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ULTIMATE STABILITY OF NONLINEAR TIME-VARYING SYSTEMS
WITH MULTIPLE DELAYS

Do Thu Phuong
Faculty of Fundamental Sciences, Hanoi University of Itidus

Abstract. The ultimate stability of nonlinear time-varying systemsghwnultiple
delays and bounded disturbances are investigated in thisrp@8ased on some
comparison techniques via differential inequalities, ledpdelay-independent
conditions are derived for determining an ultimate boundhsthat all state
trajectories of the system converge exponentially withat bound. The obtained
results also guarantee exponential stability of the systehen the input
disturbance vector is ignored. Numerical simulations avergto illustrate the
effectiveness of the obtained results.
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1. Introduction

In practical systems, there usually exists an interval metbetween stimulation
and the system response [1]. This interval of time is ofteovkmas the time delay of
a system. Since time-delay unavoidably occurs in engingesystems and usually is a
source of bad performance, oscillations or instability, ghbility analysis and control
of time-delay systems are essential and of great importeEmmdéeoretical and practical
reasons [3]. This problem has attracted considerabletateinom the mathematics and
control communities, see, for example, [4-9].

When considering the long-time behavior of a system, theéwork of Lyapunov
stability theory and its extensions for time-delay systeting Lyapunov-Krasovskii and
Lyapunov-Razumikhin, have been extensively developedH8jvever, realistic systems
usually exhibit nonlinear characteristics for which thedtretical definitions in the sense
of Lyapunov can be quite restrictive [10]. Namely, the dedistate of a system may
be mathematically unstable in the sense of Lyapunov, butdbponse of the system
oscillates close enough to this state for its performandgetoonsidered as acceptable.
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Furthermore, in many stabilization problems, especiadly dystems that may lack an
equilibrium point due to the presence of disturbances osttamed states, the aim is
to bring those states close to certain sets rather than totmdar state [11-15]. In
such situations, the concept of ultimate stability, alsovn as practical stability is more
suitable and meaningful. Ultimate stability with a fixed bdy16] was first proposed
in [17], retaken and systematically introduced in [18] taless some potential practical
limitations of Lyapunov stability. These stability not®not only provide information on
the stability of the system, but also characterize its temmsehavior with estimations of
the bounds on the system trajectories. During the past deaahsiderable research
efforts have been devoted to study the practical stabilitglymamical systems. To
this point, we refer the reader to some recent papers [115]183-23] and the cited
references therein.

Although ultimate stability provides a more relaxed coricgstability, only a few
results concerning this problem have been reported eslydaanonlinear time-varying
systems with multiple delays. Furthermore, when dealirth wine-varying systems with
delays, the developed methodologies such as Lyapunowisksfunctional method and
its variants either lead to matrix Riccati differential ejjons (RDES) or indefinite linear
matrix inequalities (LMIs). So far, there has been no effitemputational tool available
to solve RDEs or indefinite LMIs. In addition, the construetiapproaches proposed
in the aforementioned works seem not applicable to timgiwgrsystems. Therefore,
an alternative and efficient approach to address the problenitimate stability of
time-varying systems with delays is necessary and mobindtr our present research.

In this paper, we consider the problem of ultimate stabftitya class of nonlinear
time-varying systems with multiple time-varying delaysdamunded disturbances. A
constructive approach based on some comparison technigugesented to derive
explicit delay-independent conditions for determininguitimate bound ensuring that all
state trajectories of the system converge exponentialligimthat bound after an initial
transient period. The derived conditions also guarantpergential stability in the sense
of Lyapunov when the input disturbance vector is ignored.

2. Preliminaries

Notation: n = {1,2,...,n} for a positive integern. R" and R™*™ denote the
n-dimensional vector space with the nofiml| ., = max;¢, |z;| and the set ofn x n real
matrices, respectively. A comparison between vectordeilinderstood componentwise.
Specifically, foru = (u;) andv = (v;) in R, u > v meansu; > v; for all i € n and if
u; > v; for all i € n then we writeu > v instead ofu > v. R} = {z € R" : > 0}
andint(R?}) = {x € R" : z > 0}. By denotinguyi, = min,c,v; thenwv,;, > 0 for any
vectorv = (v;) € int(R’). We also specifically use the notatiot = max{a, 0} for a
real numbery, that meansa™ = « if and only if & > 0, otherwisen™ = 0.

