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Abstract. In this paper we consider the existence and uniqueness of weak solutions
to 3D Navier-Stokes equations with damping and delays inΩ ⊂ R

3.
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1. Introduction

In this paper we consider the following 3D Navier-Stokes equations with damping
and delays inΩ ⊂ R

3,


































∂u

∂t
− ν∆u + (u · ∇)u+∇p+ α|u|β−1u = G(u(t− ρ(t))) + h(x), in (0, T )× Ω,

divu = 0 in (0, T )× Ω,

u(x, t) = 0 in (0, T )× Γ,

u(0, x) = u0(x), x ∈ Ω,

u(t, x) = φ(t, x), t ∈ (−r, 0), x ∈ Ω.
(1.1)

whereν > 0 is the kinematic viscocity,β ≥ 1 andα > 0 are two constants,u is
the velocity field of the fluid andu = u(x, t) = (u1, u2, u3), p is the pressure,h is
a nondelayed external force field,G is another external force term and contains some
memory effects during a fixed interval of time of lengthr > 0, ρ is an adequate given
delay function,u0 is the initial velocity andφ the initial datum on the interval.

Note that the caseα = 0 andG = 0 corresponds to the classical Navier-Stokes
problem for which the existence of smooth solutions is an open problem. The case of
G = 0 is studied in [1], which is 3D Navier-Stokes equations with damping. The damping
is from the resistance to the motion of the flow. It describes various physical situations
such as porous media flow, drag or friction effects, and some dissipative mechanisms
(see [2-5] and references therein).
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The 2D Navier-Stokes equations with delays has studied by T.Caraballo et al. [6].
In this paper, we continue to study 3D Navier-Stokes equations of forcing term with
bounded variable delay. LetG : R3 → R

3 be a measurable function satisfingG(0) = 0,
and assume that there existsLG > 0 such that

|G(u)−G(v)|R3 ≤ LG|u− v|R3, ∀u, v ∈ R
3. (1.2)

Consider a functionρ(t) ∈ C1([0, T ]), ρ(t) ≥ 0 for all t ∈ [0, T ], r = maxt∈[0,T ] ρ(t) > 0
andρ∗ = maxt∈[0,T ] ρ

′(t) < 1. We will use the Galerkin method to study the existence of
weak solutions to (1.1) (see e.g., [6, 7]). To show the prioriestimates foru(t− ρ(t)), we
use the technique of changing variable in [8].

In this paper, we will prove the existence of weak solutions to (1.1) in the case of
β ≥ 1. If β > 3, we will get at the uniqueness of this solutions to (1.1).

2. Preliminaries

We define the following abstract spaces:

• V = {u ∈ (C∞

0 (Ω))3 : divu = 0}.

• H is the closure ofV in (L2(Ω))3 with the norm|.|, and inner product(., .) defined
by

(u, v) =

3
∑

j=1

∫

Ω

uj(x)vj(x)dx for u, v ∈ (L2(Ω))3.

• V is the closure ofV in (H1
0 (Ω))

3 with norm‖.‖, and associated scalar product((.))
defined by

((u, v)) =
3

∑

i,j=1

∫

Ω

∂uj

∂xj

∂vj

∂xi

dx for u, v ∈ (H1
0 (Ω))

3.

We denotea(u, v) = ((u, v)), and define the trilinear formb onV × V × V by

b(u, v, w) =

3
∑

i,j=1

∫

Ω

ui
∂vj

∂xi
wjdx, ∀u, v, w ∈ V.

It is easy to check that ifu, v, w ∈ V , then

b(u, v, w) = −b(u, w, v),

and
b(u, v, v) = 0, ∀u, v ∈ V. (2.1)

In what follows, we will frequently use the following inequalities:
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Young’s inequality

ab ≤ ε

p
ap +

1

qε1/(p−1)
bq, for all a, b, ε > 0, with q =

p

p− 1
, 1 < p < +∞.

Ladyzhenskaya’s inequality (when n = 3) (see, e.g., [10])

‖u‖L3 ≤ c|u|1/2‖u‖1/2, ∀u ∈ V,

‖u‖L4 ≤ c|u|1/4‖u‖3/4, ∀u ∈ V.

