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Abstract. Wavelength Switched Optical Networks (WSONs) have been designed to 

take advantage of all optical switching fabrics with a high level of automation and 

efficiency. Therein, the Wavelength Selective Switches (WSS) represent the core 

switching elements with a technology enabling multi-degree Reconfigurable Optical 

Add/Drop Multiplexers (ROADM) architectures with colorless and directionless 

switching. In this paper, we propose an optimization model to establish the best 

ROADM switching connectivity to maximize the grade of service, for a given 

number of ports. We show that the grade of service can vary significantly, up to 30%, 

depending on the switching connectivity. Besides, the larger the network is, the more 

the variance increases: from 20% to 30%, when the number of nodes varies from 14 to 24.  

Keywords: asymmetric networks, ROADM, routing, wavelength assignment. 

1.   Introduction  

Recent developments in the Wavelength Selective Switch (WSS) technology enable 

multi-degree Reconfigurable Optical Add/Drop Multiplexers (ROADM) architectures 

with colorless, directionless, and contention-less switching. WSS is regarded as a very 

promising enabler for future reconfigurable wavelength division multiplexing (WDM) 

mesh networks, see, e.g., [1]. WSS selects individual wavelengths from multiple ingress 

ports and switches them to a common egress port, a key property of the WSS based 

ROADM referred to as Asymmetric Switching: in an optical switching element, the 

optical signal from one direction can only reach a subset of other directions. Such 

restrictions have been hardly considered in the studies on the RWA (Routing and 

Wavelength Assignment) problem.  

Currently, most of the proposed RWA algorithms either assume a network with an 

ideal physical layer [2-4] or a network with physical layer impairments [5], with fully 

flexible node architectures. Very few studies consider RWA algorithms assuming nodes 

with architectural constraints such as the ones associated with asymmetric switching.  
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In this study, we propose a new ILP (Integer Linear Programming) model, called 

RWA_AN (RWA with asymmetric nodes), derived from the one of Jaumard, Meyer, and 

Thiongane [6] for the classical RWA problem. The resulting model is a large-scale 

optimization ILP model, which allows the exact solution of quite large RWA instances, 

i.e., up to 670 wavelengths, assuming all nodes are asymmetric and that the switching 

connectivity matrix is given. We next modify the RWA_AN Model and design the 

RWA_OAS Model (RWA with an optimized asymmetric switch matrix) in order to find 

the best switching connectivity matrix for a given number of ports and a given number of 

switching connections, concerning the grade of service (GoS), and compare the resulting 

GoS with the one of the first models.  

2.    Content 

2.1.  RWA_AN/RWA_OAS problems  

2.1.1. Related works 

In WDM networks, many papers have already appeared on the RWA problem. As it 

is a highly combinatorial problem, various heuristic scheme solutions have been proposed 

under different traffic assumptions with static or dynamic patterns, with single or multi 

hops, and for various objectives. Several compact ILP formulations have been also 

proposed for this problem: see [7] for surveys in the asymmetrical and symmetrical traffic 

cases respectively. Several improvements as well as comparisons of all these formulations 

can be found in [6]. However, none of the above studies consider the internal switching 

structures of optical nodes.  

Chen et al. in [8] proposed two solution schemes, link-state (LS) and distance vector 

(DV) schemes, for dynamic light-path provisioning in optical WDM mesh networks with 

asymmetric nodes. In LS schemes, two proposed algorithms are the asymmetric 

switching-aware (ASA) Dijkstra’s algorithm (the K -shortest path-based algorithm) and 

the entire path searching (EPS) algorithm. Results show that the ASA Dijkstra’s 

algorithm has a high blocking probability while the computational complexity of the EPS 

algorithm is factorial, therefore non-polynomial. Hence, those algorithms cannot scale 

well when the network size increases. For the DV scheme, the authors proposed a routing 

solution based on information diffusion. Results show that the resulting algorithm can 

achieve a low blocking probability with low computational complexity.  

In [9], the authors study how to provide resilience against node failures in WDM 

networks with asymmetric nodes. It implies the search for pairs of node disjoint paths, 

one for a working path and another for a backup path. While Bhandari’s method [10] 

(indeed, Suurballe and Tarjan’s algorithm [11]) can quickly compute optimal disjoint 

paths in WDM networks with symmetrical nodes, the same algorithm may fail in 

networks that have asymmetric nodes. The authors proposed an approach for adapting 

Bhandari’s method to avoid the trap issues due to asymmetric nodes. However, the time 

complexity of the resulting algorithm is exponential and the proof of the optimality is 

not provided. 
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2.1.2. Statement of the RWA_AN and RWA_OAS problems 

We consider a WDM optical network represented by a directed multigraph 𝐺 = (𝑉, 𝐿) 

with node set 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} where each node is associated with a node of the 

physical network, and with arc set 𝐿 = {𝑙1, 𝑙2, … , 𝑙𝑛} where each arc is associated with a 

fiber link of the physical network: the number of arcs from 𝑣 to 𝑣′ is equal to the number 

of fibers supporting traffic from 𝑣 to 𝑣′. See Figure 1(a) for an example of a multigraph 

representing a multifiber optical network.  