Consider a class of nonlinear time-varying systems withtiplel time-varying
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delays of the form

i(t) = A(t)z(t) + Wo(t) F(x(t))
+ Wi (t)G(x(t —7(t))) +d(t), t >0, (2.1)
z(t) = ¢(t), t € [~Tmax,0].

System (2.1) can be written explicitly as follows:

(1) = a:(0ai(t) + Y w00 (2,(0)

Yl 0t~ o) + ), 120 @

xz(t) = ¢Z(t)7 te [_Tmaxao]a (RS n,

where z(t) = (x;(t)) € R™ andd(t) = (d;(t)) € R"™ are the state vector and
exogenous disturbance vector, respectivelit) = diag(a;(t)), Wo(t) = (wy;(t)) and
Wi(t) = (wj(t)) are time-varying system matrices whose elements are asstaniee
continuous orR ;, nonlinear functiong;(.), g;(.) : R — R, j € n, are continuouss;;(t)
are heterogeneous time-varying delays aad € C'([—7max, 0], R") is the vector-valued
initial function specifying the initial state of the system(¢) = (¢;(t)) € R". Let us
denotel ;| = sup . < [6:(1)] a6l = maxic, |1

Note that the system (2.1) is quite general which includes dylstems with
delays [10], linear time-varying systems with time-vaxyidelays [24] or neural
networks [25] as some special cases.

Definition 2.1. Systen(2.1)is said to be ultimately stable if there exists a bound 0
such that for any)(.) € C/([—Tmax, 0], R"), there exists a transient tinle = 7'(u, ¢) > 0
such thatl|xz(t, ¢)||o < pforallt > T.

Our aim in this paper is to derive explicit conditions for @®bining an ultimate
boundy* by which system (2.1) is ultimately stable for> 1*. By utilizing the approach
of [24], we derive delay-independent conditions in termssofme matrix inequalities
ensuring ultimate exponential convergence of state ti@jes of the system.

At first, we recall here some properties of M-matrix [26]. AtmaA = (a;;) €
R™™ is said to be M-matrix ifz;; < 0 whenever # j and all principal minors ofl are
positive. The following proposition is used in stating ousimresult.

Proposition 2.1. Let A € R™" be an off-diagonal non-positive matrix;; > 0,7 € n.
The following statements are equivalent.

(i) Aisanonsingular M-matrix.

(i) ReAr(A) > 0 for all eigenvalues\;(A) of A.



Do Thu Phuong

(i) There exists a vectaf > 0 such thatA¢ > 0.

(iv) There exists a vectar > 0 such thatdy > 0.

From Proposition 2.1we obtain the following result.

Proposition 2.2. Let A € R™*" be a nonsingular M-matrix, then there exists a vector
£ € int(R7}), [|¢]|ls = 1, such thatA{ >> 0.

3. Main results

To facilitate the statement of our results, we consider dflewing assumptions:

(A1) The matricesA(t) = diag(a;(t)), Wo(t) = (wy;(t)) andWi(t) = (wj;(t)) satisfy
the following conditions

a;(t) <T@, Jwii ()] <@, Jwy ()] < @y,

(A2) There exist constants, > 0, G; > 0, such that

| fi(w) — fi(v)] < Filu —v|, |g:(u) — gs(v)] < Gilu — v
for all u,v € Randf;(0) = 0,¢;(0) = 0,7 € n.

(A3) The disturbance vectat(t) = (d;(t)) is bounded, that is, there exists a positive
constantl,, such that

|d;(t)| < d forallt >0, i € n.

Remark 3.1. By assumptions(Al)-(A3), for each initial function ¢(.) €
C([—7max, 0], R™), there exists a unique solutiatit, ¢) of (2.1) defining on[—7yax, 00)
[1]. On the other hand, although assumpt{@®) implies F'(0) = 0, G(0) = 0, system
(2.1) may not have an equilibrium point. Particularly,= 0 is neither an equilibrium
point of (2.1) due to not vanished disturbance nor a necessarily stablemot

Let us denote the following matrices:
A = diag{—a1, =, ..., @}, Wo = (@), Wy = (w};),
F = diag{ [, F, ..., F,}, G = diag{G1,Ga,...,G,},
M =A-WoF —W,G.
The matrix M is obvious an M-matrix. Therefore, iM satisfies one of the
equivalent conditions in Proposition 2.1 then, by ProposiR.2, there exists a vector

