
49 

 

HNUE JOURNAL OF SCIENCE  DOI: 10.18173/2354-1059.2020-0047 

Natural Sciences 2020, Volume 65, Issue 10, pp. 49-60 

This paper is available online at http://stdb.hnue.edu.vn 

 

 

A FEATURE REPRESENTATION METHOD BASED ON HETEROGENEOUS 

INFORMATION NETWORK FOR ANDROID MALWARE DETECTION  

  

Thai Thi Thanh Van, Nguyen Van Phac, Truong Quoc Quan and Le Van Hung 

Faculty of Information Technology, Academy of Cryptography Techniques 

 

Abstract. The rapid growth in number, sophistication, and diversity of Android 

malware poses a great difficulty in extracting and analyzing features and behaviors. 

The traditional approach, which using only API calls and permissions to extract 

features, has no longer yielded meaningful results. In this research, we propose a 

method that utilizes both information about API function calls and the relationships 

between API functions. First, we represent the relationship between API functions 

using a heterogeneous information network (HIN). Then, we use the concept of 

meta-path to extract information features from HIN. Finally, a machine learning 

algorithm is used to build classification models. Experimental results on a practical 

dataset of Android applications show that the proposed method gives more reliable 

results than the existing ones. 
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1.   Introduction 

Nowadays, the Android operating system has become a popular platform for many 

smart devices because of its open-source nature and easy-to-use interface. Statistics 

showed that Android is still the dominating operating system of the global mobile 

phone market (87.7% - according to IDC 2018). This trend is still to remain until 2021. 

However, because of this popularity, Android devices have become attractive targets 

for malware. Hackers exploit Android application features to evade the security and 

privacy of the device, posing an imminent threat of personal data leaks. These leaks 

range from user location, contact information, accounts, photos, and furthermore. 

The severity of damage to smart devices makes it essential to solve the Android 

malware detection problem [1, 2]. 

In the past, researchers mainly relied on traditional pattern recognition techniques 

to solve the malware detection problem. However, machine learning techniques and 

artificial intelligence have undergone a rapid transformation. Thus, methods 

regarding the development of systems that automatically detect malware using data mining 

and machine learning algorithms are gaining the interest of researchers in the field of  
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information security. However, one of the biggest problems is how these methods 

techniques analyze, represent, and extract features. There are two approaches to solve this 

problem, either by using behavioral analysis techniques or signature analysis techniques [3]. 

Many behavioral analysis techniques rely on analyzing API calls, permissions, 

system calls, or other specific markers to extract features of Android applications (apps 

in short) and to put into training sets for training machine learning models. Specifically, 

Wu et al. used 13 basic features from apps as data to implement the Support Vector 

Machines (SVMs) algorithm to build prediction models [4]. While other groups 

extracted permissions and API calls to train and test their malware prediction models [5-7]. 

Otherwise, Bai et al. [8] focused on specific API calls and expressed them with CAG 

graphs. CAG graphs are then closely inspected against control flow graphs (CFG) to 

identify malicious behaviors and detect them in suspicious executable files. 

In general, the efficiency of these approaches ranges from 85 to 90 percent. With a 

system using machine learning algorithms, these results are not good enough. That is 

because the data from practical systems, especially, data about malware are diverse and 

contain underlying meanings. So, if we only use API calls and permissions to extract 

features for classification and prediction models, the efficiency of detecting malware 

will be low. Therefore, in these past few years, researchers spent much attention to find 

more effective ways to extract features for malware detection. One of the most 

commonly used models today is the Heterogeneous Information Network (HIN). 

HINs are comprised of many different types of objects and edges may contain 

different meanings [9]. Therefore, mining HINs will help us to look for more insights 

into network structures. HIN has been used in many different fields, including text data 

mining, biological data mining, and recently in mining information security data [10]. For 

example, Yanfang et al. [13] used HINs to represent Android malware data. Their 

networks consist of five types of vertices (application, API, IMEI, manufacturer, 

signatures) and five types of edges (Apps - APIs, Apps - IMEIs, IMEIs - Manufacturers, 

Apps - Manufacturer, Apps - Signature). Combined with deep learning neural networks, 

their system for malicious code detection has achieved an accuracy of 96%. 

