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Abstract. This paper is concerned with the stabilization problem via
state-feedback control of discrete-time jumping systems with stochastic
multiplicative noises. The jumping process of the system isdriven by a
discrete-time Markov chain with finite states and partiallyknown transition
probabilities. Sufficient conditions are established in terms of tractable
linear matrix inequalities to design a mode-dependent stabilizing state-feedback
controller. A numerical example is provided to validate theeffectiveness of the
obtained result.
Keywords: multiplicative noises, Markov jump systems, stochastic stability, linear
matrix inequalities.

1. Introduction

Stochastic bilinear systems, or systems with stochastic multiplicative noises, play
an important role in modeling real-world phenomena in biology, economic, engineering
and many other areas [1-2]. Due to various practical applications, the study on analysis
and control of stochastic bilinear systems has attracted considerable research attention in
the past few decades (see, [3-6] and the references therein).

Markov jump systems (MJSs) governed by a finite set of subsystems together with
a transition signal determined by a Markov chain to specify the active mode form an
important class of hybrid stochastic systems. They are typically used to describe dynamics
of practical and physical processes subject to random abrupt changes in system state
variables, external inputs and structure parameters caused by sudden component failures,
environmental noises or random loss package in interconnections [7-10]. Many results
on stability analysis,H∞ control, dynamic output feedback control, and state bounding
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for various types of Markov jump linear systems (MJLSs) havebeen reported recently
(see, e.g., [11-19]). Besides that stochastic bilinear systems with Markovian switching
have been investigated [20, 21]. In [21], necessary and sufficient conditions in the form
of linear matrix inequalities (LMIs) were derived ensuringstochastic stability of a class
of discrete-time MJLSs with multiplicative noises. The problem robustH∞ control of
this type of systems was also studied in [22]. However, in theexisting results so far
the transition probabilities of the jumping process are assumed to be fully accessible and
completely known. This restriction is not reasonable in practice and will narrow the
applicability of the proposed control method. To the authors’ knowledge, the problem of
robust stabilization of uncertain discrete-time stochastic bilinear systems with Markovian
switching and partially unknown transition probabilitieshave not been fully investigated
in the literature.

In this paper, we address the problem of state-feedback control of discrete-time
stochastic bilinear systems with Markovian switching. Thetransition probability matrix
of the jumping process can be partially deficient. Based on a stochastic version of the
Lyapunov matrix inequality, sufficient conditions are established in terms of tractable
LMIs to design a desired state-feedback controller (SCF) that stabilizes the system. A
numerical example is provided to verify the effectiveness of the obtained results.

2. Preliminaries

2.1. Notation

Z andZ+ are the set of integers and positive integers, respectively, andZa = {k ∈
Z : k ≥ a} for an integera ∈ Z. E[.] denotes the expectation operator in some probability
space(Ω,F ,P). Rn is then-dimensional Euclidean space with the vector norm‖.‖ and
R

n×p is the set ofn×p matrices.S+
n defines the set of symmetric positive definite matrices.

diag{A,B} denotes the diagonal matrix formulated by stacking blocksA andB.

2.2. Problem formulation

Let (Ω,F ,P) be a complete probability space. Consider the following discrete-time
linear system with multiplicative stochastic noise and Markovian switching

x(k + 1) = A1(rk)x(k) +B1(rk)u(k)

+ [A2(rk)x(k) +B2(rk)u(k)]w(k), k ∈ Z
0, (2.1)

wherex(k) ∈ R
n is the vector state,u(k) ∈ R

p is the control input, the system matrices
A1(rk),B1(rk),A2(rk) andB2(rk) belong to{A1i, B1i, A2i, B2i, i ∈ M}, whereA1i,B1i,
A2i andB2i, i ∈ M, are known constant matrices. For the notational simplicity, whenever
rk = i ∈ M, matricesA1(rk), B1(rk), A2(rk), B2(rk) will be denoted asA1i, B1i, A2i

andB2i, respectively.{w(k), k ∈ Z
0} is a sequence of scalar-valued independent random
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variables with
E[w(k)] = 0,E[w(k)]

2 = 1. (2.2)