§ € int(RY), [[€]l« = 1, such thatM¢ >> 0. Now, we are in the position to present our
main result in the following theorem.
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Theorem 3.1. Let assumptiongAl1)-(A3) hold. Assume thatM is a nonsingular
M-matrix. Then, systerf2.1)is ultimately stable. More precisely, lgtc int(R’;) be a
vector satisfying/¢||.. = 1 andM¢ > 0, m* = (M¢),_. 6% = —

min

whereg; is the unique positive solution of the scalar equation

ando = min;e,0;,

o+ Z Giw; & (7™ —1) —m* =0, i € n.
j=1

Then, every solution(t, ¢) of systenf2.1) satisfies the following bound

doo * doo i —ot
[2(t, d)[l00 < i ¢[00 — " e, t>0,
m )

wherex* = 1/&pin.

Proof. We divide the proof into several steps.

Step 1.By Proposition 2.2, there existse int(R?), ||| = 1, such thatM¢ > 0,
and thus

v

@&+ Yy (Fywly + Gawyy) & <0, i € n. (3.1)
j=1

Observe that,
j=1

Hencem* > 0 and from (3.1) we have

;& + Z (Fngj + ij}j) & < —m’. (3.2)
=1

. deo : deo .
Step 2.We will prove that||z(t,¢)|| < — fort > 0if ||¢]|c < 5 In the following,
m
we will usez(t) to denote the solution(t, ¢) if it does not cause any confusion. Let

|9]le < O(Zs—* then we haver;(t)| < |¢s] < §— fort € [~Tnax, 0], @ € n. For any
m
: : - doo
q > 1, assume that there exists an index n and? > 0 such thafz;(f)| = ¢§;— and
m
doo - - :
|2;(t)] < ¢§;—,Vt <t,j € n. ThenD™ |x;(7)| > 0. On the other hand, it follows from
m

7
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(2.2) that
D Ja;(t)] = segn(wi(t))a4(t)
< a;(t)]: ()] + Z Jwiy (8)]] £ (25(t))]
+ Z |wi; (8195 (¢ — 735 (£))] + |di(?)]
< a;|xi(t)| + ZFw |25 (%)
+ ZG W|w(t — 73;(t)] + doo, t € [0,7]. (3.3)
Thus,

D+

- qdes [ Z _ _
zi(f)] < e (az‘fz‘ + Z <Fjw?j + ijzlj)gj) + deo
j=1
<(1—-¢q)de <0 (3.4)

which yields a contradiction. Therefore;;(t)| < q@d—o‘: forallt > 0. Letqg — 1T we
m
doo

"

: doo :
obtain|xz;(t)| < &— for alli € n and hencel|z(t)[|o <
m

deo . .
Step 3.Now, assume thadfs||,, > 5 Then it is easy to verify that

o (lole - 5 ) & i€ n

For eachi € n, consider the following scalar equationdne [0, co)

doo
|pi] — &i— <
m

o) =0&+ > G (e —1) —m” =0. (3.5)
j=1

Since the functionH; (o) is continuous and strictly increasing @ oo), H;(0) < 0,
H;(o) — oo,0 — oo, equation (3.5) has a unique positive solutign In addition,
H;(oc) <0forallo € (0,0;]. Leto = min;e,,0; thenH;(o) < 0 for all i € n.

Let us consider the functions(¢), i € n, as follows:

v (t) = (qu“oo LG ) £e % t € [~Tmax, 00). (3.6)
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Observing that, fot > 0 andj € n, we have
oo\ ¢ —alt—ry(®)
vt = 7i5(1) = K" { 19lleo = 7 ) &€ ’
* dOO —ot _oT
<k (H¢HOO — 5* ) fj@ te max

S 6UTmax /U] (t) .

Therefore, using (3.2) and (3.6), we have
aivi(t) + Z Fjw?jvﬂ + Z Gj wwvﬂ — 7i5(1))
j=1
< pe (az‘fz‘ + Z Fngjfj + Z ijiljfje”'““)
Jj=1 Jj=
Be [aifi + Z Fw + G w” &+ ZG e7mmax _ 1)
j=1

< Be [ —m" + i Gyw,;€; (e7mmes — 1)]
j=1

< —Bo&e " t>0,i€en,

where = x* (||¢||oo - ) This leads to

Next, by using the following transformations:

w(t) = |z ()] — 52 e —Tmax, 1 €N,

and by the same argument used in (3.3), we have
Dtuy(t) < @ui(t) + ZF wui(t) + ZG whu(t — 73 (t))
— |+ Z (Fyw; + Giw;) & | + doo

