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Abstract. In the article [1], we see that the birational maps of degfeef
the projective spac®; form a locally closed subvariety of the projective space
P(S5*1), denoted Gy(n). In this paper, we will construct the notion of extended
degree of rational maps, then we obtain the functg(ror that represents the
variety Cy(n).
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1. Introduction

Let Cr(n) = Bir(Py) denote the set of all birational maps of the projective space
PP, on the fieldk. It is clear that Cfn) is a group under composition of dominant
rational maps called the Cremona group of orderThis group is naturally identified
with the Galois group ok-automorphisms of the field(x4, . . ., x,,) of rational fractions
in n-variablesry, . . ., z,. It was studied in the first time by Luigi Cremona (1830 - 1903)
an Italian mathematician. Although it has been studiedesthe 19th century by many
famous mathematicians, it is still not well understood. &mmple, we still don’t know
if it has the structure of an algebraic group of infinite dirsiemn.

In the article [2], we constructed the Cremona grédipinctor
cr(in) : Algk) — &
from the categorylig(k) of k-algebras to the categogjr of groups and calculated its

Lie algebra. Thek-value points of the Cremona grolgfunctor ci(n) are exactly the
elements of the Cremona group,Gr) = Bir, (P}).
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Denote byS,; = klxo, ..., z,|s thek-vector space of homogeneous polynomials
of degreed in (n + 1)-variablesz,, ..., x, and zero polynomial over an algebraically
closed fieldk of characteristic 0. In the article [1], we also knew that birational maps
of degreed of the projective spack; form a locally closed subvariety of the projective
spaceP(S; ) associated with thie-vector space’; ™', denoted Gy(n). In this paper, we
will construct the sub-functor gfn) of the Cremona grouk-functor c(n) and we will
show that this sub-functor gn) represents the variety Grn). For that, we need extend
the notion of degree of rational maps: P}, --» P, whereR is not necessarily a field
but anyk-algebra.

2. Content
2.1. Degrees of rational maps

In classic algebraic geometry, we know that a rational majh@fprojective space
Py is of the form:

P2 mo:...ixy) =2 --» ¢(x) = [Po(z) : ... : P()] € PR,

where P, ..., P, are homogeneous polynomials of same degreg:in- 1)-variables
xo, ..., T, and are mutually prime. The common degreepfs called the degree af;

denoted bydeg ¢. In the language of linear systems; giving a rational map |18 is

equivalent to giving a linear system without fixed composerif’;

©*|Opn(1)] = {Z NP\ € k} .
1=0

Clearly, the degree af is also the degree of a generic element0fOp- (1)| and the
undefined points op are exactly the base points @f|Op» (1)|.

Note that a rational map : P} --» P} is not in general a map from the Jjf to
IP; itis only the map defined on its domain of definition D@ = Py \ V(F, ..., P,).
We say thaty is dominantif its image o(Dom(y)) is dense inPy!. By the Chevalley
theorem, the image(Dom(y)) is always a constructible subset®f, hence, it is dense
in P} if and only if it contains a non-empty Zariski open subsePpf(see the page 94,
in [3]). In general, we can not compose two rational maps. éil@k the composition
1 o p is always defined ifp is dominant so that the set of all dominant rational maps
¢ PP --» P} is identified with the set of injective field homomorphisprsof the field
k(zy,...,x,) of all rational fractions im-variableszy,...,z,. We say that a rational
mapy : P} --» P} is birational (a birational automorphismif there exists a rational
mapy : Py --» P} such that) o ¢ = idpn = ¢ o ¢ as rational maps. Clearly, if such
a1 exists, then it is unique and is called timwerseof . Moreover,p and are both
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dominant. If we denote by Cr) = Bir(IP}) the set of all birational maps of the projective
spacePy, then Ckn) is a group under composition of dominant rational maps aalls@
the Cremona group of order This group is naturally identified with the Galois group of
k-automorphisms of the field(z4, . . ., x,,) of rational fractions im-variableszy, . . ., .

Now, suppose thak is anyk-algebra andp : P}, --» P} is a rational map (see
the general definition of rational maps in [4]). It gives usaefly of rationalx(s)-maps
(s : PRy —=> P S))Sespew) wherex(s) is the residue field at. Roughly, we say that
the degree op is equal tod if ¢, has the degreé for all s € Spe¢R). More precisely,
we define as follows:

Definition 2.1. Let X = Spe¢R) be an affingk-scheme ang : P} --» P% a rational
R-map with the domain of definitioli = dom(¢) C P%

PLOU - - P}

Spec(R)

satisfying the following condition:
codim(Py ., — Uy, Pr,y) =2, Vs € Spe¢R) (2.1)

whereU, := U Xgpe¢r) SPe0s(s) is the fiber o/ at s.
Suppose there exists an invertible sh&abn Spe¢R) and a positive integed such that

©*Opn (1) =~ Op(d) ®o, p*Z (2.2)

where Oy (d) is the restriction toU of Op» (d) andp is the restriction of the structural
morphismr to U, and herep : U — P} becomes a morphism, in such a way that, the
notationy*Opn (1) defines an invertible sheaf én Itis clear that such a couple?’, d)

is uniquely determined if it exists. This positive intedas called the degree ap, still
denoted byleg(y).

