
49

HNUE JOURNAL OF SCIENCE DOI: 10.18173/2354-1059.2020-0047

Natural Sciences 2020, Volume 65, Issue 10, pp. 49-60

This paper is available online at http://stdb.hnue.edu.vn

A FEATURE REPRESENTATION METHOD BASED ON HETEROGENEOUS

INFORMATION NETWORK FOR ANDROID MALWARE DETECTION

Thai Thi Thanh Van, Nguyen Van Phac, Truong Quoc Quan and Le Van Hung

Faculty of Information Technology, Academy of Cryptography Techniques

Abstract. The rapid growth in number, sophistication, and diversity of Android

malware poses a great difficulty in extracting and analyzing features and behaviors.

The traditional approach, which using only API calls and permissions to extract

features, has no longer yielded meaningful results. In this research, we propose a

method that utilizes both information about API function calls and the relationships

between API functions. First, we represent the relationship between API functions

using a heterogeneous information network (HIN). Then, we use the concept of

meta-path to extract information features from HIN. Finally, a machine learning

algorithm is used to build classification models. Experimental results on a practical

dataset of Android applications show that the proposed method gives more reliable

results than the existing ones.

Keywords: malware, android, heterogeneous, classification, machine learning.

1. Introduction

Nowadays, the Android operating system has become a popular platform for many

smart devices because of its open-source nature and easy-to-use interface. Statistics

showed that Android is still the dominating operating system of the global mobile

phone market (87.7% - according to IDC 2018). This trend is still to remain until 2021.

However, because of this popularity, Android devices have become attractive targets

for malware. Hackers exploit Android application features to evade the security and

privacy of the device, posing an imminent threat of personal data leaks. These leaks

range from user location, contact information, accounts, photos, and furthermore.

The severity of damage to smart devices makes it essential to solve the Android

malware detection problem [1, 2].

In the past, researchers mainly relied on traditional pattern recognition techniques

to solve the malware detection problem. However, machine learning techniques and

artificial intelligence have undergone a rapid transformation. Thus, methods

regarding the development of systems that automatically detect malware using data mining

and machine learning algorithms are gaining the interest of researchers in the field of

Received October 5, 2020. Revised October 22, 2020. Accepted October 29, 2020.

Contact Thai Thi Thanh Van, e-mail address: thanhvan0110@gmail.com

Thai Thi Thanh Van, Nguyen Van Phac, Truong Quoc Quan and Le Van Hung

50

information security. However, one of the biggest problems is how these methods

techniques analyze, represent, and extract features. There are two approaches to solve this

problem, either by using behavioral analysis techniques or signature analysis techniques [3].

Many behavioral analysis techniques rely on analyzing API calls, permissions,

system calls, or other specific markers to extract features of Android applications (apps

in short) and to put into training sets for training machine learning models. Specifically,

Wu et al. used 13 basic features from apps as data to implement the Support Vector

Machines (SVMs) algorithm to build prediction models [4]. While other groups

extracted permissions and API calls to train and test their malware prediction models [5-7].

Otherwise, Bai et al. [8] focused on specific API calls and expressed them with CAG

graphs. CAG graphs are then closely inspected against control flow graphs (CFG) to

identify malicious behaviors and detect them in suspicious executable files.

In general, the efficiency of these approaches ranges from 85 to 90 percent. With a

system using machine learning algorithms, these results are not good enough. That is

because the data from practical systems, especially, data about malware are diverse and

contain underlying meanings. So, if we only use API calls and permissions to extract

features for classification and prediction models, the efficiency of detecting malware

will be low. Therefore, in these past few years, researchers spent much attention to find

more effective ways to extract features for malware detection. One of the most

commonly used models today is the Heterogeneous Information Network (HIN).

HINs are comprised of many different types of objects and edges may contain

different meanings [9]. Therefore, mining HINs will help us to look for more insights

into network structures. HIN has been used in many different fields, including text data

mining, biological data mining, and recently in mining information security data [10]. For

example, Yanfang et al. [13] used HINs to represent Android malware data. Their

networks consist of five types of vertices (application, API, IMEI, manufacturer,

signatures) and five types of edges (Apps - APIs, Apps - IMEIs, IMEIs - Manufacturers,

Apps - Manufacturer, Apps - Signature). Combined with deep learning neural networks,

their system for malicious code detection has achieved an accuracy of 96%.

