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Abstract. In this paper, we present a result on Hyers-Ulam stability fo
a class of nonlocal differential equations in Hilbert sgaday using the
theory of integral equations with completely positive lasntogether with a
new Gronwall inequality type. The paper develops some tecesults on
fractional differential equations to the ones involvingigeal nonlocal derivatives.
Instead of Mittag-Leffler functions, we must utilize the theterization of
relaxation function.
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1. Introduction

Let H be a separable Hilbert space. Consider the following eguati
(k * Opu) (t) + Au(t) = f(t,u(t)), t € J :=[0,T]. (1.2)

where the unknown function takes values inH, the kernelt € L] _(R"), A is
an inbounded linear operator, arfd J x H — H is a given function. Here the
notation« denotes the Laplace convolution, i.€* v)(t) = fot k(t — s)v(s)ds.

In [1], authors introduced a result on the existence, reguland stability for mild

solutions to(1.1) wheref depends only om and the initial condition is given by
u(0) = uo. 1.2)

Our goal in this paper is to consider the Hyers-Ulam stabiéit (1.1).

The Hyers-Ulam stability for functional equations was fdad in 1940 by S.M
Ulam in a talk at Wisconsin University (see [2]) and by D. H Ifgeanswer a year later
for additive functions defined on Banach spaces (see [3])weNer, the first result on
the Hyers-Ulam stability of a differential equation was egf$ed by C.Alsina and R. Ger
in 1998 (see [4]). In this remarkable work, they proved tha differentiable function
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y: I — R satisfiegy'(t) — y(t)| < eforall t € I, wheree > 0 is a given number and

is an open interval oR, then there exists a differentiable functign / — R satisfying
both ¢'(t) = g(t) and|y(t) — g(t)] < 3e for all ¢t € I. It then has attracted attention
of mathematicians for decades (see [5-13]) to study this tfpstability for differential
equations systematically.

In order to deal with (1.1), we use the following standing dtyyeses:

(A) The operatorA : D(A) — H is densely defined, self-adjoint, and positively
definite.

(K) The kernel functiork € L} _(RT) is nonnegative and nonincreasing, and there

loc

exists a functior € L} (R*) such thatt « [ = 1 on (0, 00).

loc

(F) The continuous functiofi: J x H — H is Lipschitzian , i.e , there i&; > 0 such
that
1£(t,01) = f(t,02)ll < Lylloy — vall, Vit € J, Yor, v € H.

2. Preliminaries
2.1. The resolvent families and the Gronwall type inequalig
Consider the following scalar integral equations

s(t)+u(lxs)(t) =1, t >0, (2.1)
r(t) +p(lxr)(t) =11), t > 0. (2.2)

The existence and uniquenesss@dndr were analyzed in [8]. Recall that the functibn
is called a completely positive kernel f-) andr(-) take nonnegative values for every
i > 0. The complete positivity of is equivalent to that (see [14]), there exist> 0
andk € L, (R") nonnegative and nonincreasing which satisfyt+ [ « £k = 1. So the
hypothesisK) implies that/ is completely positive.

Denote bys(-, ) andr(-, 1) the solutions of (2.1) and (2.1), respectively. As
mentioned in [15], the functions(-, 1) andr(-, x) take nonnegative values even in the

caseu < 0. We collect some additional properties of these functions.

Proposition 2.1. [1, 15] Let the hypothesisK) hold. Then for everyu > 0,
s(-,p), (-, 1) € L} (RT). In addition, we have

loc

1. The functiors(-, i) is nonnegative and nonincreasing. Moreover,
t
s(t, ) [1 —i—,u/ l(T)dT} <1, Vvt>0, (2.3)
0
hence ifl ¢ L'(R™) thentlim s(t, ) = 0 for everyu > 0.
—00

2. The function(-, 1) is nonnegative and one has

s(t,p) =1- u/o r(r, pdr =k xr( p)(t), t =0, (2.4)
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sofot r(r,p)dr < pt, Ve > 0. 1f L ¢ LY(RY) then [ (7, p)dr = pu~" for every
> 0.

3. For eacht > 0, the functiong: — s(t, 1) and . — r(t, 1) are nonincreasing.

4. Equation (2.1) is equivalent to the problem

d
@[k;*(s—l)]—i-,us:o, s(0) = 1.

5. Letv(t) = s(t, w)vo+ (r(-, u)*g)(t), hereg € L (R1). Thenv solves the problem

%Uf % (v —v)|(t) + pv(t) = g(t), v(0) = v.

Let us mention that, the hypothesis)(ensures the existence of an orthonormal
basis ofH consisting of eigenfunctiong:,, }>° , of the operatord and we have

o
Av = E AnUn€n,
n=1

where),, > 0 is the eigenvalue corresponding to the eigenfunctjpaf A,

oo

D(A)={v= ivnen : Z)\ivi < 00}
n=1

n=1
We can assume that< A < \p, < ... < )\, — 0o asn — oo.
For~ € R, one can define the fractional power#fas follows:

D(AY) = {v = ivnen ; i)\?vz < oo} ,
n=1

n=1
[o¢]
Ay = g AU €.
n=1

LetV, = D(A”). ThenV, is a Banach space endowed with the norm

o0 2
[olly = [[A7]| = (Z A?Ui) :

n=1

Furthermore, fory > 0, we can identify the dual spaé€’ of V, with V_,.
We now define the following operators:

S(t)yv = Z s(t, \p)vpen, t > 0,v € H, (2.5)
n=1

R(t)v = Zr(t, An)Un€n, t > 0,0 € H. (2.6)
n=1
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It is easily seen that(¢) and R(t) are linear. We collect some basic properties of these
operators in the following lemma.