Remark 2.1. WhenR = k is any field,X = Spe¢k) andr : P} — Speck) is the
structural morphism, we show that such a coup#é, d) always exists and it is uniquely
determined, so we find again the notion of usual degree irsiakalgebraic geometry.
Indeed, the invertible shea? is quasi-coherent o' = Speck), therefore, of form
% = M whereM is a locally freek-module of rank 1 (projective of rank 1), hence,
M ~ k, thatis, ¥ = k = Ospecr)- Therefore,p* .2 ~ p*Ogpeqy ~ Oy, hence, the
isomorphism of sheaves (2.2) becomesOg- (1) ~ Oy (d). Moreover, in this case, (2.1)
gives us Pi¢U) = Pic(Py), hence,|Opn (d)| = [Op(d)| D ¢*|Opr(1)], therefore, the
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generic element (generic hypersurface) of the linear systefiningpy has for the degree
d, ie, the degree ap is d, as the usual notion of degree.

Remark 2.2. The condition (2.2) implicates that the degreesqfis equal tod for all
s € Spe¢R). Indeed, by taking the fiber at € Spe¢R), the isomorphism of sheaves
(2.2) becomes

©:Opn (1) >~ Oy, (d) = Opr_ (d)]u.-

Therefore, the linear syste@,, := QO:‘OPZ<S)(1)‘ C |Ou,(d)] = |Opz(s)(d)| definingyp;

is a linear system of hypersurfaces of degfee PRs)s hencedeg(ys) = d.

Remark 2.3. We consider the following exampfe: P%, --» P4,, ¢ = [z2 : y(z + sz) :
k k
z?] where the parameter € Al = X = Spe|t|, we have

codim(P2 ) — U, P2 ,)) = 2, deg(ps) =2, Vs#0

k(s
COdim(IP’i(O) - UO,]P’i(O)) =1, deg(po) =1#2.

Then, this rational mag has not degree. This example also shows us that the condition
(2.1), that gives us: P{@/;) = Pic(P} )), Vs € Spe¢R), is necessary.

2.2. Main results

We consider the Cremona grolkgunctor
cr(in) : Alg(k) — &t
R +— Birg(P}%)

from the categorlig(k) of k-algebras to the categoéy of groups. Here, we denote by
Birz(IP%) the group of birationaR-maps of the projective spaé®, on R.

According to Definition 2.1, we can denote by Bir(P}) the set of birational
R-maps of degre€ of the projective spacg}, on thek-algebraR. Therefore, we obtain
the sub-functor following of the Cremona grokigunctor ci(n)

crg(n) : Algk) — et
R — Crd(n)(R) = Bird7R(]P)%).

Here, we denote bget the category of sets. We can also regargdrcr as ak-functor
defined on the catego&ich(k) of k-schemes. Now, we obtain the main result following:

Theorem 2.1. The restriction of thek-functor cry(n) to the category of noetherian
k-schemes is &-functor representable by the scheme @.
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Proof. It suffices to establish an isomorphism lofunctors cg(n) ~ hcp,n) With the
representable functdrc,, .., that is, for all noetheriak-algebrar, a bijection

cra(n)(R) = Birgr(Pk) — MOl (SPe¢R), Cra(n)) = her(m) (SPECR))
and for all homomorphism of noetheri&ralgebrasl” — R, a commutative square

~

Bird,R(IP’%) — Morgch(k) (Sp@(R, Crd(n))

—

Birgr(P%) — Morsw (Sped’,Cry(n)).
]

Let p € Biry, R(]P”;%) be a birationalR-map of degreé of the projective spacg},
on some noetheridk-algebrar.

We try to construct a morphism éfschemesy’ : Sped? — Cry(n) C P(S;™),
that is, a morphism into the projective spage: Spedz — P(S;*'), whose image
is contained in Gy(n). Such a morphism will be defined by the data containing an
invertible R-module H (Sped?, ) and an epimorphism ak-modulesS;*! @ R —
HO(Spe(R, Z). According to the definition of degree (Definition 2.1), thezxists
always such an invertible she&f. In order to verify that? is suitable, we need prove
some complementary results following:

Lemma 2.1.Let A — B be alocal homomorphism of local noetherian rings such #hat
is a flat A-module. Then, if we denote kyA) the residue field oft, we have the equality
following of depth:

depti{ B) = depth{A) + depth{x(A) ®4 B).
Proof of Lemma 2.1 is also the corollary of Proposition 11ggAC X-13, in [5].