In this paper, we use behavioral analysis based on API call analysis to predict

malware for Android. Similar to the previous studies, we decompile Android

applications, then propose a method to extract and represent API calls from the output

of the decompilation process. Unlike previous studies, we analyze not only the API calls

but also the relationships between API calls, such as the ones that are in the same block

or the same package. We hope the relationship between API calls will provide

additional information that is useful for malware detection. There will be more than one

type of relations between API calls and more than one type of object. Therefore, HINs

are perfect to describe the relationship between API calls and the overall applications.

From HINs, we will construct meta-paths to represent the relationship between

applications through the vertices and edges. Based on these meta-paths, we will build

feature vectors to represent Android applications. The problem of malware detection

becomes a binary classification. We then use several general machine learning models

to train and test the accuracy of the proposed method.

A feature representation method based on heterogeneous information network for android…

51

2. Content

2.1. Basic concepts related to the heterogeneous information network

In this section, we will go through some of the basics about HINs, meta-paths, and

similarity measures on HINs.

Definition 1. Information network: An information network is defined as a directed

graph 𝐺 = (𝑉, 𝐸) with an object type mapping function, 𝜑: 𝑉 → 𝐴, and a link type

mapping function 𝜓:𝐸 → 𝑅. Each object v∈ V belongs to one particular object type in

the object type set 𝐴:𝜑(𝑣) ∈ 𝐴 and each link 𝑒 ∈ 𝐸 belongs to a particular relation

type in the relation type set R: 𝜓(𝑒) ∈ 𝑅. An information network is heterogeneous

when the number of elements in set 𝐴 > 1 and in set 𝑅 > 1 [14].

Definition 2. Network schema: A network schema is presented as a 𝑇𝐺 = (𝐴, 𝑅) is a

directed graph with each vertex is a type of entity in A and each edge is a type of

relation in R [15]

Each type of relation R between object S and T is written as S
R
→ T, in which S is

called a source and T is called a target. They can be notated as RoS or RoT, respectively.

The inverse relation R−1 is defined as T
R−1

→ S.

Definition 3. Meta-path: A meta-path P is a path between nodes in a network schema

graph 𝑇𝐺 = (𝐴, 𝑅), and is notated like a chain: 𝐴1
𝑅1
→𝐴2

𝑅2
→…

𝑅𝑙
→𝐴𝑙+1, defining relation

𝑅 = 𝑅1°𝑅2°… °𝑅𝑙 between a set of objects 𝐴1, 𝐴2, … , 𝐴𝑙+1. (°) is defined as an operator

that signifies this particular relation and 𝑙 is defined as the length of path P [16].

Definition 4. Similarity measure AvgSim: Let P be a meta-path 𝑃 = (𝑅1°𝑅2°… °𝑅𝑘),
the AvgSim between source element 𝑠 and target element 𝑡 is:

𝐴𝑣𝑔𝑆𝑖𝑚(𝑠, 𝑡|𝑃) =
1

2
[𝑅𝑊(𝑠, 𝑡|𝑃) + 𝑅𝑊(𝑡, 𝑠|𝑃−1)]

while:

𝑅𝑊(𝑠, 𝑡|𝑅1°𝑅2°… °𝑅𝑘) =
1

|𝑂(𝑠|𝑅1)|
∑ 𝑅𝑊(𝑂𝑖(𝑠|𝑅1, 𝑡|𝑅2°… °𝑅𝑘)

|𝑂(𝑠|𝑅1)|

𝑖=1

Here, 𝑂(𝑠|𝑅1) is an out-neighbor of 𝑠 based on relation 𝑅1 [17].

Definition 5. Let 𝐺 = (𝑉, 𝐸) be a network and 𝑇𝐺 be a network schema. 𝑀𝑝 is called a

similarity measure matrix according to meta-path 𝑃 = (𝐴1, 𝐴2, … , 𝐴𝑙+1), and

𝑀𝑃[𝑖, 𝑗] = 𝐴𝑣𝑔𝑆𝑖𝑚(𝐴𝑖 , 𝐴𝑗|𝑃), with 𝐴𝑖 being the source element, and 𝐴𝑗 being the

target element.