The jumping parameters{rk, k ∈ Z
0} govern a discrete-time Markov chain specifying

the system mode which takes value in a finite setM = {1, 2, . . . , m} with transition
probabilities (TPs) given by

P (rk+1 = j|rk = i) = πij , i, j ∈ M,

wherepij ≥ 0, i, j ∈ M and
∑m

j=1 pij = 1 for all i ∈ M. We denoteΠ = (πij) the
transition probability matrix andp = (p1, p2, . . . , pm) the initial probability distribution,
wherepi = P(r0 = i), i ∈ M. It is assumed that the jumping process{rk} and
stochastic{w(k)} are independent and the transition probability matrixΠ is only partially
accessible, that is, some entries ofΠ can be completely unknown. In the sequel, we
denote bŷπij the unknown entryπij ∈ Π, M(i)

a andM(i)
na the sets of indices of known

and unknown TPs in rowΠi =
[

πi1 πi2 . . . πim

]

of Π, respectively,

M(i)
a = {j ∈ M : πij is known} , M(i)

na = {j ∈ M : πij is unknown} . (2.3)

Moreover, ifM(i)
a 6= ∅, we denoteM(i)

a = (µi
1, µ

i
2, . . . , µ

i
l), 1 ≤ l ≤ m. That is, in theith

row ofΠ, entriesπiµi

1
, πiµi

2
, . . . , πiµi

l

are known.

For control system (2.1), a mode-dependent SFC is designed in the form

u(k) = K(rk)x(k), (2.4)

whereK(rk) ∈ {Ki, i ∈ M} is the controller gain which will be designed. With the
controller (2.4), the closed-loop system of (2.1) is given by

x(k + 1) = A1c(rk)x(k) + A2c(rk)x(k)w(k), k ∈ Z
0, (2.5)

whereA1c(rk) = A1(rk) +B1(rk)K(rk) andA2c(rk) = A2(rk) +B2(rk)K(rk).

Definition 2.1 (see [21]). The open-loop system of (2.1) (i.e. withu(k) = 0) is said to be
stochastically stable if there exists a constantT (r0, x0) such that

E

[

∞
∑

k=0

x⊤(k)x(k)|r0, x0

]

≤ T (r0, x0).

Definition 2.2. System (2.1) is said to be stochastically stabilizable if there exists an SFC
in the form of (2.4) such that the closed-loop system (2.5) isstochastically stable for any
initial condition (r0, x0).

The main objective of this paper is to establish conditions to design an SFC
(2.4) which makes the closed-loop system of (2.1) with partially unknown transition
probabilities stochastically stable.
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2.3. Auxiliary lemmas

In this section, we introduce some technical lemmas which will be useful for our
later derivation.

Lemma 2.1 (Schur complement). Given matricesM,L,Q of appropriate dimensions
whereM andQ are symmetric andQ > 0. Then,M + L⊤Q−1L < 0 if and only if

[

M L⊤

L −Q

]

< 0 (2.6)

or equivalently
[

−Q L

L⊤ M

]

< 0. (2.7)

The following lemma gives necessary and sufficient conditions for the stochastic
stability of the open-loop system of (2.1) (see [21]).

Lemma 2.2. The open-loop system of(2.1) (i.e. u(k) = 0) is stochastically stable if
and only if there exist matricesQi ∈ S

+
n , i ∈ M, such that one of the two following

conditions holds

(i) For all i ∈ M, the following algebraic Riccati inequality (ARI) holds

A⊤

1iGiA1i + A⊤

2iGiA2i −Qi < 0, (2.8)

whereGi =
∑m

j=1 πijQj .

(ii) The following LMIs hold





−Qi J⊤
1i J⊤

2i

J1i −Q 0

J2i 0 −Q



 < 0, i ∈ M, (2.9)

whereQ = diag{Q1, Q2, . . . , Qm} and

J⊤

1i =
[√

πi1A
⊤
1iQ1

√
πi1A

⊤
1iQ2 · · · √

πimA
⊤
1iQm

]

,

J⊤

2i =
[√

πi1A
⊤
2iQ1

√
πi1A

⊤
2iQ2 · · · √

πimA
⊤
2iQm

]

.