From [9, 10], we will use some results in the following lemma.

Lemma 2.1. If n = 3 then

|b(u, v, w)| ≤











C|u|1/2‖u‖1/2‖v‖‖w‖1/2‖w‖
C‖u‖‖v‖|w|1/2‖w‖1/2
Cλ

1/4
1 ‖u‖‖v‖‖w‖1/2

∀u, v, w ∈ V, (2.2)

and
|b(u, v, u)| ≤

√
2|u|‖u‖‖v‖ for all u, v ∈ V. (2.3)

3. Existence and uniqueness of weak solutions

We first give the definition of weak solution.

Definition 3.1. A function

u ∈ C([−r, T ];H) ∩ L2
loc([−r, T ];V ) ∩ L

β+1
loc ([−r, T ];Lβ+1(Ω))

is said to be a weak solution of (1.1) if for all T > 0,

u ∈ L2(−r, T ;V ) ∩ L∞(0, T ;H)

such that, for all v ∈ V ,

d

dt
(u(t), v) + ν((u(t), v))+b(u(t), u(t), v) + α(|u|β−1u, v)

= (G(u(t− ρ(t))), v) + (h, v),

u(0) = u0, u(t) = φ(t), t ∈ [−r, 0].

(3.1)

We now prove the following theorem.

Theorem 3.1. Let (1.2) hold, u0, h ∈ H, φ ∈ L2(−r, 0;H). Then there exists a unique

solution to (1.1) if ν2 >
LG

λ2
1(1− ρ∗)

.
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Proof. Existence.

Let us consider{wj} ⊂ V ∩ (H2(Ω))3, the orthonormal basis ofH of all the
eigenfunctions of the Stokes problem inΩ with homogeneous Dirichlet conditions. The
subspace ofV spanned byw1, w2, ..., wm will be denotedVm. Consider the projector
Pm : H → Vm given byPmu =

∑m
j=1(u, wj)wj , and defineum(t) =

∑m
j=1 γmj(t)wj,

whereum ∈ L2(−r, T ;Vm) ∩ C0([0, T ];Vm) satisfies















d

dt
(um(t), wj) + ν((um(t), wj)) + b(um(t), um(t), wj) + α(|um|β−1um(t), wj)

= (G(um(t− ρ(t))), wj) + (h(x), wj) in D′(0, T ), 1 ≤ j ≤ m,

um(0) = Pmu0, um(t) = Pmφ(t), t ∈ (−r, 0).
(3.2)

Observe that (3.2) is a system of ordinary functional differential equations in the unknown
γm(t) = (γm1(t), ..., γmm(t)). Now we can ensure that problem (3.2) has a unique
solution defined in an interval[0, t∗] with 0 < t∗ ≤ T . However, as can be deduced
by the a priori estimates below, we can sett∗ = T .
In fact, multiplying in (3.2) byγmj(t) and summing up, by using (2.1) we have

1

2

d

dt
|um(t)|2 + ν‖um(t)‖2 + α

∫

Ω

|um(t)|β+1dx

=

∫

Ω

G(um(t− ρ(t)))um(t)dx+

∫

Ω

h(x)um(t)dx.

And we have

1

2

d

dt
|um(t)|2 + ν‖um(t)‖2 + α

∫

Ω

|um|β+1dx

≤ |G(um(t− ρ(t)))| · |um(t)|+ |h| · |um(t)|.
(3.3)

Assumption (1.2) implies that
|G(ξ)| ≤ LG|ξ|. (3.4)

Then we obtain

1

2

d

dt
|um(t)|2 + ν‖um(t)‖2 + α

∫

Ω

|um|β+1dx

≤ LG|um(t− ρ(t))| · |um(t)|+ |h| · |um(t)|.
(3.5)