 

 

 

 

We will also use a so-called expanded directed graph 𝐺𝐸 = (𝑉𝐸 , 𝐿𝐸) where 𝑉𝐸 =
 ⋃ 𝑃𝑂𝑅𝑇𝑣

𝑣∈𝑉   where 𝑃𝑂𝑅𝑇𝑣 is the set of ports of node 𝑣, and 𝐿𝐸 =  (⋃ 𝐿𝑣
𝑣∈𝑉 )  ∪  𝐿 

where 𝐿𝑣 is set of links connecting ports of node 𝑣. An example of an expanded directed 

graph is shown in Figure 1(b). 

The set of available wavelengths is denoted by Λ = {𝜆1, 𝜆2, … , 𝜆𝑤} with 𝑊 = |Λ|. 
Traffic is described by set 𝑇 where 𝑇𝑠𝑑 defines the number of connection requests from 

𝑣𝑠 to 𝑣𝑑. Let 𝑆𝐷 = {(𝑣𝑠, 𝑣𝑑) ∈  𝑉 ×  𝑉 ∶  𝑇𝑠𝑑 > 0}. We only consider single-hop routing, 

i.e., the same wavelength is used from source to destination for all connection requests. 

We next study the two following RWA problems with asymmetric nodes: 

- Problem RWA_AN, i.e., RWA with asymmetric nodes. Given an expanded 

multigraph 𝐺𝐸 corresponding to a WDM optical network with asymmetric nodes (for a 

given set of asymmetric switch connections), and a set of requested connections, and a 

suitable light-path (𝑝, 𝜆) for each granted connection, where a lightpath is defined by the 

combination of a routing path 𝑝 and a wavelength so that no two paths sharing a link are 

assigned the same wavelength. We study the objective of maximizing the number of 

accepted connections (or the Grade of Service (GoS)), that is equivalently minimizing the 

blocking rate. This objective is most relevant when there is not enough transport capacity, 

i.e., enough available wavelengths, to accommodate all connection requests. 

- Problem RWA_OAS, i.e., RWA with an optimized asymmetric switch matrix. 

Given an expanded multigraph 𝐺𝐸 corresponding to a WDM optical network with limited 

switching capabilities (i.e., number of switch con-nections between the ports of a node 𝑣, 

denoted by 𝑆𝑣), and the (asymmetric) switching node configuration that maximizes the GoS. 

 

(a) Multigraph                             (b) Expanded Multigraph 

Figure 1. Directed multigraphs and expanded multigraphs 
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2.2.   Solution of RWA with asymmetric nodes  

2.2.1. RWA_AN model 

The proposed optimization model relies on the concept of configurations. Let 𝐶 

define the set of all wavelength configurations where a wavelength configuration is 

associated with a maximal set of link disjoint paths, all routed on the same wavelength, 

that can be used for satisfying a given fraction of the connections. A wavelength 

configuration 𝑐 is represented by a vector 𝑎𝑐 such that: 𝑎𝑠𝑑
𝑐  = number of connection 

requests from 𝑣𝑠 to 𝑣𝑑 that are supported by configuration 𝑐. A wavelength configuration 

𝑐 is maximal if there does not exist another wavelength configuration 𝑐′ such that 𝑎𝑐′
 ≥  𝑎𝑐.  

There are two sets of variables in the model. Let 𝑧𝑐 represent the number of selected 

occurrences of configuration 𝑐, each with a different wavelength. Variables 𝑦𝑠𝑑 define 

the number of accepted connections from 𝑣𝑠 to 𝑣𝑑for all (𝑣𝑠, 𝑣𝑑) in 𝑆𝐷.  

The objective function can be formulated as follows:  

𝑚𝑎𝑥 ∑ 𝑦𝑠𝑑

(𝑣𝑠,𝑣𝑑
)∈𝑆𝐷

 
(1) 

subject to:  

∑ 𝑧𝑐  ≤  𝑊

𝑐 ∈ 𝐶

 

(2) 

∑ 𝑎𝑠𝑑
𝑐

𝑐 ∈ 𝐶

𝑧𝑐  ≥  𝑦𝑠𝑑     (𝑣𝑠, 𝑣𝑑) ∈  𝑆𝐷 
(3) 

𝑦𝑠𝑑  ≤  𝑇𝑠𝑑          (𝑣𝑠, 𝑣𝑑) ∈  𝑆𝐷 (4) 

𝑧𝑐  ∈  ℕ             𝑐 ∈  𝐶 (5) 

Constraints (2) ensure that we assign no more than the number of available 

wavelengths. Constraints (3) guarantee full support for each requested connection. 