2.2. The proposed method

First, we decompile .apk files to obtain smali codes. From smali codes, we will

extract API calls and the relationships between API calls to build a HIN. On this

heterogeneous network, we calculate the similarity measures from meta-paths to extract

features for each Android application (app in short). Finally, we use a machine learning

Thai Thi Thanh Van, Nguyen Van Phac, Truong Quoc Quan and Le Van Hung

52

algorithm for training and testing prediction models. An overview of our proposed

method is described through the following steps (Figure 1).

Figure 1. Overview of the proposed method

Step 1. After unpacking and decompiling the collected Android applications, we

extract API calls and the relationships between them. Specifically, whether the APIs

A feature representation method based on heterogeneous information network for android…

53

belong to the same block, call to the same package, or are called by the same invoke

method or not.

Step 2. With the data acquired from Step 1, we build a HIN with two types of

vertices (Apps and API) and four types of edges (between Apps and APIs, between

APIs in the same block, between APIs in the same package, between APIs in the same

invoke). We use the AvgSim method according to meta-paths, to measure the similarity

between any two apps.

Step 3. Based on the information obtained in Step 2, we extract a feature vector for

each Android application.

Step 4. From the data about the Apps with their features, we train, test, and evaluate

with some common machine learning models, e.g Support Vector Machines, Decision

Tree, and Naïve Bayes.

2.2.1. Analyzing API calls

After an Android application is compiled, it will be packaged into a file of *.dex

archive. We use APKTool, a popular tool to decompile samples into smali code. Figure 2

shows an example of smali code after decomplication. Based on this code snippet, we

can see that when an API is called, it will be called through the invoking statement.

Figure 2. An example of smali code

We use a matrix 𝐴𝑛𝑥𝑚 to store information of the relationship between apps and

APIs. 𝑛 is the number of apps and 𝑚 is the number of API. If 𝐴𝑃𝐼𝑗 is present in an

𝐴𝑝𝑝𝑖, then 𝑎𝑖𝑗 = 1 else 𝑎𝑖𝑗 = 0. For example, a matrix that represents the relationship

between APIs and the apps:

Also according to Hou [18], in the process of analyzing the behavior of Android

applications through API calls, we also found relationships between API calls with

one another. For example, API calls in the same block either appear in the same

package or are called together by the invoke method, always express similar intentions.

Thai Thi Thanh Van, Nguyen Van Phac, Truong Quoc Quan and Le Van Hung

54

For example, the API calls in package "Lorg/apache/HttpRequest" always partake in

actions relating to the Internet. The two API calls (Lines 10 and 12 in Figure 2) that are

called by the same invoke method (invoke - virtual) behave similarly. Extracting this

information is very useful in predicting malware.

The matrix representing the relationship between APIs of the same block: To

describe the relationship, we use a two-dimensional array Bmxm. A block is a set of

commands located between the keywords "method" and "endmethod" in the smali code.

Matrix B is defined as follows:

𝑏𝑖𝑗 = {
1 𝑖𝑓𝐴𝑃𝐼𝑖 𝑎𝑛𝑑 𝐴𝑃𝐼𝑗𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒𝑏𝑙𝑜𝑐𝑘

0 𝑖𝑓 𝐴𝑃𝐼𝑖 𝑎𝑛𝑑 𝐴𝑃𝐼𝑗 𝑎𝑟𝑒 𝑖𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑏𝑙𝑜𝑐𝑘𝑠

Matrix representing the relationship of APIs in the same package: to describe that

relationship, a matrix Pmxm is used, with the following definition:

𝑝𝑖𝑗 = {
1 𝑖𝑓 𝐴𝑃𝐼𝑖 𝑎𝑛𝑑 𝐴𝑃𝐼𝑗 𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑝𝑎𝑐𝑘𝑎𝑔𝑒

0 𝑖𝑓 𝐴𝑃𝐼𝑖 𝑎𝑛𝑑 𝐴𝑃𝐼𝑗 𝑎𝑟𝑒 𝑖𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑝𝑎𝑐𝑘𝑎𝑔𝑒𝑠

Take a look at the example shown in Figure 2, both API “Ljava/lang/Runtime;

getRuntime() Ljava / lang / Runtime” and API “Ljava / lang / Runtime; exec (Ljava

/ lang String;) Ljava/lang/Process” are from the same package, thus the element

representing the relation of these two API in the matrix will be set 1.

