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PERIODIC SOLUTIONS TO A CLASS OF DIFFERENTIAL VARIATIONAL
INEQUALITIES IN BANACH SPACES
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Abstract. In this work, we consider a model formulated by a dynamicatemw
and an elliptic variational inequality. We prove the solifb of initial value
and periodic problems. Finally, an illustrative examplegigen to show the
applicability of our results.
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1. Introduction

Let (X, | - |[x) be a Banach space afl{, || - ||y) be a reflexive Banach space with
the dualY*. We consider the following problem:

2'(t) = Ax(t) + F(t,z(t),y(t)), t >0, (1.1)
By(t) + 06(y(t)) 3 h(t, 2(t),y(t)), t >0, (1.2)

where(z(-),y(-)) takes values inX x Y; ¢ : Y — (—o0, 00| is a proper, convex and
lower semicontinuous function with the subdifferentidl C Y x Y*. F'is a continuous
function defined oR* x X x Y. In our systemA is a closed linear operator which
generates &,-semigroup inX; B: Y — Y*andh : RT x X x Y — Y* are given maps
which will be specified in the next section.

We study the existence of a periodic solution for this probl¢hat is, we find a
solution of (1.1)-(1.2) with periodic condition

z(t) =x(t+1T), forgivenT >0, Vt>0. (2.3)
When F' and h are autonomous maps, the system (1.1)-(1.2) was investigat

in [1]. In this work, the existence of solutions and the existe of a global attractor
for m-semiflow generated by solution set were proved.
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In the casey» = Ik, the indicator function of{ with K being a closed convex set
inY, namely,

Ix(x) =

0 ifr e K,
+o0o  otherwise

the problem (1.1)-(1.2) is written as follows

2'(t) = Ax(t) + F(t,z(t),y(t)), t > 0,
y(t) € K,¥vt >0,
<By(t)a 2 y(t» 2 <h(t’x(t)ay(t))>z - y(t»’vz € K’t > 0.

where(-, -) stands for the duality pairing betwe&if andY'.

In the caseX = R™, Y = R™ andF is single-valued, this model is a differential
variational inequality (DVI), which was systematicallydted by Pang and Stewart [2]. It
should be mentioned that DVIs in finite dimensional spaces baen a subject of many
studies in literature because they can be used to represeous models in mechanical
impact problems, electrical circuits with ideal diodes,uf@mnb friction problems for
contacting bodies, economical dynamics, and related enablsuch as dynamic traffic
networks. We refer the reader to [2-5] for some recent resultsolvability, stability, and
bifurcation to finite dimensional DVIs.

2. Main results

In this section, we consider the system (1.1)-(1.2) withtiahiand periodic
conditions. By some suitable hypotheses imposed on givectifins, we will obtain
the results concerning the solvability of initial value piem and periodic problem.

2.1. The existence of solution with initial condition

We consider differential variational inequality (1.1)Z) with initial datum
z(0) = . (2.1)
To get the existence result, we need the following assumgtio

(A) Alis aclosed linear operator generating(@—semigroup(S(t)):>o in X.

(B) B is alinear continuous operator froii to Y* defined by
(u, Bv) = b(u,v),Yu,v €Y,
whereb : Y x Y — Ris a bilinear continuous function ori x Y such that
b(u,u) = npllull3-
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(F) F:RT x X xY — X satisfies
1Pt 2z, y) — F(t, 2, y)|Ix < a(t)llz —2"||x +0()|ly —¢llv,
wherea, b € L'(R*; RY).

(H) h:RT x X xY — Y*is aLipschitz continuous map. In particular, there exish tw
positive constants, ,, 72, and a continuous positive functiep(-, -) andny, (¢, t) =
0, Vt > 0 such that:

|h(t, 21, w1) — h(t, 2, u2) ||« < nu(t 1) + mnller — 22| x + nonllur — 2|y,
forall t € RY zy, 29 € X;u1,us € Y, where|| - ||, is the norm in dual spacg*.

Letting 7' > 0, we mention here the definition of solution of the problem
(1.1)-(1.2)-(2.2).

Definition 2.1. A pair of continuous functionéz, y) is said to be a mild solution of
(1.1y(1.2y(2.1)on [0, 77 if
t
o) = S(t)sa+ [ S(t = F(t,(s),(s))ds.t € [0.7],
0
By(t) + 0¢(y(t))  h(t,z(t),y(t)),Vz € Y, a.e.t € (0,T).