Constraints (4) ensure that the number of accepted connections for a given pair source-

destination does not exceed the demand.  

2.2.2.    Solution of the RWA_AN Model 

* Generalities 

A straightforward way to solve the ILP model of the previous would be to enumerate 

all potential wavelength configurations. Although easy, it will not be scalable. Indeed, the 

ILP model has a natural decomposition scheme which allows its linear relaxation to be 

solved by column generation techniques.  

The Column Generation method is nowadays a well-known technique for solving 

efficiently large-scale optimization problems [2]. The challenge lies in the modeling for 

identifying a proper decomposition of the original problem into a so-called master 

problem and one or several so-called pricing problems. The master problem corresponds 

to a linear program subject to the first set of explicit constraints and the second set of 

implicit constraints expressed throughout properties of the coefficients of the constraint 
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matrix. The pricing problems consist of the optimization of the so-called reduced cost 

subject to the set of implicit constraints: It either identifies favorable columns to be added 

to the master problem or indicates that no such column exists. The solution scheme is a 

two-step process where we first solve the linear relaxation of the master problem using 

column generation techniques, and then design an algorithm (e.g., rounding off algorithm 

or the ILP solution of the restricted master problem) in order to derive an integer solution 

such that the so-called optimality gap (𝑧𝐼𝐿𝑃 −  𝑧𝐿𝑃
∗ )/𝑧𝐿𝑃

∗ , (where 𝑧𝐿𝑃
∗  is the optimal value 

of the linear relaxation, and 𝑧𝐼𝐿𝑃 is the incumbent integer solution) is as small as possible.  

The optimization model corresponds to a master problem with a pricing problem, which 

is described as follows: 

* Pricing problem 

We introduce one set of decision variables 𝛼 = (𝛼𝑙
𝑠𝑑) such that 𝛼𝑙

𝑠𝑑 = 1 if there exists 

a light-path from 𝑣𝑠 to 𝑣𝑑, which goes through link 𝑙, 0 otherwise.  

The objective of the pricing problem, 𝑅𝐶𝑂𝑆𝑇(𝛼), is weighted with the dual variables. 

𝑢(2)  ≥ 0 be the value of the dual variable associated with constraint (2) and 𝑢𝑠𝑑
(3)

 ≥ 0 the 

values of the dual variables associated with constraint (3) in the optimal linear relaxation 

solution of the restricted master problem, i.e., the problem (1)-(5).  

The pricing problem can be written as follows:  

𝑅𝐶𝑂𝑆𝑇(𝛼) =  −𝑢(2)  +  ∑ ∑ 𝛼𝑙
𝑠𝑑𝑢𝑠𝑑

(3)

𝑙∈𝜔+(𝑣𝑠)(𝑣𝑠,𝑣𝑑)∈𝑆𝐷

 
                              

(6) 

subject to:  

∑ 𝛼𝑙
𝑠𝑑

(𝑣𝑠 ,𝑣𝑑)∈ 𝑆𝐷

 𝑙 ∈  𝐿𝐸 (7) 

∑ 𝛼𝑙
𝑠𝑑

𝑙 ∈ 𝜔+(𝑣)

=  ∑ 𝛼𝑙
𝑠𝑑

𝑙 ∈ 𝜔−(𝑣)

 
(𝑣𝑠, 𝑣𝑑) ∈  𝑆𝐷, 𝑣 ∈  𝑉𝐸\(𝑣𝑠, 𝑣𝑑) (8) 

∑ 𝛼𝑙
𝑠𝑑

𝑙 ∈ 𝜔+(𝑣)

 ≤  𝑇𝑠𝑑 
(𝑣𝑠, 𝑣𝑑) ∈  𝑆𝐷 (9) 

∑ 𝛼𝑙
𝑠𝑑

𝑙 ∈ 𝜔−(𝑣)

= 0 
(𝑣𝑠, 𝑣𝑑) ∈  𝑆𝐷 (10) 

∑ 𝛼𝑙
𝑠𝑑

𝑙 ∈ 𝐿𝑣

=  ∑ 𝛼𝑙
𝑠𝑑

𝑙 ∈ 𝜔−(𝑣)

 
(𝑣𝑠, 𝑣𝑑) ∈  𝑆𝐷, 𝑣 ∈  𝑉𝐸\(𝑣𝑠, 𝑣𝑑) (11) 

𝛼𝑙
𝑠𝑑  ∈ {0, 1} (𝑣𝑠, 𝑣𝑑) ∈  𝑆𝐷, 𝑙 ∈  𝐿𝐸 (12) 

Constraints (7) and (8) define a set of disjoint paths, i.e., a configuration. Constraints 

(9) and (10) ensure that we grant no more than the number of requested connections. 

Constraints (11) ensure that each path only goes through at most one internal connection 

of an asymmetric node.  

