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Abstract. In this paper, we present a result on Hyers-Ulam stability for
a class of nonlocal differential equations in Hilbert spaces by using the
theory of integral equations with completely positive kernels together with a
new Gronwall inequality type. The paper develops some recent results on
fractional differential equations to the ones involving general nonlocal derivatives.
Instead of Mittag-Leffler functions, we must utilize the characterization of
relaxation function.
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1. Introduction
Let H be a separable Hilbert space. Consider the following equation

(k ∗ ∂tu) (t) + Au(t) = f(t, u(t)), t ∈ J := [0, T ]. (1.1)

where the unknown functionu takes values inH, the kernelk ∈ L1
loc (R

+), A is
an inbounded linear operator, andf : J × H → H is a given function. Here the
notation∗denotes the Laplace convolution, i.e.,(k ∗ v)(t) =

∫ t

0
k(t− s)v(s)ds.

In [1], authors introduced a result on the existence, regularity and stability for mild
solutions to(1.1) wheref depends only onu and the initial condition is given by

u(0) = u0. (1.2)

Our goal in this paper is to consider the Hyers-Ulam stability for (1.1).
The Hyers-Ulam stability for functional equations was founded in 1940 by S.M

Ulam in a talk at Wisconsin University (see [2]) and by D. H Hyers’ answer a year later
for additive functions defined on Banach spaces (see [3]). However, the first result on
the Hyers-Ulam stability of a differential equation was addressed by C.Alsina and R. Ger
in 1998 (see [4]). In this remarkable work, they proved that if a differentiable function
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y : I → R satisfies|y′(t)− y(t)| ≤ ǫ for all t ∈ I, whereǫ > 0 is a given number andI
is an open interval ofR, then there exists a differentiable functiong : I → R satisfying
both g′(t) = g(t) and |y(t) − g(t)| ≤ 3ǫ for all t ∈ I. It then has attracted attention
of mathematicians for decades (see [5-13]) to study this type of stability for differential
equations systematically.

In order to deal with (1.1), we use the following standing hypotheses:

(A) The operatorA : D(A) → H is densely defined, self-adjoint, and positively
definite.

(K) The kernel functionk ∈ L1
loc(R

+) is nonnegative and nonincreasing, and there
exists a functionl ∈ L1

loc(R
+) such thatk ∗ l = 1 on (0,∞).

(F ) The continuous functionf : J ×H → H is Lipschitzian , i.e , there isLf > 0 such
that

‖f(t, v1)− f(t, v2)‖ ≤ Lf‖v1 − v2‖, ∀t ∈ J, ∀v1, v2 ∈ H.

2. Preliminaries
2.1. The resolvent families and the Gronwall type inequality

Consider the following scalar integral equations

s(t) + µ(l ∗ s)(t) = 1, t ≥ 0, (2.1)

r(t) + µ(l ∗ r)(t) = l(t), t > 0. (2.2)

The existence and uniqueness ofs andr were analyzed in [8]. Recall that the functionl
is called a completely positive kernel iffs(·) andr(·) take nonnegative values for every
µ > 0. The complete positivity ofl is equivalent to that (see [14]), there existα ≥ 0
andk ∈ L1

loc(R
+) nonnegative and nonincreasing which satisfyαl + l ∗ k = 1. So the

hypothesis (K) implies thatl is completely positive.
Denote bys(·, µ) and r(·, µ) the solutions of (2.1) and (2.1), respectively. As

mentioned in [15], the functionss(·, µ) andr(·, µ) take nonnegative values even in the
caseµ ≤ 0. We collect some additional properties of these functions.

Proposition 2.1. [1, 15] Let the hypothesis (K) hold. Then for everyµ > 0,
s(·, µ), r(·, µ) ∈ L1

loc(R
+). In addition, we have

1. The functions(·, µ) is nonnegative and nonincreasing. Moreover,

s(t, µ)

[

1 + µ

∫ t

0

l(τ)dτ

]

≤ 1, ∀t ≥ 0, (2.3)

hence ifl 6∈ L1(R+) then lim
t→∞

s(t, µ) = 0 for everyµ > 0.

2. The functionr(·, µ) is nonnegative and one has

s(t, µ) = 1− µ

∫ t

0

r(τ, µ)dτ = k ∗ r(·, µ)(t), t ≥ 0, (2.4)
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so
∫ t

0
r(τ, µ)dτ ≤ µ−1, ∀t > 0. If l 6∈ L1(R+) then

∫∞

0
r(τ, µ)dτ = µ−1 for every

µ > 0.