Lemma 2.1.[1] Let {S(¢) };>0 and{ R(t) }+~0, be the families of linear operators defined
by (2.5) and (2.6), respectively. Then

1. Foreachv € H andT > 0, S(-)v € C([0,T]; H) and AS(-)v € C((0,T}; H).

Moreover,
1S()vl < s(t, M)l|vll, ¢ € [0,T7, (2.7)
[ v]]
[AS@)v] < D@ t € (0,7]. (2.8)

2. Letv € H,T > 0andg € C(][

0,7); H). ThenR(-)v € C((0,T];H), Rxg €
C([0,7); H) and A(R  g) € C([0,T

]; V_1). Furthermore,
[R(E)vll < vt M)lvll, t € (0,T], (2.9)

I(R#g)(®)] < / r(t — 7 A g(r)]ldr, t € (0.7, (2.10)

1
2

a0y < ([ re-ralo@Par) re b1l @1

The following proposition shows a Gronwall type inequality

Proposition 2.2. Letv be a nonnegative continuous function satisfying
t
o(t) < Cy + Co / r(t— 7, pyo(r)dr, t € J, (2.12)
0

for given nonnegative numbet§, C; andy > 0. Then
v(t) < s(t, —Cy)CY.
Proof. From (2.2) and the positivity of(-, ) andi(-), we get
r(t,u) < I(t),Vt € J, andu > 0.
Combining this inequality with (2.12) yield
v(t) < Cy 4 Co(l % v)(1). (2.13)
Consider the following equation

§(t) = 01 + CQ(Z *f)(t),t e J
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Obviously¢(0) = C; and the equation is equivalent to
£(t) — Cr = Co(l* &)(1).
Taking the convolution with the kernglgives us
kx (& —Cp) = Co(l*£)(2).
Then¢ is a solution to the following systems

Liks (e =) = Coe(t)

dt
So¢(t) = s(t, —C4)C. Therefore, we arrive at
’U(t) S S(t, —02)01, vVt € J,
thanks to the comparison principle. O

2.2. Existence result to system (1.1) - (1.2)

Definition 2.1. A functionu € C'((0,T7; H) is said to be a mild solution to (1.1)-(1.2) on
[0, 77 iff

u(t) = S(t)ug + /Ot R(t — 1) f(7,u(r))dr,
fort € [0, 7.
Theorem 2.1.Let (A), (K) and (F) hold. Then the mild solution to (1.1)-(1.2) is unique.
Proof. To get the result, we use the same arguments as in [1]. O

3. Hyers-Ulam stability on [0, 7]

We first define of Hyer-Ulam stability for nonlocal differéatequation (1.1) and
then we show our main result.
We consider (1.1) and the following inequality

| (k * 00) (1) + Av(t) — f(tu@)| < e te (3.1)
wheree > 0 is given. We now give the definition of mild solution to the abanequality.

Definition 3.1. A continuous funtiom : J — H is said to be a mild solution to (3.1) if
there exists a functiop € L;,(J, H) such that|g(¢)| < e and

loc

u(t) = S(t)v(0) + /0 R(t — 7)[f(r,0(r)) + g(r)]dr, t € J.
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Definition 3.2. Equation (1.1) is called Hyers-Ulam stable, with respect ttefined on
J, if there exists a real numbé&r > 0 such that for eacl > 0 and for every mild solution
v of (3.1), there is a mild solution of (1.1) with

[v(t) —u(t)|| < Ces(t,v),vt € [0,T7,
for somer € R.

Definition 3.3. Equation(1.1) is called generalized Hyers-Ulam stable, with respect to
s(t,v), if there exist®¥) € C'(R*,R*), #(0) = 0 such that for each mild solution of
(3.1) there exists a mild solutianof (1.1) with [|v(¢) — u(t)|| < é(e)s(t,v), forall t € J.

Remark 3.1. It is clear that if equation(1.1) is Hyers-Ulam stable then it is also
generalized Hyers-Ulam stable.

The following Theorem is the main result in this paper.
Theorem 3.1.1f (A), (K) and(F) hold, then the equation (1.1) is Hyers-Ulam stable.

Proof. Let v be a mild solution to (3.1). By Theorem 2.1, the following Iplem

(k * Ou) (t) + Au(t) = f(t,u(t), t € J,
u(0) = v(0),

admits a unique mild solution given by
u(t) = S(6)0(0) + /0 "R(t— 1) f(ru(r))dr, Vi€ ]
Therefore, we have
Io(t) = o)l < | [ Rt = )5 0(0) + 9(r) = fru(rlar]
< e/ot r(t — 7, \)dr + L /Ot r(t — 7, 0 Jo(r) — u(r)dr

1 t
<ot / r(t =, A)[lo(r) — u(r)dr,
0

thanks ta(F) and Proposition 2.1.
It comes from the Gronwall type inequality stated in Proposi2.2 that
€

[o(t) —u(®)]] < N s(t, =Ly).

The proof is complete. O
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4. Conclusions

In this paper, the Hyers-Ulam stability has been discussed tlass of nonlocal
evolution equations in Hilbert space. The result may bergldd to more general models
and concepts. It is very interesting to investigate thepedyof stabilities for nonlocal
differential equations in Banach spaces, where the newodsthnd ideas are needed due
to the lack of Hilbertian structrure on phase spaces.
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