The restricted master problem, i.e., the master problem with a very limited number 

of configurations and the pricing problem are solved alternately until the optimality 
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condition is met, i.e., the pricing problem cannot generate any new configuration with a 

negative reduced, see again [10] for more details on a CG-ILP solution scheme. 

Consequently, if 𝑅𝐶𝑂𝑆𝑇(𝛼) ≤ 0, then problem (1)-(5) has been solved to optimality. 

Otherwise, the routing configuration c defined by the vector (𝑎𝑠𝑑
𝑐 ) with 𝑎𝑠𝑑

𝑐 =
 ∑ 𝛼𝑙

𝑠𝑑
𝑙 ∈ 𝜔+(𝑣)  for (𝑣𝑠, 𝑣𝑑) ∈  𝑆𝐷 is added to the current restricted master problem, which 

is solved again. Once the linear relaxation of the restricted master is optimally solved, we 

solve the ILP model resulting from the set of columns of the last solved restricted master 

problem in order to output an ILP solution for RWA AN Problem (1)-(5).  

2.3. RWA with optimal asymmetric switch node configurations 

2.3.1. RWA_OAS model 

We modify the definition of the wavelength configurations we used in the previous 

section as follows: each configuration 𝑐 is now represented by two binary vectors 𝑎𝑐 

(same definition as before) and 𝑏𝑐 where 𝑏𝑙
𝑐 = 1 if configuration 𝑐 uses link 𝑙 =  𝐿𝑣 

(i.e., internal port connection) and 0 otherwise.  

We also need to introduce one more set of variables: 𝑥𝑙 = 1 if link 𝑙 is chosen for an 

internal port connection of an asymmetric node, and 0 otherwise.  

RWA_OAS Model has the same objective as RWA_AN, and includes the same set of 

constraints, as well as the following set of additional constraints:  

∑ 𝑏𝑙
𝑐𝑧𝑐

𝑐 ∈ 𝐶

 ≤  𝑊𝑥𝑙 
𝑣 ∈  𝑉, 𝑙 ∈  𝐿𝐸 (13) 

∑ 𝑥𝑙

𝑙 ∈ 𝐿𝑣

 ≤  𝑆𝑣 𝑣 ∈  𝑉  (14) 

∑ 𝑥𝑙

𝑙 ∈ 𝜔+(𝑣)

 ≥ 1; ∑ 𝑥𝑙

𝑙 ∈ 𝜔−(𝑣)

 ≥  1 𝑣 ∈  𝑉𝐸 (15) 

Constraints (13) ensure that link l is used in a configuration only if it is selected for 

an internal port connection in a switching matrix (i.e., 𝑥𝑙 = 1). Constraints (14) ensure 

that the number of internal port connections of an asymmetric node does not exceed the 

limit on the number of internal port connections for that node. Constraints (15) ensure 

that there is at least one internal port connection per node in the expanded graph (𝐺𝐸).  

2.3.2. Solution of RWA_OAS model  

The solution scheme of RWA_OAS Model follows the one for the RWA_AN model, 

i.e., a CG-ILP solution scheme, which requires the definition and the solution of a pricing 

problem in order to generate the configurations. Let 𝑢(13) be the dual value associated 

with constraint (13). The objective function of the pricing problem can be written as follows:  

𝑅𝐶𝑂𝑆𝑇(𝛼) =  𝑢(2)  +  ∑ ∑ 𝛼𝑙
𝑠𝑑𝑢𝑠𝑑

(3)

𝑙∈𝜔+(𝑣𝑠)(𝑣𝑠,𝑣𝑑)∈𝑆𝐷

−  ∑ ∑ 𝑥𝑙𝑢(13)

𝑙∈𝐿𝑣𝑣 ∈𝑆𝐷

 
(16) 

We use the same set of constraints as for the pricing problem of RWA_AN, together 

with some modified constraints that are next described. Replace the set of constraints (7) 

by the following constraint set:  
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∑ 𝛼𝑙
𝑠𝑑

(𝑣𝑠 ,𝑣𝑑)∈ 𝑆𝐷

 ≤  𝑥𝑙 
𝑙 ∈  𝐿𝐸 (17) 

Constraints (17) ensure that link l is only chosen for the configuration under 

construction if 𝑥𝑙 = 1, i.e., it is chosen for connection of a switching matrix.  

Add the following new set of constraints:  

∑ 𝑥𝑙

𝑙 ∈ 𝐿𝑣

 ≤  𝑆𝑣  𝑣 ∈  𝑉  (18) 

In order to ensure that the number of internal port connections (IPC) of an 

asymmetric node does not exceed the IPC number for that node.  

