2, for all t ≥ T2 = T2(B).

Proof. Multiplying the first equation in (1.1) byut, we obtain

d

dt

(

1

2
‖u‖2S1

0
(Ω) +

∫

Ω

F (u)dx−

∫

Ω

gudx

)

= −‖ut‖
2
L2(Ω) ≤ 0. (3.3)

On the other hand, integrating (3.2) fromt to t+ 1 we get

∫ t+1

t

[

1

2

d

ds
‖u(s)‖2L2(Ω) + ‖u(s)‖2S1

0
(Ω) +

∫

Ω

f(u)udx

]

ds =

∫ t+1

t

∫

Ω

gudxds.

45



Ho Thi Hang, Bui Thi Hue and Le Thi Thuy

Using (3.1) we have
∫ t+1

t

[

1

2
‖u(s)‖2S1

0
(Ω) +

∫

Ω

F (u)dx−

∫

Ω

gudx

]

ds

=

∫ t+1

t

[

−
1

2
‖u(s)‖2S1

0
(Ω) −

1

2

d

ds
‖u(s)‖2L2(Ω) +

∫

Ω

(F (u)− f(u)u)dx

]

ds

≤ −
1

2
‖u(t+ 1)‖2L2(Ω) +

1

2
‖u(t)‖2L2(Ω) +

∫ t+1

t

ℓ

2
‖u(s)‖2L2(Ω)ds

≤

∫ t+1

t

ℓ

2
‖u(t)‖2L2(Ω)dt+

1

2
‖u(t)‖2L2(Ω)

≤
ρ1(ℓ+ 1)

2
, ∀t ≥ T1.

Hence
∫ t+1

t

[

1

2
‖u(s)‖2S1

0
(Ω) +

∫

Ω

F (u)dx−

∫

Ω

gudx

]

ds ≤
ρ1(ℓ+ 1)

2
, ∀t ≥ T1. (3.4)

By the uniform Gronwall inequality, from (3.3) and (3.4) we deduce that

1

2
‖u(t)‖2S1

0
(Ω) +

∫

Ω

F (u)dx−

∫

Ω

gudx ≤ R2, for all t ≥ T2 = T1 + 1. (3.5)

Using (1.4) and the Cauchy inequality, we have

R2 ≥
1

2
‖u(t)‖2S1

0
(Ω) +

∫

Ω

F (u)dx−

∫

Ω

gudx

≥
1

2
‖u(t)‖2S1

0
(Ω) −

ℓ

2
‖u(t))‖2L2(Ω) + f(0)

∫

Ω

udx−

∫

Ω

gudx

≥
1

2
‖u(t)‖2S1

0
(Ω) −

ℓ

2
‖u(t))‖2L2(Ω) −

( |f(0)|

2
‖u(t)‖2L2(Ω) +

|f(0)|

2
|Ω|

)

−
ℓ

2
‖u(t))‖2L2(Ω) −

1

2ℓ
‖g‖2L2(Ω).

Using (3.1) we obtain

‖u(t)‖2S1

0
(Ω) ≤ ρ2 = ρ2(λ1, ℓ, |Ω|, ‖g‖L2(Ω), |f(0)|), for all t ≥ T2.

This completes the proof.

Finally, we have the following result about the existence ofglobal attractors in
L2(Ω).

Theorem 3.1.The semigroupS(t) genenated by problem(1.1)has a compact connected
global attractorAL2 in L2(Ω).
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Proof. From [14], we need to show the existence of an absorbing set inL2(Ω) and
prove thatS(t) is asymptotically compact inL2(Ω). Indeed, the former is obtained from
Lemma 3.1. SinceS1

0(Ω) →֒ L2(Ω) is compact and using Lemma 3.2, we obtain thatS(t)
is asymptotically compact inL2(Ω). Note thatL2(Ω) is connected, we immediately get
the following theorem.

REFERENCES

[1] V. V. Grushin, 1971. A certain class of elliptic pseudo differential operators that are
degenerated on a submanifold.Mat. Sb., Vol. 84 (126), 163 - 195, English transl.
in: Math. USSR Sbornik, 13, pp. 155-183.

[2] M. S. Baouendi, C. Goulaouic, 1972. Nonanalytic-hypoellipticity for some
degenerate elliptic operators.Bull. Amer. Math. Soc., 78, pp. 483-486.

[3] N. T. C. Thuy and N. M. Tri, 2002. Existence and nonexistence results for boundary
value problems for semilinear elliptic degenerate operator. Russian Journal of
Mathematical Physics, 9(3), pp. 366-371.

[4] C. T. Anh, P. Q. Hung. T. D. Ke and T. T. Phong, 2008. Global attractor for a
semilinear parabolic equation involving Grushin operator. Elec. J. Diff. Equa., 32,
pp. 1-11.

[5] C. T. Anh and T. D. Ke, 2009. Existence and continuity of global attractor for a
semilinear degenerate parabolic equation.Elec. J. Diff. Equa., 61, pp. 1-13.

[6] C.T. Anh and N.V. Quang, 2011. Uniform attractors for a non-autonomous parabolic
equations involving Grushin operator.Acta Mathematica Vietnamica, 19 Volume 36,
Number 1, pp. 19-33.

[7] P.G. Geredeli and A. Khanmamedov, 2013. Long-time dynamics of the parabolic
p-Laplacian equation.Commun. Pure Appl. Anal., 12, pp. 735-754.

[8] C.T. Anh, N.D. Binh and L.T. Thuy, 2010. On the global attractors for a class of
semilinear degenerate parabolic equations.Ann. Pol. Math., 98, pp. 71-89.

[9] C.T. Anh and P.Q. Hung, 2008. Global existence and long-time behavior of solutions
to a class of degenerate parabolic equations.Ann. Pol. Math., 93, pp. 217-230.

[10] N.I. Karachalios and N.B. Zographopoulos, 2005. Convergence towards attractors
for a degenerate Ginzburg-Landau equation.Z. Angew. Math. Phys., 56, pp. 11-30.

[11] N.I. Karachalios and N.B. Zographopoulos, 2006. On thedynamics of a degenerate
parabolic equation: Global bifurcation of stationary states and convergence.Calc.
Var. Partial Differential Equations, 25, pp. 361-393.

[12] F. Boyer and P. Fabrie, 2013.Mathematical Tools for the Study of the Incompressible
Navier-Stokes Equations and Related Models. Applied Mathematical Sciences, 183,
Springer, New York.

[13] P.G. Geredeli, 2015. On the existence of regular globalattractor forp-Laplacian
evolution equation.Appl. Math. Optim., 71, pp. 517-532.

[14] J.C. Robinson, 2001.Infinite-Dimensional Dynamical Systems, Cambridge
University Press, Cambridge.

47