In this paper, we use behavioral analysis based on API call analysis to predict 

malware for Android. Similar to the previous studies, we decompile Android 

applications, then propose a method to extract and represent API calls from the output 

of the decompilation process. Unlike previous studies, we analyze not only the API calls 

but also the relationships between API calls, such as the ones that are in the same block 

or the same package. We hope the relationship between API calls will provide 

additional information that is useful for malware detection. There will be more than one 

type of relations between API calls and more than one type of object. Therefore, HINs 

are perfect to describe the relationship between API calls and the overall applications. 

From HINs, we will construct meta-paths to represent the relationship between 

applications through the vertices and edges. Based on these meta-paths, we will build 

feature vectors to represent Android applications. The problem of malware detection 

becomes a binary classification. We then use several general machine learning models 

to train and test the accuracy of the proposed method. 
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2.  Content 

2.1. Basic concepts related to the heterogeneous information network 

In this section, we will go through some of the basics about HINs, meta-paths, and 

similarity measures on HINs. 

Definition 1. Information network: An information network is defined as a directed 

graph 𝐺 =  (𝑉, 𝐸) with an object type mapping function, 𝜑: 𝑉 → 𝐴, and a link type 

mapping function 𝜓:𝐸 → 𝑅. Each object v∈ V belongs to one particular object type in 

the object type set 𝐴:𝜑(𝑣) ∈ 𝐴 and each link 𝑒 ∈  𝐸 belongs to a particular relation 

type in the relation type set R: 𝜓(𝑒)  ∈ 𝑅. An information network is heterogeneous 

when the number of elements in set 𝐴 >  1 and in set 𝑅 >  1 [14]. 

Definition 2. Network schema: A network schema is presented as a 𝑇𝐺 = (𝐴, 𝑅) is a 

directed graph with each vertex is a type of entity in A and each edge is a type of 

relation in R [15] 

Each type of relation R between object S and T is written as S
R
→ T, in which S is 

called a source and T is called a target. They can be notated as RoS or RoT, respectively. 

The inverse relation R−1 is defined as T
R−1

→  S. 

Definition 3. Meta-path: A meta-path P is a path between nodes in a network schema 

graph 𝑇𝐺 =  (𝐴, 𝑅), and is notated like a chain: 𝐴1
𝑅1
→𝐴2

𝑅2
→…

𝑅𝑙
→𝐴𝑙+1, defining relation 

𝑅 = 𝑅1°𝑅2°… °𝑅𝑙 between a set of objects 𝐴1, 𝐴2, … , 𝐴𝑙+1. (°) is defined as an operator 

that signifies this particular relation and 𝑙 is defined as the length of path P [16]. 

Definition 4. Similarity measure AvgSim: Let P be a meta-path 𝑃 =  (𝑅1°𝑅2°… °𝑅𝑘), 
the AvgSim between source element 𝑠 and target element 𝑡 is: 

𝐴𝑣𝑔𝑆𝑖𝑚(𝑠, 𝑡|𝑃) =  
1

2
[𝑅𝑊(𝑠, 𝑡|𝑃) + 𝑅𝑊(𝑡, 𝑠|𝑃−1)] 

while: 

𝑅𝑊(𝑠, 𝑡|𝑅1°𝑅2°… °𝑅𝑘) =  
1

|𝑂(𝑠|𝑅1)|
∑ 𝑅𝑊(𝑂𝑖(𝑠|𝑅1, 𝑡|𝑅2°… °𝑅𝑘)

|𝑂(𝑠|𝑅1)|

𝑖=1

 

Here, 𝑂(𝑠|𝑅1) is an out-neighbor of 𝑠 based on relation 𝑅1 [17]. 