Lemma 2.2. Suppose thak is a locally noetherian schem¥, is a closed subscheme of
X and.7 is a coherentDx-module. Then, the following conditions are equivalent:

(i) Forall y € Y, depth{.7,) > 2.
(77) For all open subset’” of X, the natural homomorphism following is bijective

H'(V,.Z) — H(VN(X -Y),Z).
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Proof of Lemma 2.2 is also Corollary IlI-1, page 11, in [6].

Lemma 2.3. Suppose thakR is a noetheriark-algebra,y : P% --» P% is a birational
R-map of degreel with U = dom(y) C P} the domain of definition ap. Then, the
canonical homomorphism ét-modules
o HO(]P)HR, O[pwé(d)) — HO(U, OU(d)>
r — x|y

IS an isomorphism.

Proof. This is a direct consequence of Lemma 2.1 and Lemma 2.2. dneeeneed only
apply Lemma 2.2 withX' = P, Y = P, — U and.# = Ogx (d). So the only problem
remains verifying that for ali € Y,

depth((’)%% (d)) > 2.

However,Opx (d) is an invertible sheat), p» (d) ~ O, p».. Now, by applying Lemma 2.1
to the canonical homomorphisth= O, speg — B = O, p» Wherer(y) = s. We have
depth(Oy,p;{) = depth(O; sper) + depth( (s) Q0. sper Oy,ﬁ”{g)
= depth(Os specz) + depth(Oyg BT, ))

(
(O
> depth< yo P, ) = dimgpu (Oys m))
> codim(Py,, — U, Ppyy) > 2.

K(s)

Here, we have the equality: dep(th)ySPZ(S) = dimgpy <Oys Pr, ) because]pn
is smooth. D

Lemma 2.4. (Projection Formula) (see in [7]). Suppose that (X, Ox) — (Y,Oy) is
a morphism of ringed space¥, is anO y-module ands’ is anOy-module locally free of
finite rank. Then

f*(g ®(’)x f*é") = f* (ﬁ) ®OY &.
In fact, we have also the isomorphism

R f(F ®ox [*6) = R [, (F) R0y &, Vi.

Lemma 2.5. Let R be a noetheriark-algebra, we have
(a) H° (Speﬁ, W*O[p% (d)) ~ S5; Qx R,
(b) H°(Spe®, p.Oy(d)) ~ Sq @« R.
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Proof. (a) Indeed: H°(Sped?, m,Opx (d)) ~ H(P}, Opr(d)) ~ Rlxo,... 1], =~
Sy ®x R.
(b) By applying Lemma 2.3, we have

H°(Sped?, p.Oy(d)) ~ H(U,Oy(d)) ~ H (P}, Opn(d)) =~ Rlzo, ..., xn] ; ~ Sa®xR.

Now, we come back to prove main Theorem 2.1. By applying theetiprevious
lemmas and by taking, of two sides of the isomorphism (2.2), we have

P Opn (1) ~ p.(Ou(d) ®o, p*2L)
= Dx (OU(d)> ®OSpecR g
~ SR Z.

According to the property of the adjoint functor, we alwaywéa morphism
of sheaves

Opp (1) = 940" Opp (1)

hence, a morphism of sheaves
7. O0pp (1) — Tpu 0" Opp (1) = putp™Opp (1) = Sq @ Z.
By taking the global sections, we have the following homapihgsm:
Si @R — Sq@y H'.Z.

By taking the duality, we obtain

e . (Sd)* &k (51 R R) — H' 2.
The monomials:; = zi? - - - zi» with Cardl) = iy + - - - + 4, = d form a canonical basis
of the vectork-spacek|xy, . . ., z,]q = Sy, hence, we obtain the dual basgis)* of (S5,)”
(ZL’I)* : Sd — k

Ty +H—— (x[)*(xj) Z:(st

whered; ; is the Kronecker symbol. In the end, the homomorph&is well defined by
its images on the canonical bagis)* ® z; as follows:

O (Sd)* R (51 R R) - H'%
(1’1)* RQx; > @( (.CL'[)* (059 .CE'Z) = Coeﬁxl (Pz)
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where Coeff, (P,) is the coefficient of:; in P, if ¢ = [Py : ... : P,]. This shows tha®
is an epimorphism of-modules.
In summary, we showed that the biratiof&mapp = [PO D Pn] of degree

d determines an epimorphism &modulesS’ ™ &, R — H.#. So, this epimorphism
defines a morphism df-schemes’ : Sped? — P(S;"). Asthe set map, the underlying
mapping of the corresponding morphisthis defined as follows: Spéts s — ¢'(s) =
vs € Cry(n) whereyp, is a member of the family of the birationlaimapsy. Therefore,
the image ofy’ is contained in Gi(n).

Conversely, all the morphisms @&fschemes from Spétto Cr,(n) are deduced
from this way. Moreover, the fact that the square being cotmative is obvious.

3. Conclusions

In this paper, the author has acquired the two main resutis fifst is Definition 2.1
that is the notion of extended degree of rational maps. Toemskis Theorem 3.1, which
states that the restriction of tfkefunctor cr(n) to the category of noetheridaschemes
is ak-functor representable by the schemg(@y.
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