<aui(t) + Y Fmdu,(t) + Z Gy} u(t — 7(t)). (3.8)
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We now prove that;(t) < v;(t). Let p;(t) = u;(t) — v;(¢), then, fort € [—Tuax, 0]

we have
doo doo
. < | — £ < g* - = .
wlt) < |6l = &% < (||¢||oo 5*)52

doo ot
< (ol = 5 ) 67" = uto)

Thus,p;(t) < 0, for all t € [—7max, 0],7 € n. Assume that there exist an indéx n
and at; > 0 such thatp;(t;) = 0, p;(t) > 0,t € (t1,t; + J) for somes > 0 and
pi(t) < 0,Vt € [—Tmax, t1]. ThenD*p;(t1) > 0. However, fort € [0, ¢,), it follows from
(3.7) and (3.8) that

D+pz < azpz + Z Fyw wz]p]

and thereforeD* p;(t;) < 0 which yields a contradiction. This shows thatt) < 0 for

allt > 0,7 € n. Consequently,
* doo —
+ K (HQbHoo_?) gie

* dOO —0o
4 (Bl = 52) el

doo deo\ _ .
< *+/§*(|]¢Hoo— *)e"t,VtEO,ZEQ.
m 0

doo
()] < &
ri(0)] < 65

Finally, we obtain

doo * dOO i —ot
lz(®)lloe < =+ K" {0lloo — 5 ) €, £ 20, (3.9)

Ao Ao
Step 4.Let n > — andx(t, ¢) be a solution of system (2.1). . < - then, by
m

Step 2 ||z(t, ¢)||ooc < p holds for allt > T'(u, ¢) = 0. Assume||¢||e > Ofs—* then from

(3.9) we have
doo [e%¢} doo —ot
ot ol < 5 + (12 ) ¢

Emin ~ M*

S i o

- om* Smm

10
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. do
Therefore, if||¢]| o < 1&min, NOte thaf > p— then

Hx(t>¢)Hoo S 1% (1 — 6_Ut> -+ Iue_gt = [L.
If [|flloc > f1€min then

1 llplloo d;.:
T(1,6) = ~In (%) >0

o =
and||z(t, ¢)||e < pfort > T(u, ). This shows that system (2.1) is ultimately stable.
The proof is completed. O
Remark 3.2. The result of Theorer@.1 ensures that all state trajectories of systéiil)
will converge to a common threshold = d—"j as the time tends to infinity. In other
words, for any solution:(t, ¢) of systen(z.l),nﬁ holds that

o0

tim sup [(t, 6) oo < 2.
t—o0 m

Remark 3.3. It can be seen in the proof of Theoréi that (using(3.2)and(3.5)), for a
fixed vecto € int(R’;) satisfying

(A—WoF —WiG) >0, (3.10)

the exponential convergence ratecan be defined as = min,c,0;, Whereo; is the
unique positive solution of the scalar equation

(Ei -+ J) 51 + Z (FJE?] + ijgje”m") €j =0. (311)
j=1

Thus, Theorenm3.1 provides an explicit delay-independent criterion for the
ultimately exponential convergence of sysi@r). Moreover, the impact of delays on
the decay rate is also explicit provided by computing theeisgedo in (3.11)for any
¢ € int(R?) satisfying(3.10)

Remark 3.4. As an application to the nonlinear time-varying systéil) without
disturbances (i.e.d(t) = 0), the proposed conditions in Theorednl guarantee the
Lyapunov exponential stability of the system.

Corollary 3.1. Let assumption§A1)-(A2) hold. Assume that there exists a vecfoe
int(R") satisfying(3.10) then syster(2.1) without disturbance is exponentially stable in
the sense of Lyapunov. Moreover, every soluiigne) of (2.1) satisfies

oo .
la(t, &)l < “5—“.|r¢|rooe s,

whereo = min,¢,0; ando; is the unique positive solution (3.11)

11
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From Corollary 3.1, we now discuss the global exponentebifity of a special
class of (2.1), namely the linear time-varying systems witte-varying delay

(1) = A(D)z(t) + BO)a(t — (1)), ¢ > 0,
$(t) = d)(t)? le [_Tmaxa 0]7

where A(t) = (a;(t)) € R™™, B(t) = (b;(t)) € R™™ are given continuous matrix
functions,0 < 7(¢) < Tiax-