Definition 5. Let 𝐺 = (𝑉, 𝐸) be a network and 𝑇𝐺 be a network schema. 𝑀𝑝 is called a 

similarity measure matrix according to meta-path 𝑃 =  (𝐴1, 𝐴2, … , 𝐴𝑙+1), and 

𝑀𝑃[𝑖, 𝑗]  =  𝐴𝑣𝑔𝑆𝑖𝑚(𝐴𝑖 , 𝐴𝑗|𝑃), with 𝐴𝑖 being the source element, and 𝐴𝑗 being the 

target element.  

2.2. The proposed method 

First, we decompile .apk files to obtain smali codes. From smali codes, we will 

extract API calls and the relationships between API calls to build a HIN. On this 

heterogeneous network, we calculate the similarity measures from meta-paths to extract 

features for each Android application (app in short). Finally, we use a machine learning 
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algorithm for training and testing prediction models. An overview of our proposed 

method is described through the following steps (Figure 1). 

  

 

Figure 1. Overview of the proposed method 

Step 1. After unpacking and decompiling the collected Android applications, we 

extract API calls and the relationships between them. Specifically, whether the APIs 



A feature representation method based on heterogeneous information network for android… 

53 

 

belong to the same block, call to the same package, or are called by the same invoke 

method or not. 

Step 2. With the data acquired from Step 1, we build a HIN with two types of 

vertices (Apps and API) and four types of edges (between Apps and APIs, between 

APIs in the same block, between APIs in the same package, between APIs in the same 

invoke). We use the AvgSim method according to meta-paths, to measure the similarity 

between any two apps. 

Step 3. Based on the information obtained in Step 2, we extract a feature vector for 

each Android application. 

Step 4. From the data about the Apps with their features, we train, test, and evaluate 

with some common machine learning models, e.g Support Vector Machines, Decision 

Tree, and Naïve Bayes. 

2.2.1. Analyzing API calls 

After an Android application is compiled, it will be packaged into a file of *.dex 

archive. We use APKTool, a popular tool to decompile samples into smali code. Figure 2 

shows an example of smali code after decomplication. Based on this code snippet, we 

can see that when an API is called, it will be called through the invoking statement. 

 
Figure 2. An example of smali code 

 

We use a matrix 𝐴𝑛𝑥𝑚 to store information of the relationship between apps and 

APIs. 𝑛 is the number of apps and 𝑚 is the number of API. If 𝐴𝑃𝐼𝑗 is present in an 

𝐴𝑝𝑝𝑖, then 𝑎𝑖𝑗 = 1 else 𝑎𝑖𝑗 = 0. For example, a matrix that represents the relationship 

between APIs and the apps:  

 
Also according to Hou [18], in the process of analyzing the behavior of Android 

applications through API calls, we also found relationships between API calls with 

one another. For example, API calls in the same block either appear in the same 

package or are called together by the invoke method, always express similar intentions. 
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For example, the API calls in package "Lorg/apache/HttpRequest" always partake in 

actions relating to the Internet. The two API calls (Lines 10 and 12 in Figure 2) that are 

called by the same invoke method (invoke - virtual) behave similarly. Extracting this 

information is very useful in predicting malware. 

The matrix representing the relationship between APIs of the same block: To 

describe the relationship, we use a two-dimensional array Bmxm. A block is a set of 

commands located between the keywords "method" and "endmethod" in the smali code. 

Matrix B is defined as follows: 

𝑏𝑖𝑗 = {
1 𝑖𝑓𝐴𝑃𝐼𝑖  𝑎𝑛𝑑 𝐴𝑃𝐼𝑗𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒𝑏𝑙𝑜𝑐𝑘

0 𝑖𝑓 𝐴𝑃𝐼𝑖  𝑎𝑛𝑑 𝐴𝑃𝐼𝑗  𝑎𝑟𝑒 𝑖𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑏𝑙𝑜𝑐𝑘𝑠
 

Matrix representing the relationship of APIs in the same package: to describe that 

relationship, a matrix Pmxm is used, with the following definition: 

𝑝𝑖𝑗 = {
1 𝑖𝑓 𝐴𝑃𝐼𝑖  𝑎𝑛𝑑 𝐴𝑃𝐼𝑗  𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑝𝑎𝑐𝑘𝑎𝑔𝑒 