By the Cauchy inequality, we get

1

2

d

dt
|um(t)|2 + ν‖um(t)‖2 + α

∫

Ω

|um|β+1dx

≤ LG

λ1ν
|um(t− ρ(t))|2 + λ1ν

4
|um(t)|2 +

1

λ1ν
|h|2 + λ1ν

4
|um(t)|2,

26



The existence and uniqueness of solutions to 3D navier-stokes equations with damping and delays

whereλ1 is first eigenvalue of−∆. Intergrating from0 to t and using (3.4) we obtain

|um(t)|2 + 2ν

∫ t

0

‖um(s)‖2ds+ 2α

∫ t

0

‖um(s)‖β+1
Lβ+1ds ≤ |u0|2

+
2LG

λ1ν

∫ t

0

|um(s− ρ(s))|2ds+ 2

λ1ν

∫ t

0

|h|2ds+ λ1ν

∫ t

0

|um(s)|2ds.
(3.6)

From‖um‖2 ≥ λ1|um|2, we obtain

|um(t)|2 + ν

∫ t

0

‖um(s)‖2ds+ 2α

∫ t

0

‖um(s)‖β+1
Lβ+1ds

≤ |u0|2 +
2LG

λ1ν

∫ t

0

|um(s− ρ(s))|2ds+ 2

λ1ν

∫ t

0

|h|2ds.
(3.7)

Let τ = s− ρ(s), in view of ρ(s) ∈ [0, r] and 1
1−ρ′

≤ 1
1−ρ∗

, we obtain

∫ t

0

|u(s− ρ(s))|2ds = 1

1− ρ′

∫ t

−r

|u(τ)|2dτ ≤ 1

1− ρ∗

∫ t

−r

|u(τ)|2dτ

=
1

1− ρ∗

∫ 0

−r

|u(τ)|2dτ +
1

1− ρ∗

∫ t

0

|u(τ)|2dτ
(3.8)

By (3.7) and (3.8), and usingu(t) = φ(t), t ∈ (−r, 0), we have

|um(t)|2 + ν

∫ t

0

‖um‖2ds+ 2α

∫ t

0

‖um(s)‖β+1
Lβ+1ds ≤ |u0|2

+
2LG

λ1ν(1− ρ∗)

∫ 0

−r

|φ(τ)|2dτ +
2LG

λ1ν(1− ρ∗)

∫ t

0

|u(τ)|2dτ +
2

λ1ν

∫ t

0

|h|2ds.
(3.9)

Using‖um‖2 ≥ λ1|um|2 again, we obtain

|um(t)|2 +
(

ν − 2LG

λ2
1ν(1− ρ∗)

)

∫ t

0

‖um‖2ds+ 2α

∫ t

0

‖um(s)‖β+1
Lβ+1ds

≤ |u0|2 +
2LG

λ1ν(1− ρ∗)

∫ 0

−r

|φ(τ)|2dτ +
2

λ1ν

∫ t

0

|h|2ds.
(3.10)

For ν2 >
2LG

λ2
1(1− ρ∗)

and fromφ ∈ L2(−r, 0;V ), we obtainK1, K2 andK3 (depending

only onφ, h,G, T , but not onm or t∗) such that

sup
t∈[0,t∗]

|um(t)|2 ≤ K1,

∫ t

0

‖um(s)‖2ds ≤ K2,

∫ t

0

‖um(s)‖β+1
Lβ+1 ≤ K3.

Thus we can taket∗ = T to obtain that

{um} is bounded inL2(0, T ;V ) ∩ L∞(0, T ;H) ∩ Lβ+1(0, T ;Lβ+1(Ω)).
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Moreover, observe thatum = Pmφ in (−r, 0) and, by the choice of the basis{wj}, the
sequence{um} converges toφ in L2(−r, 0;V ).

Note thatG(um) is bounded inL2(0, T ;H) and it is a straight forward to bound
the nonlinear term{b(um, um, .)}. By using the same argument as in Constantin and
Foias [10], we can obtain that{dum

dt
} is bounded inL4/3(0, T ;V ′). Using the compactness

of the injection of the spaceW = {u ∈ L2(0, T ;V ); du
dt

∈ L4/3(0, T ;V ′)} into
L2(0, T ;H), from the preceding analysis and the assumptions onG, we can deduce that
there exists a subsequence (denote again{um} andu ∈ L2(−r, T ;V )) such that

um → u weakly inL2(−r, T ;V )

um → u weakly star inL∞(0, T ;H)

um → u in L2(−r, T ;H),

G(um) → G(u) weakly inL2(0, T ;V ′).

