HNUE JOURNAL OF SCIENCE DOI: 10.18173/2354-1059.2020902
Natural Science, 2020, Volume 65, Issue 6, pp. 23-30
This paper is available online at http://stdb.hnue.edu.vn
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Abstract. In this paper we consider the existence and uniqueness &fsehzions
to 3D Navier-Stokes equations with damping and delay® in R3.
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1. Introduction

In this paper we consider the following 3D Navier-Stokesatmuns with damping
and delays i) C R3,

(% —vAu+ (u-V)u+Vp+alulf~tu = Gut—p(t))) + h(z), in (0,T) x Q,
diva =0 in (0,7) x Q,
u(z, 1) =0 in (0,7) x T,
w0, 2) = up(), zeqQ,
\u(t,x) = ¢(t, ), te (—r0),z €.
(1.2)

wherer > 0 is the kinematic viscocitys > 1 anda > 0 are two constantsy is

the velocity field of the fluid and: = wu(x,t) = (u1,us,us3), p is the pressurel is

a nondelayed external force fiel@; is another external force term and contains some
memory effects during a fixed interval of time of length> 0, p is an adequate given
delay functionyy is the initial velocity andy the initial datum on the interval.

Note that the case = 0 andG = 0 corresponds to the classical Navier-Stokes
problem for which the existence of smooth solutions is amgp®blem. The case of
G = 0is studied in [1], which is 3D Navier-Stokes equations widmgbing. The damping
is from the resistance to the motion of the flow. It describasous physical situations
such as porous media flow, drag or friction effects, and soisgphtive mechanisms
(see [2-5] and references therein).
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The 2D Navier-Stokes equations with delays has studied KBafaballo et al. [6].
In this paper, we continue to study 3D Navier-Stokes equatiaf forcing term with
bounded variable delay. Lét : R* — R?® be a measurable function satisfiGg0) = 0,
and assume that there exigts > 0 such that

|G(u) — G(v)|gs < Lg|u — v|gs, Yu,v € R>. (1.2)

Consider a function(t) € C*([0,T1), p(t) > 0 forall ¢t € [0, T], r = maxeor p(t) > 0
andp, = maxco,r) '(t) < 1. We will use the Galerkin method to study the existence of
weak solutions to (1.1) (see e.g., [6, 7]). To show the pestimates for(t — p(t)), we
use the technique of changing variable in [8].

In this paper, we will prove the existence of weak solutianglt1) in the case of
g > 1.1f 5> 3, we will get at the uniqueness of this solutions to (1.1).

2. Preliminaries

We define the following abstract spaces:

o V={uec (Cr))>:dvu=0}.

e H is the closure oV in (L%(©2))? with the norm|.|, and inner product,, .) defined
by

(u,v) = Z /Q wi(x)v;(x)dz for u,v € (L*(Q))°.

e Visthe closure ob in (H}(Q2))? with norm||.||, and associated scalar prod(ich)
defined by

Z / Ou; av]dx for u,v € (H2(Q))®.

Ox; Ox;

We denoter(u, v) = ((u, v)), and define the trilinear forfon V' x V' x V by

b(u, v, w) Z/u,a w;dz,Yu,v,w € V.
T

2,7=1
It is easy to check that if, v, w € V, then
b(u,v,w) = —b(u,w,v),

and
b(u,v,v) =0,Yu,v € V. (2.1)

In what follows, we will frequently use the following ineditees:
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Young'sinequality

ab < Eaerlib‘?, forall a,b,e > 0, withg = L,l <p < +o00.
P qe /(p—1) p—1

Ladyzhenskaya's inequality (when n = 3) (see, e.g., [10])
lullzs < clul?|ul'’?, Vu € V,
lull s < elulHJulP, Yu € V.
From [9, 10], we will use some results in the following lemma.