0 𝑖𝑓 𝐴𝑃𝐼𝑖  𝑎𝑛𝑑 𝐴𝑃𝐼𝑗  𝑎𝑟𝑒 𝑖𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑝𝑎𝑐𝑘𝑎𝑔𝑒𝑠 
 

Take a look at the example shown in Figure 2, both API  “Ljava/lang/Runtime; 

getRuntime() Ljava / lang / Runtime” and API “Ljava / lang / Runtime;        exec (Ljava 

/ lang String;) Ljava/lang/Process” are from the same package, thus the element 

representing the relation of these two API in the matrix will be set 1. 

The matrix representing the relationship between APIs with the same invoke 

method: In a typical smali code, there are different methods to execute API call: invoke-

static, invoke-virtual, invoke-direct, invoke-super, invoke-interface. If two APIs are 

called with the same invoke method, there may be many other implicit relationships 

between them. Therefore, to represent this relationship, we use a matrix Imxn, where 

each Iij element indicates whether APIi and APIj are called by the same invoke method 

or not. Specifically 

𝐼𝑖𝑗 = {
1 𝑖𝑓 𝐴𝑃𝐼𝑖  𝑎𝑛𝑑  𝐴𝑃𝐼𝑗  𝑎𝑟𝑒 𝑐𝑎𝑙𝑙𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑖𝑛𝑣𝑜𝑘𝑒

0 𝑖𝑓 𝐴𝑃𝐼𝑖  𝑎𝑛𝑑 𝐴𝑃𝐼𝑗   𝑎𝑟𝑒 𝑐𝑎𝑙𝑙𝑒𝑑 𝑏𝑦 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑖𝑛𝑣𝑜𝑘𝑒𝑠.
 

Table 1 describes the different relationships between the elements in the extracted 

matrices from APIs calls. 

Table 1. A summary of matrices A, B, P, and I 
Matrix Element Description 

A aij If Appi contains APIj, then aij = 1, else aij = 0 

B bij If APIi and APIj are in the same block then bij = 1, else bij = 0 

P pij If APIi and APIj are in the same package then pij = 1, else pij = 0 

I iij If APIi and APIj share invoke then iij = 1, else iij = 0 

2.2.2. Heterogeneous Information Network construction 

From the four matrices obtained above, we construct a heterogeneous information 

network. This network consists of two types of vertices and four types of edges. The 

different types of edges represent different relationships between APIs. The vertices are 

apps and API calls. The first type of edge describes whether an Appi contains APIj. The 

second type represents the relationship between APIs of the same block, the third 
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describes the relationship between APIs of the same package, and the fourth describes 

the relationship between APIs with the same invoke method. 

To measure the similarity between the two Android applications, we use the 

AvgSim measure. AvgSim is a measure of symmetry and has the property of generality 

to evaluate the likeness of two objects of the same or different types. AvgSim value of 

two nodes is the average of the probability that one node can reach the other according 

to the given path and its inverse path. Because of that trait, AvgSim is a measure of 

symmetry. AvgSim calculation does not consider path length and therefore does not 

need to decompose any meta-path with odd length, making AvgSim simpler and more 

efficient than HeteSim [19]. 

 

 
 

Figure 3. HIN network illustration 

 

The AvgSim measure is calculated based on meta-paths, a concept covered in 

Definition 3. A meta-paths from vertex a to vertex b represents the relationship between 

a and b. With the HIN above, we build meta-paths from any Appi to any Appj. A typical 

meta-path between two Android applications is  , aka. AAT. 

For example, the HIN shown in Figure 2.3 contains these specific paths: App1 API1 

App2, App1 API1 App3, App2 API1 App3, etc. Another meta-path between two Android 

applications that signify the similarity between two apps via API call is 

, or APAT (for example, App1API1API3 App3, 

App1API1API3 App3). 