Arguing now as in the non-delay case, we can take the limits in(3.2) after intergrating
over the interval(0, t) (for t ∈ (0, T )), and obtain thatu is a solution to our problem (1.1).

Uniqueness.

Let u andv be two solutions and letw = u− v. Then, this function solves















dw

dt
− ν∆w + (w,∇)u+ (v,∇)w +∇(pu − pv) + α(|u|β−1u− |v|β−1v)

= [G(u(t− ρ(t)))−G(v(t− ρ(t)))],

divw = 0.

It is well known (see, e.g. [9]) that there exists a nonnegative constantκ = κ(α, β)
such that

α

∫

Ω

(|u|β−1u− |v|β−1v)(u− v)dx ≥ κ

∫

Ω

(|u|β−1 + |v|β−1)|u− v|2dx ≥ 0 (3.11)

Multiplying this equations byw, intergrating by parts and using (3.11), we have

d

dt
|w|2 + 2ν‖w‖2 + κ

∫

Ω

(|u|β−1 + |v|β−1)|u− v|2dx ≤ 2

∫

Ω

|((w · ∇)u) · w|dx

+ 2

∫

Ω

|G(u(t− ρ(t)))−G(v(t− ρ(t)))| · |w(t)|dx
(3.12)

Using Lemma 2.1 and assume thatβ > 3, we have

2

∫

Ω

|((w · ∇)u) · w|dx ≤ 2

∫

Ω

|u||w||∇w|dx ≤ ν|∇w|2 + C(|u|2 · |w|2)

≤ ν|∇w|2 + κ(|u|β−1 + |v|β−1)|w|2 + C|w|2,
(3.13)
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whereC = C(ν). Thus, (3.12) implies that

d

dt
|w|2 + 2ν‖w‖2 ≤ν|∇w|2 + C|w|2

+ 2

∫

Ω

|G(u(t− ρ(t)))−G(v(t− ρ(t)))| · |w(t)|dx.

Using (1.2), we get

d

dt
|w|2 + ν‖w‖2 ≤ C|w|2 + 2

∫

Ω

LG|u(t− ρ(t))− v(t− ρ(t))| · |w(t)|dx.

By the Cauchy inequality, we obtain

d

dt
|w|2 + ν‖w‖2 ≤ C|w|2 + 2LG

λ1ν
|w(t− ρ(t))|2 + λ1ν

2
|w|2.

Using‖w‖2 ≥ λ1|w|2, we have

d

dt
|w|2 + ν‖w‖2 ≤ C|w|2 + 2LG

λ1ν
|w(t− ρ(t))|2.

Intergrating from0 to t, we obtain

|w|2 + ν

∫ t

0

‖w‖2ds ≤ |w(0)|2 + C

∫ t

0

|w|2ds+ 2LG

λ1ν

∫ t

0

|w(s− ρ(s))|2ds.

Using (3.8) again, we have

|w|2 + ν

∫ t

0

‖w‖2ds ≤ |w(0)|2 + C

∫ t

0

|w|2ds+ 2LG

λ1ν(1− ρ∗)

∫ t

−r

|w(τ)|2dτ.

Note thatw(τ) = 0 for τ ∈ (−r, 0) and‖w‖2 ≥ λ1|w|2, we obtain

|w|2 + ν

∫ t

0

‖w‖2ds ≤ |w(0)|2 + C

∫ t

0

|w(s)|2ds

+
2LG

λ2
1ν(1− ρ∗)

∫ t

0

‖w(τ))‖2dτ.

Thus,

|w|2 +
(

ν − 2LG

λ2
1ν(1− ρ∗)

)

∫ t

0

‖w‖2ds ≤ |w(0)|2 + C

∫ t

0

|w(s)|2ds.

Note thatν2 >
2LG

λ2
1(1− ρ∗)

, we have the uniqueness of solutions by the Gronwall lemma.
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