Lemma 2.1. If n = 3 then
Clul2[Jul[*||v[[[[w]|*/?]w]

b(u,v,w)] < Clla[lo]l[w]?|w]|/2 Vu,v,w €V (2.2)
Nl o] ]/

and
|b(w, v, w)] < V2[ul||ul|||v] for all u,v € V. (2.3)

3. Existence and uniqueness of weak solutions
We first give the definition of weak solution.

Definition 3.1. A function
u € C([—r, T); H) N Ligg([—r, T]; V) 0 Ligh ([=r, T]; L))
issaid to be a weak solution of (1.1)if for all 7" > 0,
u€ L*(—r, T;V)NL>®(0,T; H)
such that, for all v € V,

d

E(u(t), v) + v((u(t), v)+b(u(t), u(t), v) + al|ul’tu, v)
= (Glut = p(t))). v) + (h,v). G-

u(0) = uy, u(t) = o(t), te[-r0].
We now prove the following theorem.

Theorem 3.1. Let (1.2) hold, ug,h € H,¢ € L*(—r,0; H). Then there exists a unique
La

solutionto (1.1)if 12 > ————.
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Proof. Existence.

Let us considedw;} C V N (H?*(Q))?, the orthonormal basis off of all the
eigenfunctions of the Stokes problem{inwith homogeneous Dirichlet conditions. The
subspace ol/ spanned by, ws, ..., w,, will be denotedV,,. Consider the projector
P H =V, given by Pu = 3770 (v, wy)w;, and definew,, (t) = Y770, ym;(H)w;,
whereu,, € L*(—r,T;V,,) N C°([0, T); V,,) satisfies
%(um(t), wj) + V(i (8), ;) + 0(um(t), um (), ;) + o [uml” um(t), w))

= (G(um(t - p(t))), wj) + (h(:r)v wj) in D/(Ov T>7 1<) <m,

Um (0) = Ppug, upm(t) = Ppo(t), te (—r0).
(3.2)

Observe that (3.2) is a system of ordinary functional defgral equations in the unknown
Y™Mt) = (Ym1(t), ..., YTmm(t)). Now we can ensure that problem (3.2) has a unique
solution defined in an interval, t*] with 0 < ¢* < 7. However, as can be deduced
by the a priori estimates below, we can set T'.
In fact, multiplying in (3.2) byy,,; () and summing up, by using (2.1) we have

il n @ + vl + o [ fun)P*1da
_ / G um(t — p(t)))tm (t)dez + / h(@)um (£)da
Q Q

And we have

gt O +olun @1+ [ o

(3.3)
< |G (um(t = p@)))] - [um ()] + [h] - Jum(2)].
Assumption (1.2) implies that
|G < Lelél. (3.4)
Then we obtain
1d 8
g OF + vl O + O‘/Q [ | (3.5)

< Lelum(t — p(2))] - [um(8)] + 2] - Jum(t)].
By the Cauchy inequality, we get

1d

2 2 B+1
S lenOF + len (@ +a0 [ e

Ay

La 1 A
< L, (t — p(t)|? —mt2 —|h|?
< L un(t = pO) + T fun(OF + 5 b+ 5

1%
- |Um( )|27
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where); is first eigenvalue of-A. Intergrating from) to ¢t and using (3.4) we obtain

t t
un(®F +20 [ ()]s +20 / o ($)13 s < ol

o (3.6)
G/ [t (s — p(s))]? ds—i— / |h|2ds+)\11// |t ()] ds.
From |[u,,||* > Ai|u.n,|?, we obtain
t t
n®F + [ () Pds 20 [ a2 ds
", (3.7)
< |uo* + G/|ums— 2ds+—/\h\ ds.
LetT = s — p(s), in view of p(s) € [0, 7] 5 < ﬁ, we obtain
1 t
/ lu(s — p(s))|*ds = - \u( )|*dr < / lu(7)|*dr
(3.8)
(7)[Pdr

By (3.7) and (3.8), and using(t) = gf)(t), te (—7‘, 0), we have

t t
()2 + v / s+ 20 Hum(s)!\ﬁﬁlds < Juo

Y ZE— |*d / )|*d /th
)\1V1—p* / lo(7) T—i- lu(7) 7’+ |h|*ds.