The initial step of the solution process, i.e., the solution of the linear relaxation of the 

RWA_OAS model is the same as for the RWA_AN model, using a column generation 

algorithm. Next, we aim at finding an integer solution to the RWA_OAS problem. We 

found that this integer solution consists of the integer solution of the RWA_AN model 

and its respective set of asymmetric switch connections which is defined by a combination 

of values 𝑥𝑙 for 𝑙 ∈  𝐿𝑣, 𝑣 ∈  𝑉. Hence, we propose a two-step process. In the first step, 

we identify the binary values of the 𝑥 variables using a sequential rounding-off 

mechanism (see Algorithm 1 below). Once all the 𝑥 variables have been set to either 0 or 

1 (i.e., internal port connections have been selected), we solve the remaining problem 

with an ILP solver.  

Algorithm 1 Rounding-based algorithm for setting the integer values of the 𝑥 variables  

𝑥𝐼𝑃  ←  𝑥𝐿𝑃 

while ∃𝑥𝑙
𝐼𝑃  ∉  𝑍+ do 

      Select the variable 𝑥𝑙
𝐼𝑃 with the largest fractional value  

        𝑥𝑙
𝐼𝑃  ←  𝑅𝑂𝑈𝑁𝐷(𝑥𝑙

𝐿𝑃) 

       Solve the CG_ILP model where the restricted master problem is (1)-(5), (13)-(15) 

and the pricing problem (6), (8)-(12), (17)-(18) with the additional constraint 𝑥𝑙 =  𝑥𝑙
𝐼𝑃 

       𝑥𝐼𝑃  ←  𝑥𝐿𝑃 

end while 

 

Algorithm 1 is started with the optimal LP (Linear Programming) relaxation solution, 

𝑥𝐼𝑃, as output by the column generation algorithm. If all 𝑥𝐼𝑃 for 𝑙 ∈  𝐿𝑣, 𝑣 ∈  𝑉 have 

integer values, an optimum asymmetric switch matrix has been found for all asymmetric 

nodes and there is no need to proceed with Algorithm 1, use the same solution approach 

as for finding an integer solution for Model RWA_AN. On the other hand, if at least one 

variable 𝑥𝑙 has a fractional value in 𝑥𝐼𝑃, one of them with maximum fractional value is 

selected and rounded to its closest integer value. Then, the resulting restricted master 

problem with one more integer 𝑥𝑙 variable is reoptimized, meaning the pricing problem 

is solved again until the LP optimality condition is met again. This process continues until 

there is no remaining variable 𝑥𝑙 with a fractional value.  
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2.4. Numerical results  

The two RWA_AN and RWA_OAS models were solved using the solution process 

described in Sections 3 and 4. Algorithms were implemented using the OPL programming 

language and solved using CPLEX 12.5. Programs were run on a 2.2 GHz AMD Opteron 

64-bit processor with 4GB RAM.  

We next describe the data instances and then discuss the quality of the solutions 

provided by both models. We then look at the grade of service vs. switching connectivity 

for a given number of ports, under two switching scenarios.  

2.4.1. Network and data instances  

We run experiments on the NSFNET topology: 14 nodes, 42 directed links [11]. The 

internal node edges describe the optical switching capabilities. Note that each switching 

edge corresponds to two switching directed capabilities in opposite directions. The 

numbers beside nodes define the number of switching capabilities of nodes for the 

RWA_OAS model. (𝑥) indicates that they are 𝑥/2 bidirectional switching capabilities 

between the ports, i.e., whenever one can switch from port 𝜋 to port 𝜋, we assume it is 

also possible to switch from 𝜋′ to port 𝜋. Those switching edges are randomly generated 

for the RWA_AN model. The number of wavelengths is set to 30.  

We run experiments on two different topologies: the 14-node, 42-(directed) link 

NSFNET and the 24-node, 86-(directed) link USANET [12]. In Figure 2, the blue lines 

describe the internal port connections for each node. They are randomly generated for the 

RWA_AN model while red numbers beside nodes define a limit on the number of the 

switching capabilities of nodes for the RWA_OAS model: (𝑥) indicates that they can be 

𝑥/2 bidirectional switching capabilities between the ports, i.e., whenever one can transfer 

from port 𝜋 to port 𝜋′, we assume it is also possible from 𝜋′ to port 𝜋. The number of 

wavelengths is set to 30 for both topologies.  

 

 

(a) NSFNET 

backbone 

network 

(b) NSFNET backbone 

network with an optimized 

asymmetric switch matrix - 

SD_2 instance 

(c) NSFNET backbone 

network with an optimized 

asymmetric switch matrix - 

SD_9 instance 

Figure 2. Network topology 

For each network topology, we consider 10 traffic instances. For the first traffic 

instance (i.e., SD_0), the directed traffic demand matrix 𝑇 = [𝑇𝑠𝑑] is generated by 

drawing the (integer) traffic demands (in units of light-paths) uniformly at random in 
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{0, 1, 2, 3, 4, 5}. The following traffic instances correspond to incremental traffic: 𝑆𝐷_𝑖  ∈
 𝑆𝐷_(𝑖+1) where 𝑆𝐷_(𝑖+1) is built upon 𝑆𝐷_𝑖  by randomly adding from 1 up to 5 more 

requests for each pair of nodes. Table 1 gives the detailed characteristics of the request 

sets. For each traffic in- stance, we provide the number of node pairs with requests (|𝑆𝐷|) 

and the overall number of traffic requests (∑ 𝑑𝑠𝑑{𝑣𝑠,𝑣𝑑}∈𝑆𝐷 ). Note that 182 is the maximum 

number of node pairs.  