3. Main results

In this section, we first derive conditions to ensure that system (2.1) with partially
unknown transition probabilities (2.3) is stochasticallystable. Then, based on the
proposed stability conditions, an SFC in the form of (2.4) isdesigned.
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Theorem 3.1. The open-loop system of(2.1) with deficient TPs(2.3) is stochastically
stable if there exist matricesQi ∈ S

+
n , i ∈ M, such that





−πi
aQi J̃⊤

1i J̃⊤
2i

J̃1i −Q̃ 0

J̃2i 0 −Q̃



 < 0 (3.1)

and




−Qi A⊤
1iQj A⊤

2iQj

QjA1i −Qj 0

QjA2i 0 −Qj



 < 0, j ∈ M(i)
na, (3.2)

where

J̃⊤

1i =
[√

πiµi

1
A⊤

1iQµi

1

√
πiµi

2
A⊤

1iQµi

2
· · · √

πiµi

l

A⊤
1iQµi

l

]

,

J̃⊤

2i =
[√

πiµi

1
A⊤

2iQµi

1

√
πiµi

2
A⊤

2iQµi

2
· · · √

πiµi

l

A⊤
2iQµi

1

]

,

Q̃ = diag{Qµi

1
, · · · , Qµi

l

},
πi
a =

∑

j∈M
(i)
a

πij .

Proof. According to condition (2.9) of Lemma 2.2, system (2.1) withu(k) = 0 is
stochastically stable if and only if there exist matricesQi ∈ S

+
n , i ∈ M, such that

A⊤

1iGiA1i + A⊤

2iGiA2i −Qi < 0, (3.3)

whereGi =
∑m

j=1 πijQj . It is fact that
∑m

j=1 pij = 1 for all i ∈ M. Thus, condition (3.3)
is equivalent to one of the following two conditions

m
∑

j=1

πij

[

A⊤

1iQjA1i + A⊤

2iQjA2i

]

−
m
∑

j=1

πijQi < 0 (3.4)

or
∑

j∈M
(i)
a

πij

[

A⊤

1iQjA1i + A⊤

2iQjA2i)−Qi

]

+
∑

j∈M
(i)
na

πij

[

A⊤

1iQjA1i + A⊤

2iQjA2i)−Qi

]

< 0. (3.5)

Let G̃i =
∑

j∈M
(i)
a

πijQj andπi
a =

∑

j∈M
(i)
a

πij . Note thatpij ≥ 0 for all i, j ∈ M,
condition (3.5) holds if the two following conditions hold

A⊤

1iG̃iA1i + A⊤

2iG̃iA2i − πi
aQi < 0, (3.6)

A⊤

1iQjA1i + A⊤

2iQjA2i −Qi < 0, j ∈ M(i)
na. (3.7)
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By Schur complement Lemma 2.1, conditions (3.6) and (3.7) can be recast into the
following LMIs





−πi
aQi J̃⊤

1i J̃⊤
2i

J̃1i −Q̃ 0

J̃2i 0 −Q̃



 < 0 (3.8)

and




−Qi A⊤
1iQj A⊤

2iQj

QjA1i −Qj 0

QjA2i 0 −Qj



 < 0, j ∈ M(i)
na.

This completes the proof.

We now establish conditions by which system (2.1) is stochastically stabilizable as
given in the following theorem.

Theorem 3.2. System(2.1) with deficient TPs(2.3) is stochastically stabilizable if there
exist matricesXi ∈ S

+
n andYi, i ∈ M, such that





−πi
aXi J̃⊤

1i J̃⊤
2i

J̃1i −X̃ 0

J̃2i 0 −X̃



 < 0 (3.9)

and




−Xi (A1iXi +B1iYi)
⊤ (A2iXi +B2iYi)

⊤

∗ −Xj 0

∗ ∗ −Xj



 < 0, j ∈ M(i)
na, (3.10)

where

J̃⊤

1i =
[√

πiµi

1
(A1iXi +B1iYi)

⊤ · · · √
πiµi

l

(A1iXi +B1iYi)
⊤

]

,

J̃⊤

2i =
[√

πiµi

1
(A2iXi +B2iYi)

⊤ · · · √
πiµi

l

(A2iXi +B2iYi)
⊤

]

,

X̃ = (Xµi

1
, . . . , Xµi

l

).