(3.12)

Corollary 3.2. Systen(3.12)is globally exponentially stable if there exists a vecar
int(R}) such that

(A+B)¢ <0,
Whereaii(t) < dii, |(lzj(t)| < dij,i 7é j, |sz(t)| < Bija A = (C~LZJ> and B = (i)”)
Moreover, every solution(t, ¢) of (3.12)satisfies

oo Y
Hx(t,cb)HooS”g”_ 16l £ >0,

wheres = min,¢,0; ando;, @ € n, be the unique positive solution of the equation

1 "L 1=

(&” + Z f_&”63> + ( f_bZ]€J> edfmax + 0= O
i j=1>*

Remark 3.5. Corollary 3.2 gives a delay-independent condition for the exponential

stability of linear time-varying systems with delay. Thisatlary extends some recent

results, for example, if27, 28] to time-varying systems.

As a brief discussion, we would like to mention here thats ipossible to derive
the exponential decay rate the,-neighborhood and the transient tifidy imposing in
one condition is that the matrix M, = —A + oI + WoF + e’™=W, G is Hurwitz for
someo > 0. Theny and7 can be determined as follows:

Step 1 Find a vectok < int(R’) such thatM,, & >> 0.
Step 2.Computem* = (N,¢),.. andd* = m* /&, Where

N, = ol + (e7™> — 1)W,G.

oo|€]] oo
m*

Step 3.Transient timel'(u, ¢) for p > is determined by

bl _ e
(g
T
: Smin
f o > T
ol > 2

12
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4. Anillustrative example

Consider the following nonlinear time-varying system

2

@i(t) = a;(t)z;(t) + Z w?j () fi(x;(¢))

4.1)

2

+ Z wy(t)g;(z;(t — 735(1))) + di(t)

j=1
wherea, (t) = —5(1 + | sint|), as(t) = —6(1 + et cos? t),

2sin 3t cos 2t
wWo(t) = [ —e b 0.5cos? t} ’

cos 3t 2sint
Wl(t) — sint tsint
1+ |cost] 1+¢2

fl(xl) =1/ 1 + IE% — 1, fg(l’g) = ln(l + |.CL'2|),

gi(w:) = tanh(w;), [ld(t)]lo < 0.1,7;(t) = |sin(V)].

Assumptions (A1) and (A2) are satisfied and we have

1 0.5 1 0.5
F=G=101,v=01, Tmax = 1,

Az&%&ﬂﬁﬂzf W,Wf{12y

and thus,

M:A—Wﬁ—WﬁzLi_ﬂ.
It is easy to verify that = (1 0.5)" € int(R?) satisfyingM¢ > 0. By Theorem
3.1, system (4.1) is practically stable. Taking (3.1) and)3nto account we obtain
m* = 0.5,6" = 1, k* = 2 ando = 0.1579. The disturbancgd(t)| . < 0.1. Every
solution of system (4.1) satisfies the following expondrractical estimation

lz(t, @)oo < 0.2+ 2([¢lloc — 0.1)" ™1, ¢ > 0.

State trajectories of system (4.1) with(t) = 0.1sin®2t anddy(t) = 0.1cos4t are
presented in Figure 1.

We also consider system (4.1) with time delay(t) = }sin(w\/i)] and conduct
extensive simulation for large values af, i.e., 7;;(¢) is a fast time-varying delay.
In our conducted simulation test, it was found that all thatesttrajectories of the
system converged exponentially within the bound, for edemipigure 2 presents state
trajectories of system (4.1) with = 10°. Moreover, system (4.1) without disturbance,
i.e.d(t) = 0, is exponentially stable in the sense of Lyapunov as shovaigare 3.

13



14

Do Thu Phuong

0.1

o
o1

Response x(I) o
(@)

0 5 10 15 20
Time (sec)

Figure 1. State trajectories of system (4.1)
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Figure 2. State trajectories of system (4.1) with 7;;(¢) = | sin(105/2)]
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Figure 3. State trajectories of system (4.1) with d(t) = 0

Conclusions

This paper has addressed the ultimate stability of nonliheee-varying systems

with multiple delays and bounded disturbances. Expliaicibons have been derived for
determining an ultimate bound and a finite transient tifhthat guarantee all the state
trajectories of the system converge exponentially to thienate bound after a transient
timeT.
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