2.4.2.   Quality of the RWA_AN and RWA_OAS solutions  

We here discuss the accuracy of the solutions obtained by both models using the 

solution processes. The accuracy is indicated in the columns entitled 𝜀 in Table 4. We can 

see that 𝜀 varies from 0.0% to 8.8%, meaning that the output solutions are always within 

a 9% accuracy. While these accuracies are satisfactory, they could be easily reduced to 

about 1% with the help of a heuristic for generating an initial solution. Moreover, note 

that the results correspond to the largest traffic instances solved 𝜀-optimally so far with 

30 wavelengths.  

We next compare the grades of service resulting from the solutions of models 

RWA_AN and RWA_OAS, see the last column in Table 4. We can observe a 16.2% 

average increase of the grades of service, 𝐺𝑜𝑆𝐴𝑁
1  and 𝐺𝑜𝑆𝑂𝐴𝑆

1   for all traffic instances 

assuming a first port scenario as described by the number (𝑥) in Figure 3(a). Therefore, 

optimizing the switching configurations for a given number of ports makes a significant 

difference. Let us see the resulting topologies in Figure 2. Indeed, Figure 2(b) provides 

the solution of the 𝑆𝐷_2 instance where all switching connectivity are bidirectional, while 

Figure 2(c) describes the solution of the 𝑆𝐷_9  instance where several switching 

connectivities are unidirectional (see node 𝑣5).  

 

Table 1. Performance of the RWA_AN/RWA_OAS model solutions  

- NSFNET network with 30 wavelengths 

 

Traffic 

instances 
RWA_AN Model RWA_OAS Model RWA_AN FULL 

 𝑧𝐴𝑁
𝐿𝑃  𝑧𝐴𝑁

𝐼𝐿𝑃 
𝜀 

(%) 
𝑧𝑂𝐴𝑆

𝐼𝐿𝑃  𝑧𝑂𝐴𝑆
𝐼𝐿𝑃  

𝜀 

(%) 

𝑧𝑂𝐴𝑆
𝐼𝐿𝑃 − 𝑧𝐴𝑁

𝐼𝐿𝑃

𝑧𝐴𝑁
𝐼𝐿𝑃  

(%) 

𝑧𝐹𝑈𝐿𝐿
𝐼𝐿𝑃  𝑧𝐹𝑈𝐿𝐿

𝐼𝐿𝑃  
𝜀 

(%) 

𝑧𝐹𝑈𝐿𝐿
𝐼𝐿𝑃 − 𝑧𝐴𝑁

𝐼𝐿𝑃

𝑧𝐴𝑁
𝐼𝐿𝑃  

(%) 

SD_0 346.0 331 4.3 346.0 335 3.2 1.2 346.0 339 2.0 2.4 

SD_1 494.3 477 3.5 548.0 527 3.8 10.5 548.0 527 3.8 10.5 

SD_2 597.4 569 4.8 681.3 657 3.6 15.5 681.5 658 3.4 15.6 

SD_3 676.8 661 2.3 766.8 748 2.5 13.2 767.8 751 2.2 13.6 

SD_4 739.6 731 1.2 833.7 803 3.7 9.8 835.7 805 3.7 10.1 

SD_5 794.2 781 1.7 884.3 865 2.2 10.8 889.4 867 2.5 11.0 

SD_6 839.9 821 2.2 924.0 913 1.2 11.2 932.1 917 1.6 11.7 

SD_7 888.2 872 1.8 967.0 923 4.5 5.8 965.7 923 4.4 5.8 

SD_8 903.0 902 0.1 1,008.0 998 1.0 10.6 1,008.0 998 1.0 10.6 

SD_9 918.9 917 0.2 1,048.6 1,034 1.4 12.8 1,048.9 1,033 1.5 12.6 

SD_10 933.0 933 0.0 1,084.9 1,063 2.0 13.9 1,085.5 1,075 1.0 15.2 
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Table 2. Performance of the RWA_AN/RWA_OAS model solutions  

- NSFNET network when the number of wavelengths increases from 30 to 600 

 

Traffic 

instances 

RWA_AN Model RWA_OAS Model Comparison 

𝑧𝑂𝐴𝑆
𝐼𝐿𝑃 −  𝑧𝐴𝑁

𝐼𝐿𝑃

𝑧𝐴𝑁
𝐼𝐿𝑃  

(%) 

𝑧𝐴𝑁
𝐿𝑃  𝑧𝐴𝑁

𝐼𝐿𝑃 𝜀 

(%) 

Configurations 𝑧𝑂𝐴𝑆
𝐼𝐿𝑃  𝑧𝑂𝐴𝑆

𝐼𝐿𝑃  𝜀 

(%) 

Configurati

ons 

#Gen

. 