We firstly are concerned with the elliptic variational inadjty (1.2). Consider the
EVI(g) problem: findy € X with giveng € Y* satisfying

By + 0¢(y) > g. (2.2)
We recall a remarkable result which can be seen in [6] or in [7]

Lemma 2.1.If B satisfiegB) andg € X*, then the solution of2.2)is unique. Moreover,
the corresponding

S: Y*=Y,
gy,
IS Lipschitzian.

Proof. By [6, Theorem 2.3], we obtain that the solution of (2.2) isque. In order to
prove the ma — v is Lipschitz continuous from™ to Y, lety, y» be the solution of
elliptic variational inequalities with respect to givertaa, , g, namely,

By, + 09(v1) 2 g1,
Bys + 00(y2) 2 92,
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or equivalent to

b(y1, y1 —v) + ¢(y1) — d(v) < (Y1 — v, 1), Vv €Y, (2.3)
b(Y2, Y2 — v) + ¢(y2) — d(v) < (Y2 — v, g2), Vv €Y. (2.4)

Takingv = g5 in (2.3) andv = y; in (2.4), and combining them, we have

b(y1 — Y2, y1 — Y2) < (Y1 — Y2, 91 — g2)-

Hence, .
Ny = velly < —llg1 — 92|l
nB
or )
1S(g1) = S(g2)[ly < U—B!\gl — g2+, (2.5)
thanks to B), the lemma is proved. O

Now, for a fixed(r, z) € R* x X, consider the original form of (1.2)
By + 9¢(y) 3 h(r,z,y). (2.6)

Using the last lemma, we obtain the following existence ltesmud property of solution
map for (2.6).

Lemma 2.2. Let (B) and (H) hold. In addition, suppose that; > 7,. Then for each
(r,z) € Rt x X, there exists a unique solutione Y of (2.6). Moreover, the solution

mapping
VI:[0,00) x X =Y,

(1,2) =y,
is Lipchizian, more precisely
IVI(r, 21) — VI(r, 22)|ly < —P%— |2y — 2] x. (2.7)
nB — M2n

Proof. Let (7,x) € R™ x X. We consider the map o h(r,z,-) : Y — Y. Employing
(2.5), we have

1
||S(h(7’,l’,y1)) - S(h(Tv‘I?y?))HY < n_BHh(Tvx?yl) - h(T,I,yg)H*

Tion

S_
B

Hyl —y2HY-

Because),, < ng, y — S(h(7,x,-)) is a contraction map, then it admits a unique fixed
point, which is the unique solution of (2.6).
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It remains to show the mafr, z) — y is a Lipschitz corresponding with respect to the
second variable. L&YI(7, x;) = y;, VI(7, z5) = y». Then, one has

||y1 - y2||Y = ||S(h(77 $1,y1)) - S(h(ﬂ $2ay2))“Y

1
S 77_Hh(7—a xbyl) - h’(7_7 $2ay2)H*

7hh
— ||z — 22| x + —||y1 —yo|ly-
1B
Therefore
Mhn
lyr — y2lly < |z — z2|| x,
B — T2n
which leads to the conclusion of lemma. O

In order to solve (1.1)-(1.2), we convert it to a differehgguation. We consider
the following map:

G(t,z) := F(t,z,VI(t,z)), (t,x) € RT x X.

One sees that : R x X — X. Moreover, by assumptiofr] and the continuity oVT,
we observe that the mag@(¢, -) is continuous for each > 0. By the estimate (2.7), and
the Hausdorff MNC property, one has

o (VI Q) < —2 (),
nB — MN2n

whereyy is the Hausdorff MNC inY". In the case the semigroufy-) is non-compact,
we have

xx (G, €)) = xx (F(1, €, VI(t, 2)))

< a(t)xx () + b(t)xy (VI(£,€2))
< o)X ble) (77377— 772h ))
: (a B —77717;) xx(f)
= pa(t)xx(€)
wherepg(t) = (a(t) + %)

Concerning the growth af?, by (F2) we arrive at

IG(t )x < a(t)l|z]lx + bE) VIt )y + | F(£0,0)x
n
< a(t)||z)lx + b(t)———||z[lx + [IVI(, 0)]ly + | F(£,0,0)|x.
nB — 12n
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By a process similar to that in Lemma 2.2, we obtain

It 2)) < B0 v, o))
nB — 12n nB — Mahn

Thus, we have
1G(t,2)|lx <na@)|zllx +d(?),

b(t
whereng(t) :== ( a(t) + SO)mn_
1B — M2n

addition, we also get that
|G(t,z) — G(t,2")||x = ||F(t,, VI(t,x)) — F(t,2', VI(¢,2"))| x
< a(t)[lz — 2'l|x + b(@) | VI(E, 2) — VI, )|y

b(t)nlh
a(t)||lz — ’Hx + FH% —2||x

( QUL ) o — 2'llx
— 2n

t)||z —x’Hx, (2.8)