(3.9)
Using||u.,||* > A\i|u..|? again, we obtain
27, t t
\um(t)|2+<u—27G)/ y|umy|2ds+2a/ et ()11 s
AMv(L—=pa)/ Jo 0
oL . . (3.10)
< P4y = 2d —/ h|*ds.
<l + o [ o+ 5 [ bR

2L . .
Foruv? > >\2(17GP) and from¢ € L?(—r,0; V), we obtaink,, K, and K3 (depending
1 - Mx

only on¢, h, G, T, but not onm or ¢t*) such that

sup. [ )2 < K, /Hum JI[2ds < Ko, /Hum o, < K.
tel0,t*

Thus we can takée. = T to obtain that

{u,,} is bounded inL?(0,7; V) N L>(0,T; H) N LP*1(0, T; L*T(Q)).
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Moreover, observe that,, = P,,¢ in (—r,0) and, by the choice of the basfs;}, the
sequencdu,, } converges t@ in L*(—r,0; V).

Note thatG(u,,) is bounded in?(0,T’; H) and it is a straight forward to bound
the nonlinear term{b(u,,, u.n,.)}. By using the same argument as in Constantin and
Foias [10], we can obtain th&f%=} is bounded in.*/3(0, T; V'). Using the compactness

dt
of the injection of the spacél = {u € L?(0,T;V);% € LY30,T;V’)} into
L*(0,T; H), from the preceding analysis and the assumption& owe can deduce that

there exists a subsequence (denote afaint andu € L*(—r, T;V)) such that

Uy, — u Weakly inL?(—r,T; V)

um — uweakly star inL>°(0,7; H)
Upy — win L (—r, T; H),

G (um) — G(u) weakly in L*(0,T; V).

Arguing now as in the non-delay case, we can take the limi{8.i2) after intergrating
over the interval0, ¢) (for t € (0,7")), and obtain that is a solution to our problem (1.1).

Unigueness.
Let v andv be two solutions and let = v — v. Then, this function solves

O — VAW , D (0, 9+ V(= ) + alful = o)
— [Gult — p(t) ~ Glo(t — plt))],
divw = 0.

It is well known (see, e.g. [9]) that there exists a nonnegationstants = «(a, 3)
such that

a/Q(\u\ﬁlu o) (u = v)de > R/Q(\u\ﬁl Flol Y= of2de >0 (3.11)
Multiplying this equations by, intergrating by parts and using (3.11), we have
%W\Q + 2v|wl® + R/Q(\u\ﬁ_l + 0" ) — vfdx < 2/Q [(w - V)u) - wldz
+2 [ |6ta(t = p(0) - Glult = p(0)] - (D) ds

(3.12)
Using Lemma 2.1 and assume tlvat- 3, we have

2/ |(w - V)u) - w|de < 2/ |ul|w||Vw|dx < 1/|Vw|2 + C(|u|2 . |w\2)
Q Q (3.13)

< V[Vw + k(ul’ + [T wl? + Clwl?,
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whereC = C(v). Thus, (3.12) implies that
d
ﬁ\w|2 + 2v||w|]* <v|Vw]?* + Clw|?
2 [ |6tu(t = p(0) = Glolt = p(0)] - (D) ds
Using (1.2), we get
d
el +vwl® < Cluf+2 /Q Lelu(t = p(t)) —v(t — p(t))] - lw(t)|dz.
By the Cauchy inequality, we obtain
d 2 2 2 2L¢ 2
_ < —— _
gl vl < Cluf + 32 (e = p)]? +
Using||w||* > A\i|w|?, we have

+ 259 - ey

d 2 2
_ <
dt\w| + vjjw|]* < Clw| o

Intergrating from0 to ¢, we obtain
t t 2LG
\w|2+u/ |wl*ds < |w(0)|2+0/ \w|2ds+ / lw(s — p(s))[*ds.
0 0
Using (3.8) again, we have
\w|2+u/ |lwl||*ds < |w(0) |2+C'/ |w\2ds—i— / lw(T)|2dT.

Note thatw(r) = 0 for 7 € (—r,0) and||w||* > \;|w|?, we obtain
t t
wP v [ fulPds < P +C [ fu(s)Pds
0 0

2L /t )
+ = w(T dr.
i [ Il

wl? + <V _ 22#) /t |wl]*ds < |w(0)[* + C’/t lw(s)|?ds.

9Le
M1 —p.)’

Thus,

Note that* > we have the uniqueness of solutions by the Gronwall lemma.

O
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