#Select

. 

#Ge

n. 

#Se

lect. 

SD_0 346.0 330 4.6 417 29 346.0 338 2.3 61 23 2.4 

SD_1 695.6 676 2.8 513 56 696.0 692 0.6 64 28 2.4 

SD_2 1043.0 994 4.7 470 65 1043.0 1038 0.5 60 36 4.4 

SD_3 1413.0 1363 3.5 538 76 1413.0 1413 0.0 42 21 3.7 

SD_4 1793.0 1714 4.4 604 82 1797.0 1783 0.8 61 39 4.0 

SD_5 2165.0 2076 4.1 625 92 2191.0 2191 0.0 63 34 5.5 

SD_6 2516.2 2443 2.9 601 97 2541.0 2538 0.1 70 40 3.9 

SD_7 2866.8 2762 3.7 577 87 2880.0 2880 0.0 62 37 4.3 

SD_8 3185.7 3124 1.9 519 96 3229.0 3225 0.1 66 42 3.2 

SD_9 3586.8 3516 2.0 600 101 3611.0 3607 0.1 61 41 2.6 

SD_10 3949.3 3878 1.8 567 100 3973.0 3965 0.2 66 41 2.2 

2.4.3.   Characteristic of the RWA_AN and RWA_OAS solutions  

Table 3 also shows the number of generated configurations. We observe that only a 

very small number of configurations are generated while there are millions of possible 

configurations, thanks to the column generation technique which allows reaching an 

optimal solution of the linear relaxation without the requirement of an explicit 

enumeration of all the configurations. The number of selected configurations, which are 

part of the near optimal ILP solutions, is even smaller as can be observed in Table 4.  

 

Table 3. Performance of the RWA_AN/RWA_OAS model solutions  

- USANET network with 100 wavelengths 

 

T
ra

ff
ic

 i
n

st
a

n
ce

s RWA_AN Model RWA_OAS Model RWA_AN FULL 

𝑧𝐴𝑁
𝐿𝑃  𝑧𝐴𝑁

𝐼𝐿𝑃  𝜀 

(%) 

𝑧𝑂𝐴𝑆
𝐼𝐿𝑃  𝑧𝑂𝐴𝑆

𝐼𝐿𝑃  𝜀 

(%) 

𝑧𝑂𝐴𝑆
𝐼𝐿𝑃 −  𝑧𝐴𝑁

𝐼𝐿𝑃

𝑧𝐴𝑁
𝐼𝐿𝑃  

(%) 

𝑧𝐹𝑈𝐿𝐿
𝐼𝐿𝑃  𝑧𝐹𝑈𝐿𝐿

𝐼𝐿𝑃  𝜀 

(%) 

𝑧𝐹𝑈𝐿𝐿
𝐼𝐿𝑃 −  𝑧𝐴𝑁

𝐼𝐿𝑃

𝑧𝐴𝑁
𝐼𝐿𝑃  

(%) 

SD_0 856.9 816 4.8 1,049.0 1,036 1.2 27.0 1,049.0 1,049 0.0 28.6 

SD_1 1,468.0 1,412 3.8 2,007.8 1,911 4.8 35.3 2,018.9 1,923 4.8 36.2 

SD_2 1,863.4 1,758 5.6 2,541.6 2,423 4.7 37.8 2,569.0 2,455 4.4 39.6 

SD_3 2,260.3 2,209 2.3 3,023.1 2,913 3.6 31.9 3,056.0 2,943 3.7 33.2 

SD_4 2,507.4 2,393 4.6 3,412.2 3,257 4.5 36.1 3,424.3 3,271 4.5 36.7 

SD_5 2,740.3 2,642 3.6 3,688.0 3,517 4.6 33.1 3,708.0 3,537 4.6 33.9 

SD_6 2,930.5 2,793 4.7 3,918.8 3,746 4.4 34.1 3,947.0 3,757 4.8 34.5 

SD_7 3,124.3 3,058 2.1 4,116.3 3,964 3.7 29.6 4,139.0 4,052 2.1 32.5 

SD_8 3,271.1 3,131 4.3 4,280.5 4,077 4.8 30.2 4,332.0 4,186 3.4 33.7 

SD_9 3,456.6 3,384 2.1 4,498.6 4,286 4.7 26.7 4,557.0 4,367 4.2 29.0 

SD_10 3,598.3 3,497 2.8 4,638.2 4,491 3.2 28.4 4,701.0 4,628 1.6 32.3 
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Table 4. Performance of the RWA_AN/RWA_OAS model solutions  