The controller gainsKi, i ∈ M, are given byKi = YiX
−1
i .

Proof. It is only necessary to show that the closed-loop system (2.5) is stochastically
stable. According to Lemma 2.2, system (2.5) is stochastically stable if and only if there
exist matricesQi ∈ S

+
n , i ∈ M, such that

A⊤

1ciGiA1ci + A⊤

2ciGiA2ci −Qi < 0, (3.11)

whereGi =
∑m

j=1 πijQj , A1ci = A1i +B1iKi andA2ci = A2i +B2iKi.
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Let Xi = Q−1
i . By pre- and post-multiplying equation (3.11) withXi, we get

XiA
⊤

1ciGiA1ciXi +XiA
⊤

2ciGiA2ciXi −Xi < 0. (3.12)

By similar arguments used in the proof of Theorem 3.1, we can see that condition
(3.12) holds if

XiA
⊤

1ciG̃iA1ciXi +XiA
⊤

2ciG̃iA2ciXi − πi
aXi < 0 (3.13)

and
XiA

⊤

1ciQjA1ciXi +XiA
⊤

2ciQjA2ciXi −Xi < 0, j ∈ M(i)
na. (3.14)

We now defineYi = KiXi then, by Schur complement lemma, conditions (3.13) and
(3.14) are equivalent to (3.10) and (3.11), respectively. The proof is completed.

Remark 3.1. When the transition rate of the jumping process of system(2.1) is fully
accessible (transition probabilities are completely known), the derived conditions in
Theorem 3.2 are reduced to those of Theorem 2 in [21]. Thus, the result of Theorem
3.2 in this paper can be regarded as an extension of the resultof [21].

Remark 3.2. When the transition rate of the jumping process of system(2.1)is completely
unknown, condition (3.9) in Theorem 3.2 is omitted and condition (3.10) is now required
to feasible for alli, j ∈ M.

4. An illustrative example

Consider a two-mode uncertain system in the form of (2.1) with the following data

A11 =

[

0.5 0.4

0.1 1.15

]

, B11 =

[

1.0

0.5

]

, A21 =

[

0.1 0.25

0 0

]

, B21 =

[

0.5

0.1

]

,

A12 =

[

0.8 0.4

0.25 1.05

]

, B12 =

[

0.6

1.0

]

, A22 =

[

0.5 0.25

0 0

]

, B22 =

[

0.8

0.2

]

.

The transition probability matrix is fully inaccessible, that is,

Π =

[

? ?

? ?

]

,

where? stands for unknown entries. It can be verified using the LMI toolbox in MATLAB
that condition (3.2) is not feasible for alli, j ∈ {1, 2}. Thus, Theorem 3.1 cannot
guarantee the stability of the open-loop system. A simulation result with initial state
x(0) = [1 1]⊤ is given in Figure 1. It can be seen that the open-loop system is unstable.
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Figure 1. A state trajectory of the open-loop system with random mode

We now apply Theorem 3.2 to design a mode-dependent SFC in theform of (2.4).
that makes the closed-loop system (2.5) stochastically stable. By solving condition (3.10)
using MATLAB LMI toolbox we obtain the controller gains

K1 =
[

−0.1838 −0.5237
]

, K2 =
[

−0.3943 −0.8955
]

.

A state trajectory of the closed-loop system with the obtained controller is given in
Figure 2. The simulation results demonstrates the effectiveness of the design method
proposed in this paper.
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Figure 2. A state trajectory of the closed-loop system

5. Conclusions

In this paper, the stabilization problem via mode-dependent state-feedback
controller has been studied for a class of discrete-time stochastic systems with Markovian
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switching and multiplicative noises. Sufficient conditions have been derived in the form
of tractable LMIs to design a desired stabilizing state feedback controller. An example
has been provided to illustrate the effectiveness of the obtained result.
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