The matrix representing the relationship between APIs with the same invoke

method: In a typical smali code, there are different methods to execute API call: invoke-

static, invoke-virtual, invoke-direct, invoke-super, invoke-interface. If two APIs are

called with the same invoke method, there may be many other implicit relationships

between them. Therefore, to represent this relationship, we use a matrix Imxn, where

each Iij element indicates whether APIi and APIj are called by the same invoke method

or not. Specifically

𝐼𝑖𝑗 = {
1 𝑖𝑓 𝐴𝑃𝐼𝑖 𝑎𝑛𝑑 𝐴𝑃𝐼𝑗 𝑎𝑟𝑒 𝑐𝑎𝑙𝑙𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑖𝑛𝑣𝑜𝑘𝑒

0 𝑖𝑓 𝐴𝑃𝐼𝑖 𝑎𝑛𝑑 𝐴𝑃𝐼𝑗 𝑎𝑟𝑒 𝑐𝑎𝑙𝑙𝑒𝑑 𝑏𝑦 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑖𝑛𝑣𝑜𝑘𝑒𝑠.

Table 1 describes the different relationships between the elements in the extracted

matrices from APIs calls.

Table 1. A summary of matrices A, B, P, and I
Matrix Element Description

A aij If Appi contains APIj, then aij = 1, else aij = 0

B bij If APIi and APIj are in the same block then bij = 1, else bij = 0

P pij If APIi and APIj are in the same package then pij = 1, else pij = 0

I iij If APIi and APIj share invoke then iij = 1, else iij = 0

2.2.2. Heterogeneous Information Network construction

From the four matrices obtained above, we construct a heterogeneous information

network. This network consists of two types of vertices and four types of edges. The

different types of edges represent different relationships between APIs. The vertices are

apps and API calls. The first type of edge describes whether an Appi contains APIj. The

second type represents the relationship between APIs of the same block, the third

A feature representation method based on heterogeneous information network for android…

55

describes the relationship between APIs of the same package, and the fourth describes

the relationship between APIs with the same invoke method.

To measure the similarity between the two Android applications, we use the

AvgSim measure. AvgSim is a measure of symmetry and has the property of generality

to evaluate the likeness of two objects of the same or different types. AvgSim value of

two nodes is the average of the probability that one node can reach the other according

to the given path and its inverse path. Because of that trait, AvgSim is a measure of

symmetry. AvgSim calculation does not consider path length and therefore does not

need to decompose any meta-path with odd length, making AvgSim simpler and more

efficient than HeteSim [19].

Figure 3. HIN network illustration

The AvgSim measure is calculated based on meta-paths, a concept covered in

Definition 3. A meta-paths from vertex a to vertex b represents the relationship between

a and b. With the HIN above, we build meta-paths from any Appi to any Appj. A typical

meta-path between two Android applications is , aka. AAT.

For example, the HIN shown in Figure 2.3 contains these specific paths: App1 API1

App2, App1 API1 App3, App2 API1 App3, etc. Another meta-path between two Android

applications that signify the similarity between two apps via API call is

, or APAT (for example, App1API1API3 App3,

App1API1API3 App3).

During the data processing step, we found that calculating the number of meta-

paths between two apps in the HIN is time-consuming because this is a conditional

graph traversal problem with a significant number of vertices. Also, some studies show

that in the HIN, long meta-paths often do not bring much information to distinguish the

relationship between the vertices in the network. So in this paper, we choose

symmetrical paths, the maximum length of a meta-path is seven, and the number of

meta-paths is sixteen.

From the above sixteen meta-paths, we extract sixteen Mk matrices (Definition 5).

Mk is a square matrix of n Android applications, each Mk value (i, j) is the value

calculated by the AvgSim measure, showing the similarity between Appi and Appj

based on the Pk meta-paths.