During the data processing step, we found that calculating the number of meta-

paths between two apps in the HIN is time-consuming because this is a conditional 

graph traversal problem with a significant number of vertices. Also, some studies show 

that in the HIN, long meta-paths often do not bring much information to distinguish the 

relationship between the vertices in the network. So in this paper, we choose 

symmetrical paths, the maximum length of a meta-path is seven, and the number of 

meta-paths is sixteen.  

From the above sixteen meta-paths, we extract sixteen Mk matrices (Definition 5). 

Mk is a square matrix of n Android applications, each Mk value (i, j) is the value 

calculated by the AvgSim measure, showing the similarity between Appi and Appj 

based on the Pk meta-paths. 
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2.2.3. Extracting feature vectors 

From the sixteen Mk matrices calculated above, we extract information to form a 

feature vector for the classification problem. The similarity between Appi and all the 

other Appj is shown by the sum of the values per row i in the matrix Mk. Therefore, we 

construct matrix V, size n by m, where n is the number of Apps, m is the number of Mk 

matrices, which is equivalent to the number of the meta-path Pk. 

 

𝑉𝑖𝑗 = ∑ 𝑀𝑗[𝑖, 𝑘], 𝑓𝑜𝑟 𝑖 ∈ [1, 𝑛] 𝑎𝑛𝑑 𝑗 ∈ [1,16]
𝑛
𝑘=1 . 

 

Meaning that for every Appi in the dataset, there will be a specific feature vector for 

that app, vi = (v1, v2, …, v16). All inputs after being collected are preprocessed to 

exhibit within the range of [0, 1] using scaling techniques.  

2.3.  Experiment and results 

2.3.1. Datasets 

Currently, many projects provide malicious and benign samples to malware 

analysts, such as Drebin AndroZoo or Android Malware Dataset (AMD), etc. In this 

research, we use datasets which were collected from Drebin [20], with 4022 Android 

applications, of which 2510 are malicious, and 1512 are benign. All are checked with 

Bitdefender antivirus software.  

After unpacking and decompiling the Android apps into smali code, we extract the 

API calls and the relationship between them. API is a method of connecting to other 

libraries and applications. API calls are used in Android applications to access functions 

of the operating system and system resources. There are many approaches to extract 

API calls; we can filter instructions that call to some standard Android functions. For 

example, it is possible to store all calls to any method in class 

Landroid/telephone/SmsMessage. However, the list of calls can be excessive, and more 

importantly, it can vary from Android versions to Android versions, we focus only on 

the calls that belong to the Android and Java namespaces (i.e., classes starting with 

Landroid /LJava). 

On the other hand, since the number of API calls in an App is often large, the entire 

API call extraction used for training is entirely unfeasible and makes no sense in 

machine learning training. Therefore, we choose to extract the APIs that often appear in 

malware in 3010 data samples collected from Drebin. We limit the number of APIs we 

need to extract to around 200. 

We use the AvgSim to measure the similarity between any two applications 

according to the meta-paths. Sixteen meta-paths in Table 2 are used. These paths start 

from an App and end in another App. The maximum length is seven. 

We proceed with the steps described in the proposed method. Finally, we obtained 

two sets representing the Apps as two-dimensional matrices (with dimensions of 4022 

by 17 and 1834 by 17); where each row represents an App, each of the first sixteen 

columns represents a meta-path, the last column is the label of the corresponding Appi 

(1 - Appi is malicious; 0 - Appi is benign). 
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2.3.2. Evaluation 

To evaluate the effectiveness of the classification models, we use the 10-folds 

cross-validation method. It is a familiar technique in evaluating machine learning and 

data mining field. The dataset is divided into ten non-intersecting parts; nine parts are 

taken as data to train the models; the rest is used for testing. For each time we train and 

test a classification model, we compute the following metrics: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

𝐹1 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
. 

In which, TP, FP, FN is the number of malware correctly identified, the number of 

benign software mistakenly diagnosed, the number of malware incorrectly labeled, 

respectively. After ten sessions of training and testing, the Precision, Recall, and F1 are 

the mean output of the ten training sessions. 