3. For eacht > 0, the functionsµ 7→ s(t, µ) andµ 7→ r(t, µ) are nonincreasing.

4. Equation (2.1) is equivalent to the problem

d

dt
[k ∗ (s− 1)] + µs = 0, s(0) = 1.

5. Letv(t) = s(t, µ)v0+(r(·, µ)∗g)(t), hereg ∈ L∞
loc(R

+). Thenv solves the problem

d

dt
[k ∗ (v − v0)](t) + µv(t) = g(t), v(0) = v0.

Let us mention that, the hypothesis (A) ensures the existence of an orthonormal
basis ofH consisting of eigenfunctions{en}∞n=1 of the operatorA and we have

Av =

∞
∑

n=1

λnvnen,

whereλn > 0 is the eigenvalue corresponding to the eigenfunctionen of A,

D(A) = {v =

∞
∑

n=1

vnen :

∞
∑

n=1

λ2

nv
2

n < ∞}.

We can assume that0 < λ1 ≤ λ2 ≤ ... ≤ λn → ∞ asn → ∞.
Forγ ∈ R, one can define the fractional power ofA as follows:

D(Aγ) =

{

v =

∞
∑

n=1

vnen :

∞
∑

n=1

λ2γ
n v2n < ∞

}

,

Aγv =

∞
∑

n=1

λγ
nvnen.

Let Vγ = D(Aγ). ThenVγ is a Banach space endowed with the norm

‖v‖γ = ‖Aγv‖ =

(

∞
∑

n=1

λ2γ
n v2n

)
1

2

.

Furthermore, forγ > 0, we can identify the dual spaceV ∗
γ of Vγ with V−γ.

We now define the following operators:

S(t)v =

∞
∑

n=1

s(t, λn)vnen, t ≥ 0, v ∈ H, (2.5)

R(t)v =

∞
∑

n=1

r(t, λn)vnen, t > 0, v ∈ H. (2.6)
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It is easily seen thatS(t) andR(t) are linear. We collect some basic properties of these
operators in the following lemma.

Lemma 2.1. [1] Let {S(t)}t≥0 and{R(t)}t>0, be the families of linear operators defined
by (2.5) and (2.6), respectively. Then

1. For eachv ∈ H andT > 0, S(·)v ∈ C([0, T ];H) andAS(·)v ∈ C((0, T ];H).
Moreover,

‖S(t)v‖ ≤ s(t, λ1)‖v‖, t ∈ [0, T ], (2.7)

‖AS(t)v‖ ≤
‖v‖

(1 ∗ l)(t)
, t ∈ (0, T ]. (2.8)

2. Letv ∈ H, T > 0 and g ∈ C([0, T ];H). ThenR(·)v ∈ C((0, T ];H), R ∗ g ∈
C([0, T ];H) andA(R ∗ g) ∈ C([0, T ];V− 1

2

). Furthermore,

‖R(t)v‖ ≤ r(t, λ1)‖v‖, t ∈ (0, T ], (2.9)

‖(R ∗ g)(t)‖ ≤

∫ t

0

r(t− τ, λ1)‖g(τ)‖dτ, t ∈ [0, T ], (2.10)

‖A(R ∗ g)(t)‖− 1

2

≤

(
∫ t

0

r(t− τ, λ1)‖g(τ)‖
2dτ

)

1

2

, t ∈ [0, T ]. (2.11)

The following proposition shows a Gronwall type inequality.

Proposition 2.2. Letv be a nonnegative continuous function satisfying

v(t) ≤ C1 + C2

∫ t

0

r(t− τ, µ)v(τ)dτ, t ∈ J, (2.12)

for given nonnegative numbersC1, C2 andµ > 0. Then

v(t) ≤ s(t,−C2)C1.

Proof. From (2.2) and the positivity ofr(·, µ) andl(·), we get

r(t, µ) ≤ l(t), ∀t ∈ J, andµ > 0.

Combining this inequality with (2.12) yield

v(t) ≤ C1 + C2(l ∗ v)(t). (2.13)

Consider the following equation

ξ(t) = C1 + C2(l ∗ ξ)(t), t ∈ J.
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Obviouslyξ(0) = C1 and the equation is equivalent to

ξ(t)− C1 = C2(l ∗ ξ)(t).