Thai Thi Thanh Van, Nguyen Van Phac, Truong Quoc Quan and Le Van Hung

56

2.2.3. Extracting feature vectors

From the sixteen Mk matrices calculated above, we extract information to form a

feature vector for the classification problem. The similarity between Appi and all the

other Appj is shown by the sum of the values per row i in the matrix Mk. Therefore, we

construct matrix V, size n by m, where n is the number of Apps, m is the number of Mk

matrices, which is equivalent to the number of the meta-path Pk.

𝑉𝑖𝑗 = ∑ 𝑀𝑗[𝑖, 𝑘], 𝑓𝑜𝑟 𝑖 ∈ [1, 𝑛] 𝑎𝑛𝑑 𝑗 ∈ [1,16]
𝑛
𝑘=1 .

Meaning that for every Appi in the dataset, there will be a specific feature vector for

that app, vi = (v1, v2, …, v16). All inputs after being collected are preprocessed to

exhibit within the range of [0, 1] using scaling techniques.

2.3. Experiment and results

2.3.1. Datasets

Currently, many projects provide malicious and benign samples to malware

analysts, such as Drebin AndroZoo or Android Malware Dataset (AMD), etc. In this

research, we use datasets which were collected from Drebin [20], with 4022 Android

applications, of which 2510 are malicious, and 1512 are benign. All are checked with

Bitdefender antivirus software.

After unpacking and decompiling the Android apps into smali code, we extract the

API calls and the relationship between them. API is a method of connecting to other

libraries and applications. API calls are used in Android applications to access functions

of the operating system and system resources. There are many approaches to extract

API calls; we can filter instructions that call to some standard Android functions. For

example, it is possible to store all calls to any method in class

Landroid/telephone/SmsMessage. However, the list of calls can be excessive, and more

importantly, it can vary from Android versions to Android versions, we focus only on

the calls that belong to the Android and Java namespaces (i.e., classes starting with

Landroid /LJava).

On the other hand, since the number of API calls in an App is often large, the entire

API call extraction used for training is entirely unfeasible and makes no sense in

machine learning training. Therefore, we choose to extract the APIs that often appear in

malware in 3010 data samples collected from Drebin. We limit the number of APIs we

need to extract to around 200.

We use the AvgSim to measure the similarity between any two applications

according to the meta-paths. Sixteen meta-paths in Table 2 are used. These paths start

from an App and end in another App. The maximum length is seven.

We proceed with the steps described in the proposed method. Finally, we obtained

two sets representing the Apps as two-dimensional matrices (with dimensions of 4022

by 17 and 1834 by 17); where each row represents an App, each of the first sixteen

columns represents a meta-path, the last column is the label of the corresponding Appi

(1 - Appi is malicious; 0 - Appi is benign).

A feature representation method based on heterogeneous information network for android…

57

2.3.2. Evaluation

To evaluate the effectiveness of the classification models, we use the 10-folds

cross-validation method. It is a familiar technique in evaluating machine learning and

data mining field. The dataset is divided into ten non-intersecting parts; nine parts are

taken as data to train the models; the rest is used for testing. For each time we train and

test a classification model, we compute the following metrics:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)

𝐹1 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
.

In which, TP, FP, FN is the number of malware correctly identified, the number of

benign software mistakenly diagnosed, the number of malware incorrectly labeled,

respectively. After ten sessions of training and testing, the Precision, Recall, and F1 are

the mean output of the ten training sessions.

Table 2. Sixteen meta-paths and their descriptions

2.3.3. Evaluation

We conducted experiments to verify the ability of the data representation model we

proposed. This experiment uses a dataset of 4022 Android applications and uses three

popular machine learning algorithms: Support Vector Machines (SVMs), Decision Tree

(DT), and Naïve Bayes (NB). For each algorithm, we performed several different runs

with various parameters, finally choosing the right set of parameters for each model on

the prepared dataset. The averaged results after ten iterations are shown in Table 3.