- NSFNET network when the number of wavelengths increases from 100 to 1600 

T
ra

ff
ic

 i
n

st
a

n
ce

s RWA_AN Model RWA_OAS Model Comparison 

𝑧𝑂𝐴𝑆
𝐼𝐿𝑃 −  𝑧𝐴𝑁

𝐼𝐿𝑃

𝑧𝐴𝑁
𝐼𝐿𝑃  

(%) 

𝑧𝐴𝑁
𝐿𝑃  𝑧𝐴𝑁

𝐼𝐿𝑃 𝜀 

(%) 

Configurations 𝑧𝑂𝐴𝑆
𝐼𝐿𝑃  𝑧𝑂𝐴𝑆

𝐼𝐿𝑃  𝜀 

(%) 

Configurations 

#Gen. #Select. #Gen. #Select. 

SD_0 995.6 983 1.3 347 147 1,049.0 1,049.0 0.0 84 44 6.7 

SD_1 1,972.0 1,939 1.7 446 150 2,168.0 2,108.0 2.8 184 97 8.7 

SD_2 2,831.0 2,804 1.0 448 152 3,054.0 2,948.0 3.5 410 111 5.1 

SD_3 3,609.0 3,583 0.7 442 147 3,879.0 3,702.0 4.6 387 105 3.3 

SD_4 4,407.0 4,351 1.3 503 139 4,727.0 4,623.0 2.2 356 117 6.3 

SD_5 5,281.0 5,252 0.5 436 138 5,560.0 5,413.0 2.6 360 114 3.1 

SD_6 6,088.0 6,056 0.5 513 161 6,388.0 6,188.0 3.1 387 126 2.2 

SD_7 6,873.0 6,831 0.6 567 160 7,206.0 7,013.0 2.7 390 129 2.7 

SD_8 7,642.0 7,604 0.5 575 144 8,025.2 7,849.0 2.2 376 137 3.2 

SD_9 8,478.0 8,417 0.7 632 155 8,875.0 8,726.0 1.7 376 142 3.7 

SD_10 9,263.0 9,216 0.5 618 146 9,677.6 9,529.0 1.5 380 142 3.4 

2.4.4.    Grade of service vs. switching connectivity  

In Figure 3, we investigate the impact of increasing the number of ports on the grade 

of service, and then the optimization of the switching connectivity on the grade of service. 

In order to do so, we run experiments on different sets of traffic requests, and for a 

different number of ports, for both models.  

 

 

(a) NSFNET network (b) USANET network 

Figure 3. Impact of the number of internal connections 

 

Indeed, we increase the number of switching capabilities by one bidirectional IPC 

(two directional IPCs in opposite directions) for the following set of nodes: 

{𝑣3, 𝑣4, 𝑣7, 𝑣8}. While this increased switching capability does not affect much the results 

of the RWA_OAS Model (see lines entitled NSF_OAS and NSF_OAS_ADD), it is 

different for the RWA_AN Model (see lines entitled NSF_AN and NSF_AN_ADD): we 

can see that it allows a 9.6% average increase of the grades of service for the traffic 
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instances. However, if the switching connectivity matrix is optimized according to the 

solution of the RWA_OAS model, no additional IPC is required for improving the grades 

of service. Note that even the improved GoS of model RWA_AN, i.e., 𝐺𝑜𝑆𝐴𝑁
2 , does not 

reach the values of the 𝐺𝑜𝑆𝑂𝐴𝑆
2 . Consequently, it is really worth optimizing the switching 

capabilities of a ROADM in order to save on the number of ports, or the switching 

connectivity requirements.  

2.4.5.   Analysis of the number of hops  

In Figure 4, we provide the percentage of wavelength paths based on the number of 

hops (i.e., the number of links) in the optimal integer solutions for both models. Indeed, 

lines entitled “1-hop”, “2-hops”, “3-hops” and “≥ 4-hops” describe the proportion of 

wavelength paths with 1, 2, 3, or more than 4 links of the length respectively. When the 

number of traffic demands increases, going from SD_0 to SD_19, we can see that the 

number of “1-hop” paths goes up while the number of “≥ 4-hops” paths goes down, even 

to zero for almost traffic instances. The results show that: with respect to the objective of 

maximizing the number of requests in a network with a fixed number of wavelengths, 

when traffic demands are increased, the solution consists essentially of single hop 

optical paths.  

 

 

(a) NSFNET network (b) USANET network 

Figure 4. Analysis of the number of hops 

3.  Conclusions  

We have proposed a scalable and efficient optimization model for determining the 

best switching matrices for each ROADM, for a given number of ports, and have shown 

how critical is such a choice to maximize the grade of service. Future work will 

include the adaptation of this model to dynamic traffic to take advantage of the 

flexibility of ROADMs.  
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