) andd(t) = 2L 4 |VI(0,0)| + || F(t,0,0)||x. In

| /\

IN

where~(t) = (a(t) + m)
B — Ti2h
Due to the aforementioned setting, the problem (1.1)-(%.2pnverted to
2'(t) — Az(t) = G(t,z(t)),t € [0,T],
Now we see that, a pair of functioris, y) is a mild solution of (1.1)-(1.2) with
initial value z(0) = z iff
t
2(t) = S(t)ao + / S(t — $)G(s, o(s))ds, ¢ € [0, T], (2.9)
0
y(t) = VI(t, z(t)). (2.10)
Consider theCauchy operator
W L0, T, X) = C([0,T]; X),

W = [ se=9sis
For a givenry € X, we introduce the mild solution operator

F:O([0, T X) — C([0,T]; X)),

Flz) = S()wo + W(G(-, 2(-)))-

It is evident thatz is a fixed point of F iff x is the first component of solution of
(1.1)-(1.2)-(2.1). In order to prove the existence resoitgdroblem (1.1)-(1.2)-(2.1), we
make use of the Schauder fixed point theorem.
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Lemma 2.3. Let £ be a Banach space and C E be a nonempty compact convex subset.
If the mapF : D — D is continuous, thetF has a fixed point.

We have the following result related to the operatgr

Proposition 2.1. Let (A) hold. If D c L'(0,7;X) is semicompact, thew(D) is
relatively compact inC'(J; X). In particular, if sequence f,,} is semicompact and
fn— [Xin LY0,T; X) thenW(f,,) — W(f*)in C([0,T); X).

Theorem 2.1. Let the hypothesefA), (B), (F) and (H) hold. Then the problem
(1.1}(1.2)(2.1) has at least one mild solutiam:(-), y(-)) for givenz, € X.

Proof. We now show that there exists a nonempty convex subdgetC C([0,77]; X)
such thatF (M) C M.
Letz = F(z), then we have

(0l < ISl + | | 5= 96(s.a(9)dslx
< Mol + [ 18 = )lecollIG(s. () xds
< Mifaollx+ 31 [ (el +d(s))ds.

whereM = sup{||S(t)||zx) : t € [0,T7}.
Denote

Mo = {z € C([0,T]; X) - [[x(t)[lx < &(t), vt € [0,T]},

wherex is the unique solution of the integral equation
t
k(t) = M||zollx + M/ (na(s)k(s) + d(s))ds.
0

It is obvious thatM, is a closed, convex subset@f [0, T']; X ) andF (M) C M.
Set
Myi1 =@F (M), k=0,1,2,...

here, the notatiofo stands for the closure of convex hull of a subset'ii0, 7]; X). We
see thatM,, is a closed convex set andl;,,; C M, forall £ € N.
Let M = [ M, thenM is a closed convex subset®f[0, 7]; X) andF (M) C

k=0

M.
On the other hand, for eaéh> 0, Po(M,,) is integrably bounded by the growth
of G. Thus,M is also integrably bounded.
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In the sequel, we prove tha1(t) is relatively compact for each > 0. By the
regularity of Hausdorff MNC, this will be done jfx(t) = xx(Mx(t)) — 0 ask — .

If {S(¢)} is a compact semigroup, we get(t) = 0, vt > 0.
On the other hand, §S(¢)} is noncompact, we have

MMWSM%SWﬂW@MwW@
< 4N /0 (G5, Ma(s)))ds
SMWAdeMNMQM&

Hence, .
pra(t) <4 [ polon(s)ds.
0

Putting . (t) = klim ur(t) and passing to the limit we have
— 00

foo(t) < 4M/O Pa(8)too(s)ds.

By using the Gronwall inequality, we obtain (¢t) = 0 forall t € J. Hence M (t)
is relatively compact for alt € J.
By Proposition 2.1V (M) is relatively compact i©'([0, 7]; X ). ThenF (M) is a
relatively compact subset ifi([0, 7; X).
Let us put
D =cod®(M).

It is easy to see thaD is a nonempty compact convex subsetdfo, 7']; X') and
F(D) C D becauseF (D) = F(coF(M)) C F(M) C coF (M) = D.