Table 2. Sixteen meta-paths and their descriptions 

 

2.3.3. Evaluation 

We conducted experiments to verify the ability of the data representation model we 

proposed. This experiment uses a dataset of 4022 Android applications and uses three 

popular machine learning algorithms: Support Vector Machines (SVMs), Decision Tree 

(DT), and Naïve Bayes (NB). For each algorithm, we performed several different runs 

with various parameters, finally choosing the right set of parameters for each model on 

the prepared dataset. The averaged results after ten iterations are shown in Table 3. 
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Table 3. Results of different models on the given dataset 

Method Precision (%) Recall (%) F1 (%) 

SVMs 91.09 99.86 95.27 

DT 95.61 96.95 96.27 

NB 95.17 88.49 91.70 

The results show that with our method, the F1 score is relatively high, especially 

the results of SVMs (95.27%) and DT (96.27%). For the binary classification problem, 

this accuracy is considered to be fair and can be used to predict unlabeled data. The 

results also show that the proposed method has been vastly improved compared to that 

of our research [21] because the proposed method extracts additional information from 

the APIs with their invoke and uses the AvgSim measure - a measure that is 

recommended for its efficiency and simplicity on the HIN. 

To compare results of malware prediction using our method of representing and 

extracting features, we conduct two experiments on DT model as follows. In 

Experiment #1, we extract the API calls which present in each Android application, then 

build the Dnxm information matrix, where n is the number of applications, m is the 

number of APIs. Each element Dij = 1 if Appi contains APIj, otherwise Dij = 0 . This 

only extracts information about the API calls in the applications, regardless of the 

relationship between them. After that, we conduct training and testing in the same way 

as we did in the experiment outlined above. 

In Experiment #2, we extracted the permissions in each application. Like how the 

dataset for the API extraction method is constructed, the empirical matrix Tnxm is 

introduced, where n is the number of applications, m is the number of permissions. Each 

element Tij = 1 if Appi contains permission j, otherwise Tij = 0. According to studies [5], 6] 

we combine the D matrix and T matrix to the DT matrix.  

Table 4 shows that our method has better results than Experiment #1 and #2 on the 

same dataset. The reason is that the difference in information extraction methods from 

Android applications. In previous studies, most either only extracted the API calls or the 

permissions contained in each application to build training data. Meanwhile, our 

approach not only extracts the information of the API calls present in each application 

but also extracts the relationship between the API calls within an application. We 

believe this approach can be extended so that other information of API calls in an 

Android application can be integrated. 

 

Table 4. Comparison of results between ours and other methods 

Methods Precision (%) Recall (%) F1 (%) 

Our method 95.61 96.95 96.27 

Experiment #1 90.70 92.34 91.51 

Experiment #2 94.28 95.25 94.76 
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3.   Conclusions 

Android applications are continually being developed and widely used, leading to 

more diverse penetration and malware distribution. Malware is increasingly capable of 

sophisticated concealment, making it more challenging to analyze and extract features 

and behaviors. Finding ways to represent and extract data for Android malware 

detection is getting more and more attention from the research community in the field of 

information security. In this paper, we propose the representation and extraction of 

features utilizing HINs built upon API call analysis. Unlike previous studies, we create 

training datasets based on representing relationships between Apps and APIs and 

relationships between APIs into a heterogeneous network. We then use meta-paths on 

this network to extract the information describing the relationship between the Apps.  

The experimental results on the Drebin malware dataset show that our proposed 

method is relatively accurate. F1-score in the best scenario is 96.27%. Compared to the 

previous methods, we found that the proposed method's predicted results were higher, 

meaning that the representation of Android Apps by a HIN can be a viable approach for 

the problem of classification and malware prediction. 

However, with this approach, computational costs will be higher, since a HIN has 

to be built and meta-paths must be found on those networks. On the other hand, the 

extraction of information on the heterogeneous network using meta-paths was not as 

effective as expected. In the near future, we will seek to optimize heterogeneous 

network building algorithms and extract information combined with deep learning 

models to increase efficiency and reduce computation costs. 
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