Taking the convolution with the kernelk gives us

k ∗ (ξ − C1) = C2(1 ∗ ξ)(t).

Thenξ is a solution to the following systems

d

dt
[k ∗ (ξ − C1)] = C2ξ(t)

ξ(0) = C1.

Soξ(t) = s(t,−C2)C1. Therefore, we arrive at

v(t) ≤ s(t,−C2)C1, ∀t ∈ J,

thanks to the comparison principle.

2.2. Existence result to system (1.1) - (1.2)

Definition 2.1. A functionu ∈ C((0, T ];H) is said to be a mild solution to (1.1)-(1.2) on
[0, T ] iff

u(t) = S(t)u0 +

∫ t

0

R(t− τ)f(τ, u(τ))dτ,

for t ∈ [0, T ].

Theorem 2.1.Let (A), (K) and (F) hold. Then the mild solution to (1.1)-(1.2) is unique.

Proof. To get the result, we use the same arguments as in [1].

3. Hyers-Ulam stability on [0, T ]

We first define of Hyer-Ulam stability for nonlocal differential equation (1.1) and
then we show our main result.

We consider (1.1) and the following inequality

‖ (k ∗ ∂tv) (t) + Av(t)− f(t, v(t))‖ ≤ ǫ, t ∈ J, (3.1)

whereǫ > 0 is given. We now give the definition of mild solution to the above inequality.

Definition 3.1. A continuous funtionv : J → H is said to be a mild solution to (3.1) if
there exists a functiong ∈ L1

loc(J,H) such that‖g(t)‖ ≤ ǫ and

v(t) = S(t)v(0) +

∫ t

0

R(t− τ)[f(τ, v(τ)) + g(τ)]dτ, t ∈ J.
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Definition 3.2. Equation (1.1) is called Hyers-Ulam stable, with respect tos defined on
J , if there exists a real numberC > 0 such that for eachǫ > 0 and for every mild solution
v of (3.1), there is a mild solutionu of (1.1) with

‖v(t)− u(t)‖ ≤ Cǫs(t, ν), ∀t ∈ [0, T ],

for someν ∈ R.

Definition 3.3. Equation(1.1) is called generalized Hyers-Ulam stable, with respect to
s(t, ν), if there existsθ ∈ C (R+,R+) , θ(0) = 0 such that for each mild solutionv of
(3.1) there exists a mild solutionu of (1.1) with ‖v(t)−u(t)‖ ≤ θ(ǫ)s(t, ν), for all t ∈ J .

Remark 3.1. It is clear that if equation(1.1) is Hyers-Ulam stable then it is also
generalized Hyers-Ulam stable.

The following Theorem is the main result in this paper.

Theorem 3.1. If (A), (K) and (F) hold, then the equation (1.1) is Hyers-Ulam stable.

Proof. Let v be a mild solution to (3.1). By Theorem 2.1, the following problem

(k ∗ ∂tu) (t) + Au(t) = f(t, u(t)), t ∈ J,

u(0) = v(0),

admits a unique mild solution given by

u(t) = S(t)v(0) +

∫ t

0

R(t− τ)f(τ, u(τ))dτ, ∀t ∈ J.

Therefore, we have

‖v(t)− u(t)‖ ≤
∥

∥

∥

∫ t

0

R(t− τ)[f(τ, v(τ)) + g(τ)− f(τ, u(τ))]dτ
∥

∥

∥

≤ ǫ

∫ t

0

r(t− τ, λ1)dτ + Lf

∫ t

0

r(t− τ, λ1)‖v(τ)− u(τ)‖dτ

≤ ǫ
1

λ1

+ Lf

∫ t

0

r(t− τ, λ1)‖v(τ)− u(τ)‖dτ,

thanks to(F) and Proposition 2.1.
It comes from the Gronwall type inequality stated in Proposition 2.2 that

‖v(t)− u(t)‖ ≤
ǫ

λ1

s(t,−Lf ).

The proof is complete.
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4. Conclusions
In this paper, the Hyers-Ulam stability has been discussed for a class of nonlocal

evolution equations in Hilbert space. The result may be extended to more general models
and concepts. It is very interesting to investigate these types of stabilities for nonlocal
differential equations in Banach spaces, where the new methods and ideas are needed due
to the lack of Hilbertian structrure on phase spaces.
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