We now considerm : D — D. In order to apply the fixed point principle given by
Lemma 2.3, it remains to show thatis a continuous map. Let, € D with z,, — z*
andy,, € F(z,) with y,, — y*. Theny,(t) = S(t)zo + fot S(t—s)G(s,zy(s))ds. By the
continuity of G we can pass to the limit to get that

t

z*(t) = S(t)xo + / S(t— s)G(s,z"(s))ds.

0

ThenF has a fixed poink. Therefore, let(-) = VI(-,x(-)), we conclude thatx, y) is
a mild solution of our problem. O

Theorem 2.2. Under the assumptior(®), (B), (F) and(H), the systenfl.1)(1.2)has a
unique mild solution for each initial value(0) = x.
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Proof. Let (x1,y;) and (x2, y2) be two mild solutions of (1.1)-(1.2) such that(0) =
.Z'Q(O) = Xp, WE have

x1(t) = S(t)xg +/O S(t— s)G(s,z1(s))ds,

a(t) = S(H)z0 + /0 St — $)G(s, 2a(5))ds.

Then subtracting two last equations, we have

xq(t) — xa(t) = /0 S(t—s)(G(s,z1(s)) — G(s,z2(s)))ds.

By estimate of7, we obtain that
1 (8) = 22(t) [l x < /IISt—sHIc G (s, 21(5)) — G(s, w2(s)) || xds
< M/ 9)l|71(5) — 2a(8)|| xds.

Using the Gronwall inequality, we deduce the uniquenessilof solution. O

2.2. The existence of mild periodic solution

In this section, letl" > 0 be a positive time. We repladd), (F), (H) by the
following assumptions:

(A*) A satisties(A) and the semigroufs(t) is is exponentially stable with exponent
that is
1S(0)]lexy < Me™ ¥t > 0.

(F*) F satisfieqF) with a(t) = a andb(t) = b. Moreover,
F(t,z,y)=F({t+T,z,y), Vt >0,z € X,y € Y,
(H*) h satisfieqH) and
h(t,z,y) =h(t+T,z,y)Vt > 0,z € X,y € Y.

Definition 2.2. A pair of continuous functiong, y) is called a mild7-periodic solution
of (1.1)}(1.2)iff

a:(t):S(t—s)x(S)—i—/ S(t— s)F(s,z(s),y(s))ds, YVt > s >0,

z(t) =x(t+1T), ¥Vt >0,
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By Theorem 2.2, due to the unique solvability of (2.9)-(3,1@ve define the
following map:
G: X — X,
G(xo) = S(T)xo + /T S(T — s)G(s,z(s))ds, wherez is a mild solution of (2.9) with
: z(0) = xo.
The following theorem shows the main result of this section.

Theorem 2.3. Under the assumption®*), (B), (F*) and (H*), the systenfl.1)(1.2)
has a unique mild -periodic solution, provided thajz > 7., and the estimates hold

b
a> M+ — ), (2.11)
1B — M2n
M b,
exp | — a—M(a+nB_n2h) T) <1 (2.12)

Proof. First of all, we prove thatG has a fixed point. For any;,&{ € X, let
r1 = x1(+;&), 2 = 22(+;&) be the mild solutions of (2.9) with initial values, &,
respectively. We have

G(&1) = G(&) = S(T)(& — &) + /0 S(T = 5)(G(s,21(s)) — G(s, 22(s)))ds.

By the integral formula of mild solution, one has
5 (0) =) = S)(6 — )+ [ (= )(Glom(s) — Gloma(s))ds.
Then employing (2.8), we get
[z1(t) = 22(D) [ x < (SOl ceollér — Eallx + /Ot 1St = 9)lleeollG(s, 21(s)) — G(s, 22(s)) [ xds
< Me ey~ ol + 1 [ Do) = rafs) .

wherey = a + 212 Hence,

nB—"2pn

t
el|lzi(t) — z2(t) | x < Mll&1 — &llx + Mv/ e ||z1(s) — 22(s)l|xds.
0
Using the Gronwall inequality, we have
el (t) — w2 (t)|lx < M|&1 — ol xe™™.
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Then,
|21 (t) — 2o (1) x < M||&; — & xe™ @M,

From then, one has
T

1G(&1) — G(&)llx < Me™T||& — &llx +/ Me™ Ty ||zy(s) — z2(s)||xds
0

T

< Me™T||&, — & x + / MeT=)yM||&) — & || xe™ @ M2ds
0

= Me_(a_MV)TH& — &l x-

Then, by the estimations (2.11)-(2.12), it implies tgdtas a unique fixed point iX. We
suppose thaf(2*) = z*. By the definition ofG, there exists a unique mild solutiart)
satisfying