Thai Thi Thanh Van, Nguyen Van Phac, Truong Quoc Quan and Le Van Hung

58

Table 3. Results of different models on the given dataset

Method Precision (%) Recall (%) F1 (%)

SVMs 91.09 99.86 95.27

DT 95.61 96.95 96.27

NB 95.17 88.49 91.70

The results show that with our method, the F1 score is relatively high, especially

the results of SVMs (95.27%) and DT (96.27%). For the binary classification problem,

this accuracy is considered to be fair and can be used to predict unlabeled data. The

results also show that the proposed method has been vastly improved compared to that

of our research [21] because the proposed method extracts additional information from

the APIs with their invoke and uses the AvgSim measure - a measure that is

recommended for its efficiency and simplicity on the HIN.

To compare results of malware prediction using our method of representing and

extracting features, we conduct two experiments on DT model as follows. In

Experiment #1, we extract the API calls which present in each Android application, then

build the Dnxm information matrix, where n is the number of applications, m is the

number of APIs. Each element Dij = 1 if Appi contains APIj, otherwise Dij = 0 . This

only extracts information about the API calls in the applications, regardless of the

relationship between them. After that, we conduct training and testing in the same way

as we did in the experiment outlined above.

In Experiment #2, we extracted the permissions in each application. Like how the

dataset for the API extraction method is constructed, the empirical matrix Tnxm is

introduced, where n is the number of applications, m is the number of permissions. Each

element Tij = 1 if Appi contains permission j, otherwise Tij = 0. According to studies [5], 6]

we combine the D matrix and T matrix to the DT matrix.

Table 4 shows that our method has better results than Experiment #1 and #2 on the

same dataset. The reason is that the difference in information extraction methods from

Android applications. In previous studies, most either only extracted the API calls or the

permissions contained in each application to build training data. Meanwhile, our

approach not only extracts the information of the API calls present in each application

but also extracts the relationship between the API calls within an application. We

believe this approach can be extended so that other information of API calls in an

Android application can be integrated.

Table 4. Comparison of results between ours and other methods

Methods Precision (%) Recall (%) F1 (%)

Our method 95.61 96.95 96.27

Experiment #1 90.70 92.34 91.51

Experiment #2 94.28 95.25 94.76

A feature representation method based on heterogeneous information network for android…

59

3. Conclusions

Android applications are continually being developed and widely used, leading to

more diverse penetration and malware distribution. Malware is increasingly capable of

sophisticated concealment, making it more challenging to analyze and extract features

and behaviors. Finding ways to represent and extract data for Android malware

detection is getting more and more attention from the research community in the field of

information security. In this paper, we propose the representation and extraction of

features utilizing HINs built upon API call analysis. Unlike previous studies, we create

training datasets based on representing relationships between Apps and APIs and

relationships between APIs into a heterogeneous network. We then use meta-paths on

this network to extract the information describing the relationship between the Apps.

The experimental results on the Drebin malware dataset show that our proposed

method is relatively accurate. F1-score in the best scenario is 96.27%. Compared to the

previous methods, we found that the proposed method's predicted results were higher,

meaning that the representation of Android Apps by a HIN can be a viable approach for

the problem of classification and malware prediction.

However, with this approach, computational costs will be higher, since a HIN has

to be built and meta-paths must be found on those networks. On the other hand, the

extraction of information on the heterogeneous network using meta-paths was not as

effective as expected. In the near future, we will seek to optimize heterogeneous

network building algorithms and extract information combined with deep learning

models to increase efficiency and reduce computation costs.

Acknowledgements. This research was supported by the Academy of

Cryptography Techniques, project 08.DT20.C2.

REFERENCES

[1] J. Walls and K. K. R. Choo, 2015. A review of free cloud-based anti-malware apps

for android. in Proc. 14th IEEE Int. Conf. Trust, Secur. Privacy Comput. Commun,

Vol. 1, pp. 1053-1058.

[2] A. Souri and R. Hoseini, 2018. A state-of-the-art survey of malware detection

approaches using data mining techniques. Comput. Inf. Sci, Vol. 8.3.

[3] M. Nilay and P. Nitin, 2013. Review of Behavior Malware Analysis for Android.

International Journal of Engineering and Innovative Technology, Vol. 2, pp. 230-235.

[4] W. Wu and S. Hung, 2014. DroidDolphin: A dynamic Android malware detection

framework using big data and machine learning. RACS '14, pp. 247-252.