= S(t)x" + /0 S(t—s)G(s,z(s))ds,

andz(0) = z(T) = z*. This fixed point is the initial value from which the mild
T-periodic solution starts. Then, defi&ét) by

X(t) =zt —kT), t € [kT,(k+1)T], k=0,1,2, ...

and we define
y(t) = VI(t,x(t)), t >0,

which yields thatx, y) is mild periodic solution of (1.1)-(1.2). O
3. Application

Let Q2 C R" be a bounded domain with smooth boundary. Consider thenwitp
problem

O (1)~ Au(t) = [0, 2, 2(0,2), u(t, ), (3.1)
— Agult, 2) + Blult, 7) — ¥(x)) 3 hit,z, Z(t,2), u(t, 2)), (3.2)
Z(t,z) =0,u(t,x) =0, z € 00, t > 0, (3.3)

with the periodic condition
Z(t,x)=Z({t+T,x), Vo € Q,t € RT,

whereT > 0. The mapsf,h : Q x R — R are continuous functions; is in H?*(Q2) and
B : R — 2% is a maximal monotone graph

0 if r >0,
B(r)y=< R~ ifr=0,
0 if r <0.
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Note that, parabolic variational inequality (3.2) read$ddisws:

—Agu(t,z) = h(z, Z(t,x)) in {(t,x) € Q :=(0,T) x Q:u(t,z) > P(x)},
—Azu(t,x) > h(z, Z(t,x)), in Q,
(

which represents a rigorous and efficient way to treat dyoaliffusion problems with a
free or moving boundary. This model is called tifestacle parabolic probler{see [6]).

Let X = L*(Q),Y = H}(2), the norm inX andY is given by

lu| = /QUQ(;E)dw,u € L*().

The norm inH}(Q) is given by

lull = \//Q Vu(z)Pdz, u € HYQ).

Define the abstract function

F: Rt xXxY — P(X)
F(t,Z,u) = f(t,z, Z(z),u(x)),

and the operator
A=A:D(A) C X — X;D(A) = {H*(Q) N Hy(Q)}.
Then (3.1) can be reformulated as
Z'(t)— AZ(t) = F(t, Z(t),u(t)),

whereZ(t) € X,u(t) € Y such thatZ(t)(z) = Z(t,z) andu(t)(z) = u(t,z). Itis
known that ([8]), the semigroufi(¢) generated byl is compact and exponentially stable,
that is,

IS@)llecx) < e,

then the assumptiofA *) is satisfied.

We assume, in addition, that there exist nonnegative fansti(-), b(-) € L>()
such that

|f(t,z,p,q) — f(t, 2,0, d)] < a(@)lp —p'| +b(z)]g — ¢,
and moreover, we suppogét, z,p,q) = f(t + T, x,p,q) forallt > 0,z € Q,p,q € R.
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By the setting of functiorF’, it is easy to see thdtf is continuous and

18]]oo
VAL

1F(t, Zu) = Ft, Z,a)ll < llall<lZ — Z||x + lw —ally
Thus, €) holds.
Consider the elliptic variational inequality (3.2), patfiB = —A, where—A is
Laplace operator
(u, —Av) = / Vu(z)Vo(z)de,
Q

then(Bu, u) = ||ul|#. So, the assumptiofB) is testified withnz = 1.
The maph : RT x Q x R x R — R satisfiesh(t, z,p,q) = h(t + T, z,p,q),Vx €
Q,t>0,p,qg e Rand

\h(t,z,p,q) — h(t,z,p',q")| <n(t,t) +c(z)|p —p'| + d(z)lg — ¢|,Vz € Q,p,q €R,

wherec(-), d(-) are the nonnegative functionsIri°(2) andn(-,-) : RT x Rt - Rt isa
nonnegative continuous function.
Leth : R* x X x Y — L*(Q), h(t, Z,u)(x) = h(t,z, Z(z), u(x)), we obtain

1]l oo
VA

lu —ally +n(t, )9

Then the EVI (3.2) reads as
Bu(t) 4+ 0Ik (u(t)) 3 h(t, Z(t),u(t)),
where
K = {u€ Hy() :u(y) > ¥(x), fora.e.x € Q},
Ol (u) ={u € HN() : /Qu(x)(v(x) — 2(z))dz > 0,¥z € K},
= {ue HXQ) : u(z) € Bu(z) — ¥(z)), for a.e.z € QL.

It follows that () is testified.
We have the following result due to Theorem 2.3.

Theorem 3.1.1f ||d||2, < A\; and

[1Blloo llell o
Aol )
VA = dw

then the problen3.1)(3.3) has a unique mild -periodic solution(Z, u).

lalloo +
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