[5] N. Peiravian and X. Zhu, 2013. Machine Learning for Android Malware Detection

Using Permission and API Calls. IEEE 25th International Conference on Tools

with Artificial Intelligence, pp. 300-305.

[6] A. Sharma, S.K. Dash, 2014. Mining API Calls and Permissions for Android

Malware Detection. Proceedings Cryptology and Network Security, Vol. 8813,

pp. 191- 205.

Thai Thi Thanh Van, Nguyen Van Phac, Truong Quoc Quan and Le Van Hung

60

[7] L. Matthew, K. Miclain and A. Travis, 2017. A Comparison of Features for

Android Malware Detection. Proceedings of ACM SE ’17, pp. 63-68.

[8] L. Bai, J. Pang, Y. Zhang, W. Fu, and J. Zhu, 2009. Detecting malicious behavior

using critical api-calling graph matching. ICISE , pp. 1716-1719G.

[9] C. Shi, Y. Li, J. Zhang, Y. Y. Sun and J. Han, 2012. Mining Heterogeneous

Information Networks: Principles and Methodologies. SIGKDD, vol 14, pp. 20-28.

[10] Y. Sun, B. Norick, J. Han, Xifeng Y, Philip S. Yu, and Xiao Yu, 2012. Integrating

meta-path selection with user-guided object clustering in heterogeneous

information networks. In KDD’12, pp.1348-1356.

[11] D.H. Nguyen, T.T. Truong, D.H. Tran, 2015. Prediction of microRNA-disease

associations using RWRs. Journal of Science of HNUE, Vol. 60, No. 7A, 10-20

(in Vietnamese).

[12] T.H. Le, T.V. Thai, D.H. Tran, 2015. Prediction of disease-causing genes using

unlabeled data. Journal of Science of HNUE, Vol. 60, No. 7A, 61-69 (in Vietnamese).

[13] Y. Yanfang, H. Shifu, C. Lingwei, L. Jingwei, 2018. AiDroid: When

Heterogeneous Information Network Marries Deep Neural Network for Real-time

Android Malware Detection. CoRR, Vol. 2, pp. 232- 340.

[14] C. Shi, P. S. Yu, 2017. Heterogeneous information network analysis and

applications. In Data Analytics, Springer, pp. 2-5.

[15] C. Shi, Y. Li, J. Zhang, Y. Sun, P. S. Yu, 2017. A survey of heterogeneous

information network analysis. IEEE Trans. Knowl. Data Eng, Vol. 29, No. 1, pp.17-37.

[16] Y. Sun, J. Han, X. Yan, Philip S. Yu, and T. Wu, 2011. PathSim: Meta Path-Based

Top-K Similarity Search in Heterogeneous Information Networks. VLDB, Vol. 11,

pp. 992-1003.

[17] D. Xiao, X. Meng, Y. Li, and C.Shi, 2016. AVGSIM: Relevance measurement on

massive data in heterogeneous information networks. JATIT, Vol. 84, pp. 101-110.

[18] H. Shifu Hou, Yangqiu Song, Melih Abdulhayoglu, 2017. Hindroid: An Intelligent

Android Malwave Detection System Based on Structured Heterogeneous

Information Network. KDD, pp. 1507-1515.

[19] C. Shi, X. Kong, Y. Huang, P. S. Yu and B. Wu, 2014. HeteSim: A General

Framework for Relevance Measure in Heterogeneous Networks. IEEE

Transactions on Knowledge and Data Engineering, Vol. 26, No. 10, pp. 2479-2492.

[20] https://www.sec.cs.tu-bs.de/~danarp/drebin/download.html.

[21] Thanh Van Thai, The Dung Luong, 2019. A method for detecting Android

mailware based on heterogeneous information network. Jounal of Military Science

and Technology, pp. 79-89 (in Vietnamese).

https://www.researchgate.net/scientific-contributions/69831786_Yanfang_Ye
https://www.researchgate.net/scientific-contributions/2082265243_Shifu_Hou
https://www.researchgate.net/scientific-contributions/2081867581_Lingwei_Chen
https://www.researchgate.net/scientific-contributions/2149267364_Jingwei_Lei
https://www.sec.cs.tu-bs.de/~danarp/drebin/download.html

